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The co-universal C∗-algebra of a
row-finite graph

Aidan Sims

Abstract. Let E be a row-finite directed graph. We prove that there
exists a C∗-algebra C∗

min(E) with the following co-universal property:
given any C∗-algebra B generated by a Toeplitz–Cuntz–Krieger E-family
in which all the vertex projections are nonzero, there is a canonical ho-
momorphism from B onto C∗

min(E). We also identify when a homo-
morphism from B to C∗

min(E) obtained from the co-universal property
is injective. When every loop in E has an entrance, C∗

min(E) coincides
with the graph C∗-algebra C∗(E), but in general, C∗

min(E) is a quotient
of C∗(E). We investigate the properties of C∗

min(E) with emphasis on
the utility of co-universality as the defining property of the algebra.
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1. Introduction

The aim of this paper is to initiate a study of C∗-algebras defined by
what we refer to as co-universal properties, and to demonstrate the utility
of such a property in investigating the structure of the resulting C∗-algebra.
We do this by considering the specific example of co-universal C∗-algebras
associated to row-finite directed graphs.

A directed graph E consists of a countable set E0 of vertices, and a
countable set E1 of directed edges. The edge-directions are encoded by
maps r, s : E1 → E0: an edge e points from the vertex s(e) to the vertex
r(e). In this paper, we follow the edge-direction conventions of [9]; that is,
a path in E is a finite sequence e1e2...en of edges such that s(ei) = r(ei+1)
for 1 ≤ i < n.
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Let E be a directed graph. A Toeplitz–Cuntz–Krieger E-family in a C∗-
algebra B consists of sets {pv : v ∈ E0} and {se : s ∈ E1} of elements of B
such that:

(T1) the pv are mutually orthogonal projections;
(T2) s∗ese = ps(e) for all e ∈ E1; and
(T3) pv ≥

∑
e∈F ses

∗
e for all v ∈ E0 and all finite F ⊂ r−1(v).

A Toeplitz–Cuntz–Krieger E-family {pv : v ∈ E0}, {se : s ∈ E1} is called a
Cuntz–Krieger E-family if it satisfies
(CK) pv =

∑
r(e)=v ses

∗
e whenever 0 < |r−1(v)| <∞.

The graph C∗-algebra C∗(E) is the universal C∗-algebra generated by a
Cuntz–Krieger E-family.

To see where (T1)–(T3) come from, let E∗ denote the path category of E.
That is, E∗ consists of all directed paths α = α1α2 . . . αm endowed with the
partially defined associative multiplication given by concatenation. There is
a natural notion of a “left-regular” representation λ of E∗ on `2(E∗): for a
path α ∈ E∗, λ(α) is the operator on `2(E∗) such that

(1.1) λ(α)ξβ =

{
ξαβ if s(α) = r(β)
0 otherwise.

It is not hard to verify that the elements Pv := λ(v) and Se := λ(e) satisfy
(T1)–(T3). Indeed, it turns out that the C∗-algebra generated by these Pv

and Se is universal for Toeplitz–Cuntz–Krieger E-families.
The final relation (CK) arises if we replace the space E∗ of paths in E

with its boundary E≤∞ (this boundary consists of all the infinite paths in
E together with those finite paths that originate at a vertex which receives
no edges). A formula more or less identical to (1.1) defines a Cuntz–Krieger
E-family {P∞

v : v ∈ E0}, {S∞e : e ∈ E1} in B(`2(E≤∞)). The Cuntz–
Krieger uniqueness theorem [2, Theorem 3.1] implies that when every loop
in E has an entrance, the C∗-algebra generated by this Cuntz–Krieger family
is universal for Cuntz–Krieger E-families. When E contains loops without
entrances however, universality fails. For example, if E has just one vertex
and one edge, then a Cuntz–Krieger E-family consists of a pair P, S where
P is a projection and S satisfies S∗S = P = SS∗. Thus the universal C∗-
algebra C∗(E) is isomorphic to C∗(Z) = C(T). However, E≤∞ consists of a
single point, so C∗({P∞

v , S∞e }) ∼= C.
The definition of C∗(E) is justified, when E contains loops with no en-

trance, by the gauge-invariant uniqueness theorem (originally due to an Huef
and Raeburn; see [6, Theorem 2.3]), which says that C∗(E) is the unique C∗-
algebra generated by a Cuntz–Krieger E-family in which each pv is nonzero
and such that there is a gauge action γ of T on C∗(E) satisfying γz(pv) = pv

and γz(se) = zse for all v ∈ E0, e ∈ E1 and z ∈ T.
Recently, Katsura developed a very natural description of this gauge-

invariant uniqueness property in terms of what we call here a co-universal
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property. In the context of graph C∗-algebras, Proposition 7.14 of [7] says
that C∗(E) is co-universal for gauge-equivariant Toeplitz–Cuntz–Krieger E-
families in which each vertex projection is nonzero. That is, C∗(E) is the
unique C∗-algebra such that:

• C∗(E) is generated by a Toeplitz–Cuntz–Krieger E-family {pv, se}
such that each pv is nonzero, and C∗(E) carries a gauge action; and

• for every Toeplitz–Cuntz–Krieger E-family {qv, te} such that each qv
is nonzero and such that there is a strongly continuous action β of T
on C∗({qv, te}) satisfying βz(qv) = qv and βz(te) = zte for all v ∈ E0

and e ∈ E1, there is a homomorphism ψq,t : C∗({qv, te}) → C∗(E)
satisfying ψq,t(qv) = pv and ψq,t(te) = se for all v ∈ E0 and e ∈ E1.

The question which we address in this paper is whether there exists a
co-universal C∗-algebra for (not necessarily gauge-equivariant) Toeplitz–
Cuntz–Krieger E-families in which each vertex projection is nonzero. Our
first main theorem, Theorem 3.1 shows that there does indeed exist such
a C∗-algebra C∗

min(E), and identifies exactly when a homomorphism B →
C∗

min(E) obtained from the co-universal property of the latter is injective.
The bulk of Section 3 is devoted to proving this theorem. Our key tool is
Hong and Szymański’s powerful description of the primitive ideal space of
the C∗-algebra of a directed graph. We realise T C∗(E) as the universal
C∗-algebra of a modified graph Ẽ to apply Hong and Szymański’s results to
the Toeplitz algebra.

