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Distribution of the linear flow length in a
honeycomb in the small-scatterer limit

Florin P. Boca

ABSTRACT. We study the statistics of the linear flow in a punctured
honeycomb lattice, or equivalently the free motion of a particle on a
regular hexagonal billiard table, with holes of equal size at the corners,
obeying the customary reflection rules. In the small-scatterer limit we
prove the existence of the limiting distribution of the free path length
with randomly chosen origin of the trajectory, and explicitly compute
it.
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1. Introduction

From the regular hexagon of unit size, remove circular holes of small
radius € > 0 centered at the vertices, obtaining the billiard table H. of
area |H.| = % — 2me?. For each pair (x,w) € H. x [0,27], consider a
point particle moving at unit speed on a linear trajectory, with specular
reflections when reaching the boundary. The time 7/°%(x,w) it takes the
particle to reach one of the holes is called the free path length (or first exit
time). Equivalently, one can consider the unit honeycomb tessellation of
the Euclidean plane, with “fat points” (obstacles or scatterers) of radius

e centered at the vertices me; + nj, m # n (mod 3), of the lattice Ag =
Ze, + 7j = 7? (1}2 \/g/2>, j= (%, @), and a particle moving at unit speed
and velocity w on a linear trajectory, until it hits one of the obstacles (see
Figure 1). If the initial position x is always chosen in a fundamental domain,
the first hitting time coincides with TheX(X, w). This paper is concerned with

g
estimating, as ¢ — 07, the probability that e72*%(x,w) > &:

hex 1
¢ € [0,00). We will prove that ®"*(¢) = lim,_, o+ PE¥(£) exists for all £ > 0,
and show how to explicitly compute this quantity.

The square lattice analog of estimating (1.1) has a long history, originating
in the work of H. A. Lorentz [15] and G. Pélya [20]. In the two-dimensional
situation a complete solution was given in [7], confirming the conjectural
formulas from [12]. One technical tool of [7] consists of a certain three-
strip partition of the unit square, associated with the continued fraction
decomposition of the slope of the trajectory. Introduced in [1], this was first

{(x,w) € H. x [0,27] : z-:TaheX(x,w) > 5}),
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employed for deriving quantitative results on the statistics of the free path
length in the periodic Lorentz gas in [10, 13]. The second important tool was
the use of Weil estimates for Kloosterman sums, first employed in the study
of problems of this type in [2, 3, 4]. A different approach [17, 18] transfers
the general problem about the statistics of the free path length in R¢ modulo
a covolume one Euclidean lattice, into a problem concerning dynamics on
the space of covolume one lattices (or affine lattices) in RY. This led to two
important results [17]: the existence of the limiting distribution in the small-
scatterer limit in any dimension d > 2, and the independence of the limiting
distribution of the choice of the initial point when this does not belong to
Q?. The explicit two-dimensional formulae from [12, 4, 7] can be recovered
on this way in the more general form provided by the collision operator
[19] (see also [11, 8] for calculation of the collision operator using continued
fractions). However, it is still challenging to obtain explicit formulae for the
limiting distribution in dimension d > 3, or even in dimension d = 2 when
the initial point belongs to Q2. A more detailed history and presentation
of the literature and of various ideas and tools involved in this and related
problems, as well as a description of recent developments in the study of the
periodic Lorentz gas, is provided in [14, 16].

FI1GURE 1. The free path in a hexagonal billiard and respec-
tively in a hexagonal lattice

The case of the honeycomb is manifestly more involved. The version of
this problem where the initial point is chosen to be the center of the hexagon
has been solved in [5]. The main additional difficulty arises from the absence
of a theory of continued fractions in the case of the hexagonal tessellation. To

bypass this obstacle, we shall deform this tessellation, as in [5], into Z%?)) =

{(m,n) € Z*,m # n (mod 3)}. The three-strip partition of the unit square
employed in the situation of the square lattice [10, 7], or equivalently the
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corresponding tiling of R? shown in Figure 6, will be useful here. However,
the presence of certain (mod 3) constraints translates here in the existence
of a positive proportion of angles with very long trajectories. This leads to a
large number of (nonredundant) cases that have to be analyzed individually.
The main result is

Theorem 1. There erists a decreasing continuous function ®P : [0, 00) —
(0,00), ®'<(0) = 1, ®"*(00) = 0, such that for any 6 > 0, as e — 07,
PL(€) = B"X(€) + Os(/*7), v >0,

uniformly for & in compact subsets of [0,00). Moreover, there ezist constants
C1,Cy > 0 such that

(1.2) (’;1 < Dhex(e) < C; Ve € [1,00).

0.0 0.5 1.0 15 2.0 25 3.0

FIGURE 2. The limiting repartition functions ®"** and &5

Estimate (1.2) is discussed in Remark 5.3. The repartition function ®he*
can be explicitly computed as

(1.9 v = 5 6 (2 - ;]ic;k (%)

where!

1 1 )
Ly Go©) = [ du(/ v Fosy (@) + [ du F<o.2)<5;u,w>),

—Uu

170 keep notation short denote throughout z Vy = max{z,y}, x Ay = min{z,y},
x4+ = max{z,0}.
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1

1 2—u
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1 2—u
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F(1.2.2) (& u,w)
)2
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2—u—w fw+u—1 2w+u—2
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—I—W((w+2u—§)+/\u+(w+2u—f)+/\(w+u)).
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92
Fuaa(@uww) = OB () Aut (a6 Aw)

2uw 2u w
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S’ (2u— &)y ANu.

(1.10) / du/ dw F1 25)(&§u,w),  with
2
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F1.25 (& u,w)
a2
=M((w+2u—£>+Au+(w+2u—§)+A(w+u))
2—u—w {fw+u—1 w—H+2u—2
+2u(w+u)< w—+u * 2u )
.<(w+u—§)+/\u+(w+u—§)+/\w>
2 _u— 2
W-(2w+2u—§)+/\(w+u).
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/du/ dw Fi3.2.2)(&§;u,w), with
EV2—u
' _(w+u71)2 W+ u £
F(2.2.1)(£7u7 IU) - w(w +u) < w - w +u> )
1—u)P(w+u—¢
Floo2)(§u,w) = ( Z;)] Ewu)ZZ )
(1—u)u (w—l—u—l w+u—2>
- + .
(w —uw)w w w—u

(1.13) G9(§

1<N<§ [€—u,€)N[N,N+1—]

Z [E—u,&IN[N+1—u,N+1] (N;2.3 1)( )

1<N<g

+* /du/ dw H yep 51 (€0, 0),
Z [6—u,l]N[N+1,N+2—u] (N;2.3 1)( )

1<N<§
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w W (N1 Du
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=2 ~1)(1-u)
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(w—(n— 1)1 —u))*
w(2w +(n— 1)u)2
w— (n—1)(1 - u)
w(2w + (n— 1)u)

Flnpan)(§u,w) = RQu+tnu—§& ANw

(n;2.4.1) (é-v u, w), with
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H(n;2