Our second main theorem, Theorem 4.1 is a uniqueness theorem for the
co-universal C∗-algebra. We then proceed in the remainder of Section 4 to
demonstrate the power and utility of the defining co-universal property of
C∗

min(E) and of our uniqueness theorem by obtaining the following as fairly
straightforward corollaries:

• a characterisation of simplicity of C∗
min(E);

• a characterisation of injectivity of representations of C∗
min(E);

• a description of C∗
min(E) in terms of a universal property, and a

uniqueness theorem of Cuntz–Krieger type;
• a realisation of C∗

min(E) as the Cuntz–Krieger algebra C∗(F ) of a
modified graph F ;

• an isomorphism of C∗
min(E) with the C∗-subalgebra of B(`2(E≤∞))

generated by the Cuntz–Krieger E-family {P≤∞
v , S≤∞e } described

earlier; and
• a faithful representation of C∗

min(E) on a Hilbert space H such that
the canonical faithful conditional expectation of B(H) onto its di-
agonal subalgebra implements an expectation from C∗

min(E) onto
the commutative C∗-subalgebra generated by the range projections
{sm

α (sm
α )∗ : α ∈ E∗}.

Our results deal only with row-finite graphs to simplify the exposition.
However, it seems likely that a similar analysis applies to arbitrary graphs.
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Certainly Hong and Szymański’s characterisation of the primitive ideal space
of a graph C∗-algebra is available for arbitrary graphs. In principle one
can argue along exactly the same lines as we do in Section 3 to obtain a
co-universal C∗-algebra for an arbitrary directed graph. Alternatively, the
results of this paper could be bootstrapped to the non-row-finite situation
using Drinen and Tomforde’s desingularisation process [3].

Acknowledgements. The author thanks Iain Raeburn for lending a gener-
ous ear, and for helpful conversations. The author also thanks Toke Carlsen
for illuminating discussions, and for his suggestions after a careful reading
of a preliminary draft.

2. Preliminaries

We use the conventions and notation for directed graphs established in
[9]; in particular our edge-direction convention is consistent with [9] rather
than with, for example, [1, 2, 5].

A path in a directed graph E is a concatenation λ = λ1λ2 . . . λn of edges
λi ∈ E1 such that s(λi) = r(λi+1) for i < n; we write r(λ) for r(λ1) and
s(λ) for s(λn). We denote by E∗ the collection of all paths in E. For v ∈ E0

we write vE1 for {e ∈ E1 : r(e) = v}; similarly E1v = {e ∈ E1 : s(e) = v}.
A cycle in E is a path µ = µ1 . . . µ|µ| such that r(µ) = s(µ) and such that

s(µi) 6= s(µj) for 1 ≤ i < j ≤ |µ|. Given a cycle µ in E, we write [µ] for the
set

[µ] = {µ, µ2µ3 · · ·µ|µ|µ1, . . . , µ|µ|µ1 · · ·µn−1}

of cyclic permutations of µ. We write [µ]0 for the set {s(µi) : 1 ≤ i ≤ |µ|} ⊂
E0, and [µ]1 for the set {µi : 1 ≤ i ≤ |µ|} ⊂ E1. Given a cycle µ in E and
a subset M of E0 containing [µ]0, we say that µ has no entrance in M if
r(e) = r(µi) and s(e) ∈ M implies e = µi for all 1 ≤ i ≤ |µ|. We denote
by C(E) the set {[µ] : µ is a cycle with no entrance in E0}. By C(E)1 we
mean

⋃
C∈C(E)C

1, and by C(E)0 we mean
⋃

C∈C(E)C
0.

A cutting set for a directed graph E is a subset X of C(E)1 such that
for each C ∈ C(E), X ∩ C1 is a singleton. Given a cutting set X for E, for
each x ∈ X, we write µ(x) for the unique cycle in E such that r(µ) = r(x),
and let λ(x) = µ(x)2µ(x)3 . . . µ(x)|µ(x)|; so µ(x) = xλ(x) for all x ∈ X, and
C(E) = {[µ(x)] : x ∈ X}.

3. Existence of the co-universal C∗-algebra

Our main theorem asserts that every row-finite directed graph admits a
co-universal C∗-algebra and identifies when a homomorphism obtained from
the co-universal property is injective.

Theorem 3.1. Let E be a row-finite directed graph.
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(1) There exists a C∗-algebra C∗
min(E) which is co-universal for Toeplitz–

Cuntz–Krieger E-families of nonzero partial isometries in the sense
that C∗

min(E) is generated by a Toeplitz–Cuntz–Krieger E-family

{Pv : v ∈ E0}, {Se : e ∈ E1}
with the following two properties.
(a) The vertex projections {Pv : v ∈ E0} are all nonzero.
(b) Given any Toeplitz–Cuntz–Krieger E-family

{qv : v ∈ E0}, {te : e ∈ E1}
such that each qv 6= 0 and given any cutting set X for E, there
is a function κ : X → T and a homomorphism

ψq,t : C∗({qv, te : v ∈ E0, e ∈ E1}) → C∗
min(E)

satisfying ψq,t(qv) = Pv for all v ∈ E0, ψq,t(te) = Se for all
e ∈ E1 \X, and ψq,t(tx) = κ(x)Sx for all x ∈ X.

(2) Given a Toeplitz–Cuntz–Krieger E-family

{qv : v ∈ E0}, {te : e ∈ E1}
with each qv nonzero, the homomorphism ψq,t : B → C∗

min(E) ob-
tained from (1b) is an isomorphism if and only if for each cycle µ
with no entrance in E, the partial isometry tµ is a scalar multiple of
qr(µ).

Remarks 3.2. It is convenient in practise to work with cutting sets X and
functions from X to T as in Theorem 3.1(1b). However, property (1b) can
also be reformulated without respect to cutting sets. Indeed:

(1) The asymmetry arising from the choice of a cutting set X in Theo-
rem 3.1(1b) can be avoided. The property could be reformulated
equivalently as follows: given a Toeplitz–Cuntz–Krieger E-family
{qv : v ∈ E0}, {te : e ∈ E1} such that each qv 6= 0, there is a
function ρ : C(E)1 → T and a homomorphism

ψq,t : C∗({qv, te : v ∈ E0, e ∈ E1}) → C∗
min(E)

satisfying ψq,t(qv) = Pv for all v ∈ E0, ψq,t(te) = Se for all e ∈
E1 \ C(E)1, and ψq,t(te) = ρ(e)Se for all e ∈ C(E)1. One can
prove that an algebra satisfying this modified condition (1b) exists
using exactly the same argument as for the current theorem after
making the appropriate modification to Lemma 3.7. That the re-
sulting algebra coincides with C∗

min(E) follows from applications of
the co-universal properties of the two algebras.

(2) Fix a row-finite graph E with no sources and a function κ : C(E) →
T. Let {qv : v ∈ E0}, {te : e ∈ E1} be a Toeplitz–Cuntz–Krieger E-
family such that each qv 6= 0. Then there is a homomorphism as in
Theorem 3.1(1b) with respect to the fixed function κ for some cutting
set X if and only if there is such a homomorphism for every cutting
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set X. One can see this by following the argument of Lemma 3.11
below to see that κ does not depend on X.

(3) Given a Toeplitz–Cuntz–Krieger E-family {qv : v ∈ E0}, {te : e ∈
E1} such that each qv 6= 0 and a cutting set X, the functions κ :
X → T which can arise in Theorem 3.1(1b) are precisely those for
which κ([µ]) belongs to the spectrum spqvC∗({qv ,te:v∈E0,e∈E1})qv

(tµ)
for each cycle µ without an entrance in E. To see this, one uses
Hong and Szymański’s theorems to show that in the first paragraph
of the proof of Lemma 3.11, the complex numbers z which can arise
are precisely the elements of the spectrum of the unitary sα(µ) + I

in the corner (pα(r(µ)) + I)
(
C∗(Ẽ)/I

)
(pα(r(µ)) + I).

Corollary 3.3. Let E be a row-finite directed graph in which every cycle
has an entrance. Then C∗(E) ∼= C∗

min(E). In particular, if {qv : v ∈ E0},
{te : e ∈ E1} is a Toeplitz–Cuntz–Krieger E-family in a C∗-algebra B such
that each qv is nonzero, then there is a homomorphism

ψq,t : C∗({qv, te : v ∈ E0, e ∈ E1}) → C∗(E)

such that ψq,t(qv) = pv for all v ∈ E0 and ψq,t(te) = se for all e ∈ E1.

Proof. For the first statement, observe that the co-universal property of
C∗

min(E) induces a surjective homomorphism ψp,s : C∗(E) → C∗
min(E). Since

every cycle in E has an entrance, the condition in Theorem 3.1(2) is trivially
satisfied, so ψp,s is an isomorphism.

Since every cycle in E has an entrance, a cutting set for E has no elements.
Hence the second statement is just a re-statement of Theorem 3.1(1b). �

The remainder of this section will be devoted to proving Theorem 3.1.
Our key technical tool in proving Theorem 3.1 will be Hong and Szymański’s
description of the primitive ideal space of a graph C∗-algebra. To do this,
we first realise the Toeplitz algebra T C∗(E) as a graph algebra in its own
right. This construction is known, but we have found it difficult to pin down
in the literature. The idea is to augment E with an additional copy of each
vertex which receives a nonzero finite number of edges.

Notation 3.4. Let E be a directed graph. Define a directed graph Ẽ as
follows (in the equations below, the symbols α(v), α(e), β(v) and β(e) are
formal symbols used to indicate new copies of vertices v and edges e of E):

Ẽ0 = {α(v) : v ∈ E0} t {β(v) : v ∈ E0, 0 < |vE1| <∞}

Ẽ1 = {α(e) : e ∈ E1} t {β(e) : e ∈ E1, 0 < |s(e)E1| <∞}
r(α(e)) = α(r(e)) and s(α(e)) = α(s(e)) for all e ∈ E1, and

r(β(e)) = α(r(e)), and s(β(e)) = β(s(e)) whenever 0 < |s(e)E1| <∞.

For λ ∈ E∗ with |λ| ≥ 2, we define α(λ) := α(λ1) . . . α(λ|λ|). If E is row-
finite, Ẽ is also row-finite.
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Lemma 3.5. Let E be a directed graph and let Ẽ be as in Notation 3.4. For
v ∈ E0 and e ∈ E1, let

qv :=

{
pα(v) + pβ(v) if 0 < |vE1| <∞
pα(v) otherwise,

and

te :=

{
sα(e) + sβ(e) if 0 < |s(e)E1| <∞
sα(e) otherwise.

Then there is an isomorphism φ : T C∗(E) → C∗(Ẽ) satisfying φ(pTv ) = qv
and φ(sTe ) = te for all v ∈ E0 and e ∈ E1.

Proof. Routine calculations show that {qv : v ∈ E0}, {te : e ∈ E1} is
a Toeplitz–Cuntz–Krieger E-family in C∗(Ẽ). The universal property of
T C∗(E) therefore implies that there is a homomorphism φ : T C∗(E) →
C∗(Ẽ) satisfying φ(pTv ) = qv for all v ∈ E0 and φ(sTe ) = te for all e ∈ E1.

To see that φ is surjective, fix v ∈ Ẽ0. To see that pv ∈ range(φ), we
consider three cases: (a) v = α(w) for some w with wE1 either empty or
infinite; (b) v = α(w) for some w with 0 < |wE1| <∞; or (c) v = β(w) for
some w with 0 < |wE1| < ∞. In case (a), we have pv = pα(w) = φ(pTw) by
definition. In case (b), the set vẼ1 = {α(e), β(e) : e ∈ wE1} is nonempty
and finite. Hence the Cuntz–Krieger relation in C∗(Ẽ) ensures that

(3.1) pv = pα(w) =
∑

e∈vE1

sα(e)s
∗
α(e) + sβ(e)s

∗
β(e) =

∑
e∈vE1

tet
∗
e ∈ range(φ).

In case (c), we have pv = qv − pα(w) ∈ range(φ) by case (b). Now fix
e ∈ Ẽ1. To see that se ∈ range(φ), observe that if e = α(f) for some
f ∈ E1, then se = sα(f) = φ(sTf )pα(s(f)) ∈ range(φ), and if e = β(f), then
se = sβ(f) = φ(sTf )pβ(s(f)) ∈ range(φ) also.

To finish the proof, observe that if 0 < |vE1| <∞, then qv−
∑

r(e)=v tet
∗
e =

pβ(v) 6= 0. Since the te are all nonzero and have mutually orthogonal ranges,
it follows that for each v ∈ E0 and each finite subset F of vE1, we have
qv −

∑
e∈F tet

∗
e 6= 0. Thus the uniqueness theorem [4, Theorem 4.1] for

T C∗(E) implies that φ is injective. �

Notation 3.6. Let E be a directed graph.
(1) For v ∈ E0 such that 0 < |vE1| <∞, we define

∆v := pTv −
∑

r(e)=v

sTe (sTe )∗ ∈ T C∗(E).

(2) Given a function κ : C(E) → T, we denote by Iκ the ideal of T C∗(E)
generated by {∆v : v ∈ E0}∪{κ(C)pTr(µ)−s

T
α(µ) : C ∈ C(E), µ ∈ C}.
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Lemma 3.7. Let E be a directed graph. Let κ be a function from C(E) →
T, and let 1 : C(E) → T denote the constant function 1(C) = 1 for all
C ∈ C(E). Fix a cutting set X for E, and for each x ∈ X, let C(x) be the
unique element of C(E) such that x ∈ C(x)1. Then there is an isomorphism
τ̃κ : T C∗(E)/I1 → T C∗(E)/Iκ satisfying

τ̃κ(pTv + I1) = pv + Iκ for all v ∈ E0

τ̃κ(sTe + I1) = se + Iκ for all e ∈ E1 \X, and

τ̃κ(sTx + I1) = κ(C(x))sx + Iκ for all x ∈ X.

Proof. By the universal property of T C∗(E), there is an action τ of TC(E)

on T C∗(E) such that for ρ ∈ TC(E), we have

τρ(pTv ) = pTv for all v ∈ E0

τρ(sTe ) = sTe for all e ∈ E1 \X, and

τρ(sTx ) = ρ(C(x))sTx for all x ∈ X.

By definition of I1 and Iκ and of the action τ , we have τκ(I1) = Iκ. Hence
τκ determines an isomorphism

τ̃κ : T C∗(E)/I1 → τκ(T C∗(E))/Iκ = T C∗(E)/Iκ

satisfying τ̃κ(a+ I1) = τκ(a) + Iκ for all a ∈ T C∗(E). �

Lemma 3.8. Let E be a directed graph. Fix a function κ : C(E) → T.
Then sTv 6∈ Iκ for all v ∈ E0.

To prove this lemma, we need a little notation.

Notation 3.9. Given a directed graph E, we denote by E≤∞ the collection
E∞ ∪ {α ∈ E∗ : s(α)E1 = ∅}. There is a Cuntz–Krieger E-family in
B(`2(E≤∞)) determined by

P∞
v ξx =

{
ξx if r(x) = v

0 otherwise,

and

S∞e ξx =

{
ξex if r(x) = s(e)
0 otherwise.

If µ is a cycle with no entrance in E, then r(µ)E≤∞ = {µ∞}, so S∞µ =
P∞

r(µ).

Proof of Lemma 3.8. By Lemma 3.7, it suffices to show that I1 contains
no vertex projections. Let πP∞,S∞ : T C∗(E) → B(`2(E≤∞)) be the rep-
resentation obtained from the universal property of T C∗(E) applied to the
Cuntz–Krieger family of Notation 3.9. Then ker(πP∞,S∞) contains all the
generators of I1, so I1 ⊂ ker(πP∞,S∞). Moreover, ker(πP∞,S∞) contains
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no vertex projections because each vertex of E is the range of at least one
x ∈ E≤∞. �

From this point onward we make the simplifying assumption that our
graphs are row-finite. Though there is no obvious obstruction to our analysis
without this restriction, the added generality would complicate the details
of our arguments. In any case, if the added generality should prove useful, it
should not be difficult to bootstrap our results to the non-row-finite setting
by means of the Drinen–Tomforde desingularisation process applied to the
graph Ẽ of Notation 3.4.

Proposition 3.10. Let I be an ideal of T C∗(E) such that pTv 6∈ I for all
v ∈ E0. There is a function κ : C(E) → T such that I ⊂ Iκ.

To prove the proposition, we first establish our key technical lemma. This
lemma is implicit in Hong and Szymański’s description [5] of the primitive
ideal space of C∗(Ẽ), but it takes a little work to tease a proof of the
statement out of their two main theorems.

Lemma 3.11. Let Ẽ be the directed graph of Notation 3.4. Let I be an
ideal of C∗(Ẽ) such that pα(v) 6∈ I for all v ∈ E0. There is a function
κ : C(E) → T such that I is contained in the ideal Jκ of C∗(Ẽ) generated
by {pβ(v) : v ∈ E0} and {κ(C)pα(r(µ)) − sα(µ) : C ∈ C(E), µ ∈ C}.

Before proving the lemma, we summarise some notation and results of
[5] as they apply to the row-finite directed graph Ẽ in the situation of
Lemma 3.11. A maximal tail of Ẽ is a subset M of Ẽ0 such that:
(MT1) w ∈M and vẼ∗w 6= ∅ imply v ∈M ;
(MT2) if v ∈M and vẼ1 6= ∅, then there exists e ∈ vẼ1 such that s(e) ∈M ;

and
(MT3) if u, v ∈ M , then there exists w ∈ M such that uẼ∗w 6= ∅ and

vẼ∗w 6= ∅.
We denote by Mγ(Ẽ) the collection of maximal tails M of Ẽ such that

every cycle µ satisfying [µ]0 ⊂ M has an entrance in M . We denote by
Mτ (Ẽ) the collection of maximal tails M of Ẽ such that there is a cycle µ
in Ẽ for which [µ]0 ⊂ M but µ has no entrance in M . Since each β(v) is a
source in Ẽ, the cycles in Ẽ are the paths of the form α(µ) where µ is a cycle
in E. Moreover α(µ) ∈ C(Ẽ) if and only if µ ∈ C(E). Thus if M ∈Mτ (Ẽ),
then there is a unique CM ∈ C(E) such that α(C0

M ) ⊂M and α(µ) has no
entrance in M for each µ ∈ CM . We may recover M from CM :

M = {α(v) : v ∈ E0, vE∗C0
M 6= ∅}.

The gauge-invariant primitive ideals of C∗(Ẽ) are indexed by Mγ(Ẽ);
specifically, M ∈ Mγ(Ẽ) corresponds to the primitive ideal PIγM generated
by {pw : w ∈ Ẽ0 \M}. The non-gauge-invariant primitive ideals of C∗(Ẽ)
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are indexed by Mτ (Ẽ)× T; specifically, the pair (M, z) corresponds to the
primitive ideal PIτM,z generated by {pw : w ∈ E0 \M}∪{zpr(µ)−sµ} for any
µ ∈ CM (the ideal does not depend on the choice of µ ∈ CM ). Corollary 3.5
of [5] describes the closed subsets of the primitive ideal space of C∗(Ẽ) in
terms of subsets of Mγ(Ẽ) tMτ (Ẽ)× T.

Proof of Lemma 3.11. We begin by constructing the function κ. Fix C ∈
C(E). Since pα(v) 6∈ I for each v ∈ C0, we may fix a primitive ideal JC of
C∗(Ẽ) such that I ⊂ JC and pα(v) 6∈ JC for v ∈ C0. By [5, Corollary 2.12],
we have either JC = PIγM for some M ∈ Mγ(Ẽ), or JC = PIτM,z for some
M ∈ Mτ (Ẽ) and z ∈ T. Since pα(v) 6∈ JC for v ∈ C0, we must have
α(C0) ⊂M , and then the maximal tail condition forces

M = MC := {α(v) : v ∈ E0, vE∗C0 6= ∅} ∈Mτ (Ẽ).

Hence JC = PIτM,z for some z ∈ T; we set κ(C) := z.
For C ∈ C(E) and v ∈ C0, let Jv := PIτMC ,κ(C). Since β(v) 6∈ MC for

all v ∈ E0, [5, Lemma 2.8] implies that pβ(v) ∈ Jv for all v ∈ E0, and our
definition of Jv ensures that pα(v) 6∈ Jv.

We claim that the assignment v 7→ Jv of the preceding paragraph extends
to a function v 7→ Jv from E0 to the primitive ideal space of C∗(Ẽ) such
that for every v ∈ E0:

(1) I ⊂ Jv;
(2) pα(v) 6∈ Jv;
(3) pβ(w) ∈ Jv for all w ∈ E0; and
(4) either Jv = PIτMC ,κ(C) for some C ∈ C(E), or Jv is gauge-invariant.

To prove the claim, fix v ∈ E0. If vE∗C0 6= ∅ for some C ∈ C(E), then
Jv := PIτMC ,κ(C) has the desired properties. So suppose that vE∗C0 = ∅ for
all C ∈ C(E). Then there exists xv ∈ vE≤∞ such that xv does not have the
form λµ∞ for any λ ∈ E∗ and cycle µ ∈ E. The set

Mv := {α(w) : w ∈ E0, wE∗xv(n) 6= ∅ for some n ∈ N}

is a maximal tail of Ẽ which contains α(v) and does not contain β(w) for
any w ∈ E0. By construction of xv, every cycle in Mv has an entrance
in Mv, and so Jv := PIγMv satisfies (2)–(4). It therefore suffices to show
that I ⊂ PIγMv . For each n ∈ N, we have pα(xv(n)) 6∈ I, so there is a
primitive ideal J of C∗(Ẽ) containing I and not containing pα(xv(n)). The
set Mn = {w ∈ Ẽ0 : pw 6∈ J} is a maximal tail of Ẽ, so either Mn ∈Mγ(Ẽ)
and J = PIγMn

, or Mn ∈ Mτ (Ẽ) and J = PIτMn,z for some z ∈ T. By
definition, xv(n) ∈ Mn, and then (MT1) forces α(w) ∈ Mn for all w ∈ E0

such that wE∗xv(m) 6= ∅ for some m ≤ n. Hence Mv ⊂ ∪n∈NMn. Hence
parts (1) and (3) of [5, Corollary 3.5] imply that Jv belongs to the closure
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of the set of primitive ideals of C∗(Ẽ) which contain I, and hence contains
I itself. This proves the claim.

Observe that I ⊂
⋂

v∈E0 Jv. To prove the result, it therefore suffices to
show that

⋂
v∈E0 Jv is generated by

{pβ(v) : v ∈ E0} and {κ(C)pα(r(µ)) − sα(µ) : C ∈ C(E), µ ∈ C}.

For this, first observe that for v ∈ E0, we have pβ(v) ∈
⋂

v∈E0 Jv because
pβ(v) belongs to each Jv. Fix C ∈ C(E) and µ ∈ C. Since the cycle
without an entrance belonging to a given maximal tail of E is unique, for
each v ∈ E0, we have either Jv = PIτMC ,κ(C), or pr(µ) ∈ Jv. In particular,
κ(C)pα(r(µ))−sα(µ) ∈ Jv for each v ∈ E0, so κ(C)pα(r(µ))−sα(µ) ∈

⋂
v∈E0 Jv.

Hence Jκ ⊂
⋂

v∈E0 Jv, and it remains to establish the reverse inclusion.
Fix a primitive ideal J of C∗(Ẽ) which contains all the generators of

Jκ. It suffices to show that
⋂

v∈E0 Jv ⊂ J . Under the bijection between
primitive ideals of C∗(Ẽ) and elements ofMγ(Ẽ)tMτ (Ẽ)×T, the collection
{Jv : v ∈ E0} is sent to

{Mv : vE∗C0 = ∅ for all C ∈ C(E)} t {(MC , κ(C)) : C ∈ C(E)}.
Since each Jv trivially contains

⋂
v∈E0 Jv, it therefore suffices to show that

the element NJ of Mγ(Ẽ) tMτ (Ẽ)× T corresponding to J satisfies

(3.2) NJ ∈ {Mv : vE∗C0 = ∅ for all C ∈ C(E)}

t {(MC , κ(C)) : C ∈ C(E)}.

Let MJ := {v ∈ Ẽ0 : pv 6∈ J}. Then either J is gauge-invariant and
NJ = MJ , or J is not gauge-invariant, and NJ = (MJ , z) for some z ∈ T.
Observe that

MJ ⊂ {α(v) : v ∈ E0} =
( ⋃ {

Mv : vE∗C0 = ∅ for all C ∈ C(E)
})

(3.3)

∪
( ⋃ {

(MC , κ(C)) : C ∈ C(E)
})
.

We now consider three cases.
Case 1: J is gauge-invariant. Then MJ ∈Mγ(Ẽ), and NJ = MJ . In this

case, (3.3) together with parts (1) and (3) of [5, Corollary 3.5] give (3.2).
Case 2: J is not gauge-invariant, and MJ 6= MC for all C ∈ C(E). We

have NJ = (MJ , z) for some z ∈ T, and since MJ 6= MC for all C ∈ C(E),
it follows that NJ does not belong to the subset

{(MC , κ(C)) : C ∈ C(E)}min ⊂ {(MC , κ(C)) : C ∈ C(E)}
defined on page 58 of [5]. Hence parts (2) and (4ii) of [5, Corollary 3.5]
imply (3.2).

Case 3: MJ = MC for some C ∈ C(E). Fix µ ∈ C. Since J contains
κ(C)pα(r(µ)) − sα(µ), we have NJ = (MC , κ(C)) and then part (4iii) of [5,
Corollary 3.5] implies (3.2). This completes the proof. �



518 AIDAN SIMS

Proof of Proposition 3.10. Let φ : T C∗(E) → C∗(Ẽ) be the isomor-
phism of Lemma 3.5. Observe that by (3.1), we have φ(∆v) = pβ(v) for all
v ∈ E0 such that vE1 6= ∅. We claim that pα(v) 6∈ φ(I) for all v ∈ E0. To see
this, first suppose that vE1 = ∅. Then pα(v) = φ(pTv ) 6∈ φ(I) by assumption.
Now suppose that vE1 6= ∅, say r(e) = v. Then

s∗α(e)pα(v)sα(e) + s∗β(e)pα(v)sβ(e) = pα(s(e)) + pβ(s(e)) = φ(pTs(e)) 6∈ φ(I)

by assumption. This forces pα(v) 6∈ φ(I).
Lemma 3.11 therefore applies to the ideal φ(I) of C∗(Ẽ). Let κ : C(E) →

T and Jκ CC∗(Ẽ) be the resulting function and ideal. Then Iκ := φ−1(Jκ)
is generated by {∆v : v ∈ E0} and {κ(C)pTr(µ) − sTα(µ) : C ∈ C(E), µ ∈ C}
by definition of φ, and contains I by construction. �

We are now ready to prove our main theorem.

Proof of Theorem 3.1. With I1CT C∗(E) defined as in Notation 3.6 and
Lemma 3.7, define C∗

min(E) := T C∗(E)/I1. For v ∈ E0 and e ∈ E1, let
Pv := pTv + I1 and Se := sTv + I1. Then {Pv : v ∈ E0}, {Se : e ∈ E1} is a
Cuntz–Krieger E-family which generates C∗

min(E). The Pv are all nonzero
by Lemma 3.8.

Now let {qv : v ∈ E0}, {te : e ∈ E1} be a Toeplitz–Cuntz–Krieger E-
family such that qv 6= 0 for all v, and let B := C∗({qv, te : v ∈ E0, e ∈ E1}).
The universal property of T C∗(E) implies that there is a homomorphism
πq,t : T C∗(E) → B satisfying πq,t(pTv ) = qv for all v ∈ E0 and πq,t(sTe ) =
te for all e ∈ E1. Since each qv is nonzero, I = ker(πq,t) is an ideal of
T C∗(E) such that pTv 6∈ I for all v ∈ E0. Let κ : C(E) → T and Iκ be
as in Corollary 3.10. Since I ⊂ Iκ, there is a well-defined homomorphism
ψ0 : B → T C∗(E)/Iκ satisfying ψ0(qv) = pTv + Iκ for all v ∈ E0 and
ψ0(te) = sTe + Iκ for all e ∈ E1. Let τ̃κ : T C∗(E)/I1 → T C∗(E)/Iκ be as
in Lemma 3.7. Then ψq,t := τ̃κ

−1 ◦ψ0 has the desired property. This proves
statement (1).

For statement (2), suppose first that ψq,t is injective. For each µ ∈ C(E),
we have Sµ = Pr(µ) by definition of I1. Let x(µ) be the unique element
of the cutting set X which belongs to [µ]1. With ψq,t and κ as in (1),
we have ψq,t(tµ) = κ(x(µ))ψq,t(qr(µ)). Since ψq,t is injective, we must have
tµ = κ(x(µ))qr(µ) for all µ ∈ C(E). Now suppose that there is a function
κ : C(E) → T such that tµ = κ([µ])qr(µ) for every cycle µ with no entrance in
E. Then the kernel Iq,t of the canonical homomorphism πq,t : T C∗(E) → B
contains the generators of Iκ, and hence contains Iκ. Since the qv are
all nonzero, Corollary 3.10 implies that we also have Iq,t ⊂ Iλ for some
λ : C(E) → T. We claim that κ = λ; for if not, then there exists C ∈ C(E)
such that k := κ(C) is distinct from l = λ(C). For µ ∈ C, we then have
kpTv − sTµ , lp

T
v − sTµ ∈ Iλ. But then (k − l)pTv ∈ Iλ, which is impossible by

Lemma 3.8. Hence Iλ = Iq,t = Iκ, and ψq,t is injective. �
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4. Properties of the co-universal C∗-algebra

In this section we prove a uniqueness theorem for C∗
min(E) in terms of

its co-universal property. We go on to explore the structure and proper-
ties of the co-universal algebra. Throughout this section we have preferred
proofs which emphasise the utility of the co-universal property over other
techniques.

Let E be a row-finite directed graph. We say that a Cuntz–Krieger E-
family {pv : v ∈ E0}, {se : e ∈ E1} is a reduced Cuntz–Krieger E-family
if

(R) for every cycle µ without an entrance in E0, there is a scalar κ(µ) ∈ T
such that sµ = κ(µ)pr(µ).

We say that {pv : v ∈ E0}, {se : e ∈ E1} is a normalised reduced Cuntz–
Krieger E-family if sµ = pr(µ) for each cycle µ without an entrance in E0.

Theorem 4.1. Let E be a row-finite directed graph.
(1) There is a normalised reduced Cuntz–Krieger E-family

{pm
v : v ∈ E0} ∪ {sm

e : E ∈ E1}
that generates C∗

min(E) and satisfies Theorem 3.1(1a) and (1b). In
particular, given any cutting set X for E, C∗

min(E) is generated by
{pm

v : v ∈ E0} ∪ {sm
e : E ∈ E1 \X}.

(2) Any other C∗-algebra generated by a Toeplitz–Cuntz–Krieger E-fam-
ily satisfying Theorem 3.1(1a) and (1b) is isomorphic to C∗

min(E).

Proof. For (1) let {P∞
v : v ∈ E0}, {S∞e : e ∈ E1} be the Cuntz–Krieger E-

family of Notation 3.9. Theorem 3.1(1b) ensures that there is a function κ :
X → T and a homomorphism ψP∞,S∞ from C∗({P∞

v , S∞e : v ∈ E0, e ∈ E1})
onto C∗

min(E) such that ψP∞,S∞(P∞
v ) = Pv for all v ∈ E0, ψP∞,S∞(S∞e ) =

Se for all e ∈ E1 \ X, and ψP∞,S∞(S∞x ) = κ(x)Sx for all x ∈ X. Hence
pm

v := ψP∞,S∞(P∞
v ) and sm

e := ψP∞,S∞(S∞e ) generate C∗
min(E) and satisfy

Theorem 3.1(1a) and (1b). To prove the last assertion of (1), fix x ∈ X and
calculate:

S∞x = S∞x S∞λ(x)(S
∞
λ(x))

∗

= S∞µ(x)(S
∞
λ(x))

∗

= (S∞λ(x))
∗

∈ C∗({P∞
v , S∞e : v ∈ E0, E ∈ E1 \X}.

For (2), let A be another C∗-algebra generated by a Toeplitz–Cuntz–
Krieger family {pA

v : v ∈ E0}, {sA
e : e ∈ E1} with each pA

v nonzero, and
suppose that A has the same two properties as C∗

min(E). Applying the
co-universal properties, we see that there are surjective homomorphisms
φ : C∗

min(E) → A and ψ : A→ C∗
min(E) such that φ(pm

v ) = pA
v , φ(sm

e ) = sA
e ,

ψ(pA
v ) = pm

v , and ψ(sA
e ) = sm

e for all v ∈ E0 and e ∈ E1 \X. In particular,
φ and ψ are inverse to each other, and hence are isomorphisms. �
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Remark 4.2. Of course statement (1) of Theorem 4.1 follows from the
definition of C∗

min(E) (embedded in the proof of Theorem 3.1). However the
argument given highlights how it follows from the co-universal property.

Corollary 4.3. Let E be a row-finite directed graph. Let φ : C∗
min(E) → B

be a homomorphism. Then φ is injective if and only if φ(pm
v ) 6= 0 for all

v ∈ E0.

Proof. Suppose that φ is injective. Then that each pm
v 6= 0 implies that

each φ(pm
v ) 6= 0 also.

Now suppose that φ(pm
v ) 6= 0 for all v ∈ E0. Then the co-universal

property of C∗
min(E) ensures that for any cutting set X for E, there is a

homomorphism ψ : φ(C∗
min(E)) → C∗

min(E) satisfying ψ(φ(pm
v )) = pm

v for all
v ∈ E0 and ψ(φ(sm

e )) = sm
e for all e ∈ E1 \X. Theorem 4.1(1) implies that

ψ is surjective and an inverse for φ. �

Corollary 4.4. Let E be a row-finite directed graph. Then C∗
min(E) is

simple if and only if E is cofinal.

Proof. First suppose that E is cofinal. Fix a homomorphism φ : C∗
min(E) →

B. We must show that φ is either trivial or injective. The argument of [9,
Proposition 4.2] shows that φ(pm

v ) = 0 for any v ∈ E0, then φ(pm
w ) = 0 for

all v ∈ E0, which forces φ = 0. On the other hand, if φ(pm
w ) 6= 0 for all

w ∈ E0, then Corollary 4.3 implies that φ is injective.
Now suppose that E is not cofinal. Fix v ∈ E0 and x ∈ E≤∞ such that

vE∗x(n) = ∅ for all n ∈ N. Standard calculations show that

Ix := span{sm
α (sm

β )∗ : s(α) = s(β) = x(n) for some n ≤ |x|}

is an ideal of C∗
min(E) which is nontrivial because it contains pm

x(0). To
see that pm

v 6∈ Ix, fix n ≤ |x| and α, β ∈ E∗x(n). It suffices to show
that pm

v s
m
α (sm

β )∗ = 0. Let l := |α|. By Theorem 3.1(2), {pm
v : v ∈ E0},

{sm
e , e ∈ E1} is a reduced Cuntz–Krieger E-family, and in particular a stan-

dard inductive argument based on relation (CK) shows that

pm
v =

∑
λ∈vE≤l

sm
λ (sm

λ )∗.

Fix λ ∈ vE≤l. Since vE∗x(n) = ∅ for all n ∈ N, we have α 6= λλ′ for
all λ′ ∈ E∗. Since |α| = l ≥ |λ|, it follows that (sm

λ )∗sm
α = 0. Hence

pm
v s

m
α (sm

β )∗ = 0 as claimed. �

Corollary 4.5. Let E be a row-finite directed graph. Then C∗
min(E) is the

universal C∗-algebra generated by a normalised reduced Cuntz–Krieger E-
family. That is, if {qv : v ∈ E0}, {te : e ∈ E1} is another normalised reduced
Cuntz–Krieger family in a C∗-algebra B, then there is a homomorphism
πq,t : C∗

min(E) → B such that πq,t(pm
v ) = qv for all v ∈ E0 and πq,t(sm

e ) = te
for all e ∈ E1.
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Proof. The universal property of T C∗(E) implies that there is a homo-
morphism πTq,t : T C∗(E) → B such that πTq,t(p

T
v ) = qv and πTq,t(s

T
e ) = te

for all v ∈ E0 and e ∈ E1. Let Iq,t := ker(πTq,t), and let Ipm,sm be the
kernel of the canonical homomorphism πTpm,sm : T C∗(E) → C∗

min(E). Let
K := Iq,t∩Ipm,sm . Define pK

v := pTv +K and sK
e := sTe +K for all v ∈ E0 and

e ∈ E1. Since both {pm
v , s

m
e } and {qv, te} are normalised reduced Cuntz–

Krieger families, {pK
v , s

K
e } is also. Since no pTv belongs to Ipm,sm , each pK

v

is nonzero. Hence Theorem 3.1(1b) and (2) imply that there is an iso-
morphism ψpK ,sK : T C∗(E)/K → C∗

min(E) such that ψpK ,sK (pK
v ) = pm

v

and ψpK ,sK (sK
e ) = sm

e for all v, e. By definition of K, the homomorphism

πTq,t : T C∗(E) → B descends to a homomorphism π̃Tq,t : T C∗(E)/K → B,
and then πq,t := πTq,t ◦ (ψpK ,sK )−1 is the desired homomorphism. �

Lemma 4.6. Let E be a row-finite directed graph. Fix a cutting set X for
E. Define a directed graph F as follows:

F 0 = {ζ(v) : v ∈ E0}
F 1 = {ζ(e) : e ∈ E1 \X}

s(ζ(e)) = ζ(s(e)) and r(ζ(e)) = ζ(r(e)).

There is an isomorphism φ from C∗(F ) to C∗
min(E) such that φ(pζ(v)) = pm

v

for all v ∈ E0 and φ(sζ(e)) = sm
e for all e ∈ F 1.

Proof. Let {pζ(v) : v ∈ E0}, {sζ(e) : e ∈ E1 \ X} denote the universal
generating Cuntz–Krieger F -family in C∗(F ). Recall that for x ∈ X, we
write µ(x) for the unique cycle with no entrance in E such that µ(x)1 = x,
and we define λ(x) to be the path such that µ(x) = xλ(x). For ν ∈ E∗ with
|ν| ≥ 2 and νi 6∈ X for all i, we write ζ(ν) for the path ζ(ν1) · · · ζ(ν|ν|) ∈ F .
Define

qv := pζ(v) for all v ∈ E0,

te := sζ(e) for all e ∈ E1 \X, and

tx := s∗ζ(λ(x)) for all x ∈ X.

It suffices to show that the qv and te form a normalised reduced Cuntz–
Krieger E-family; the result will then follow from Theorem 3.1(1b) and (2).

The qv are mutually orthogonal projections because the pζ(v) are. This
establishes (T1).

For e ∈ F 1 we have t∗ete = s∗ζ(e)sζ(e) = ps(ζ(e)) = qs(e). For each x ∈ X,

since µ(x) has no entrance in E, we have r(x)(F )|λ(x)| = {ζ(λ(x))}, so the
Cuntz–Krieger relation forces sζ(λ(x))s

∗
ζ(λ(x)) = pζ(s(x)). Hence

t∗xtx = sζ(λ(x))s
∗
ζ(λ(x)) = pζ(s(x)) = qs(x).

This establishes (T2).
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Fix v ∈ F 0 such that vE1 6= ∅. If v = r(x) for some x ∈ X, then
r−1
E (v) = {x}, and we have

qv = pζ(v) = s∗ζ(λ(x))sζ(λ(x)) = txt
∗
x =

∑
e∈r−1

E (v)

tet
∗
e.

If v 6= r(x) for all x ∈ X, then vF 1 = {ζ(e) : e ∈ vE1}, and so

qv = pζ(v) =
∑

f∈vF 1

sfs
∗
f =

∑
e∈vE1

tet
∗
e.

This establishes both (T3) and (CK). �

Corollary 4.7. Let E be a row-finite directed graph. There is an isomor-
phism

ψP∞,S∞ : C∗
min(E) → C∗({P∞

v , S∞e : v ∈ E0, e ∈ E1})

satisfying ψP∞,S∞(pm
v ) = P∞

v for all v ∈ E0 and ψP∞,S∞(sm
e ) = S∞e for all

e ∈ E1.

Proof. As observed above, {P∞
v : v ∈ E0}, {S∞e : e ∈ E1} is a normalised

reduced Cuntz–Krieger E-family with each P∞
v nonzero. The result there-

fore follows from Corollaries 4.3 and 4.5. �

We now identify a subspace of `2(E≤∞) which is invariant under the
Cuntz–Krieger family of Notation 3.9. We use the resulting Cuntz–Krieger
family to construct a faithful conditional expectation from C∗

min(E) onto its
diagonal subalgebra.

Let Ω denote the collection

Ω ={α ∈ E∗ : s(α)E1 = ∅}
∪ {αµ∞ : α ∈ E∗, µ is a cycle with no entrance }
∪ {x ∈ E∞ : x 6= αρ∞ for any α, ρ ∈ E∗ such that s(α) = r(ρ) = s(ρ)}.

So x ∈ E≤∞ belongs to Ω if and only if either x is aperiodic, or x has the
form αµ∞ for some cycle µ with no entrance in E. Observe that
(4.1)
if x ∈ Ω and if y ∈ E≤∞ and m,n ∈ N satisfy σm(x) = σn(y), then y ∈ Ω.

We regard `2(Ω) as a subspace of `2(E≤∞). The condition (4.1) implies
that `2(E≤∞) is invariant for the Cuntz–Krieger E-family of Notation 3.9.
We may therefore define a Cuntz–Krieger E-family {PΩ

v : v ∈ E0}, {SΩ
e :

e ∈ E1} in B(`2(Ω)) by

PΩ
v = P∞

v |`2(Ω) and SΩ
e = S∞e |`2(Ω)

for all v ∈ E0 and e ∈ E1. Since every vertex of E is the range of at least
one element of Ω, we have PΩ

v 6= 0 for all v ∈ E0.
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Lemma 4.8. Let E be a row-finite directed graph. There is an isomor-
phism ψPΩ,SΩ : C∗

min(E) → C∗({PΩ
v , S

Ω
e : v ∈ E0, e ∈ E1}) satisfying

ψPΩ,SΩ(pm
v ) = PΩ

v for all v ∈ E0 and ψPΩ,SΩ(sm
e ) = SΩ

e for all e ∈ E1.

Proof. The proof is identical to that of Corollary 4.7. �

For the next proposition, let W denote the collection of paths α ∈ E∗

such that α 6= βµ for any β ∈ E∗ and any cycle µ with no entrance in E.

Proposition 4.9. Let E be a row-finite directed graph.
(1) The C∗-algebra C∗

min(E) satisfies

C∗
min(E) = span{sm

α (sm
β )∗ : α, β ∈W, s(α) = s(β)}.

(2) Let D := span{sm
α (sm

α )∗ : α ∈ E∗}. There is a faithful conditional
expectation Ψ : C∗

min(E) → D such that

Ψ(sm
α (sm

β )∗) =

{
sm
α (sm

α )∗ if α = β

0 otherwise

for all α, β ∈W with s(α) = s(β).

Proof. By Lemma 4.8 it suffices to prove the corresponding statements for
the C∗-algebra B := C∗({PΩ

v , S
Ω
e : v ∈ E0, e ∈ E1}.

(1) We have B = span{SΩ
α (SΩ

β )∗ : α, β ∈ E∗} because the same is true of
T C∗(E). If α ∈ E∗ \W , then α = α′µn for some α′ ∈W , some cycle µ with
no entrance in E and some n ∈ N. Since {PΩ

v : v ∈ E0}, {SΩ
e : e ∈ E1} is a

normalised reduced Cuntz–Krieger E-family, (SΩ
µ )n = PΩ

r(µ), so SΩ
α = SΩ

α′ .
(2) Let {ξx : x ∈ Ω} denote the standard orthonormal basis for `2(Ω). For

each x ∈ Ω, let θx,x ∈ B(`2(Ω)) denote the rank-one projection onto Cξx.
Let Ψ denote the faithful conditional expectation on B(`2(Ω)) determined
by Ψ(T ) =

∑
x∈Ω θx,xTθx,x, where the convergence is in the strong operator

topology. It suffices to show that

(4.2) Ψ(SΩ
α (SΩ

β )∗) =

{
SΩ

α (SΩ
α )∗ if α = β

0 otherwise

for all α, β ∈W with s(α) = s(β).
Fix α, β ∈W with s(α) = s(β). If α = β, then

SΩ
α (SΩ

α )∗ =
∑

y∈s(α)Ω

pαx,

and (4.2) is immediate. So suppose that α 6= β. For x ∈ Ω, we have

θx,xS
Ω
α (SΩ

β )∗θx,x =

{
θx,x if x = αy = βy

0 otherwise.

Hence we must show that αy 6= βy for all y ∈ s(α)Ω. Fix y ∈ s(α)Ω.
First observe that if |α| = |β| = l, then (αy)(0, l) = α 6= β = (βy)(0, l).
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Now suppose that |α| 6= |β|; we may assume without loss of generality that
|α| < |β|. We suppose that αy = βy and seek a contradiction. That αy = βy
implies that β = αβ′ and y = β′y. Hence r(β′) = s(β′) and y = (β′)∞. Since
y ∈ Ω, it follows that β′ = µn for some cycle µ with no entrance and some
n ∈ N, contradicting β ∈W . �
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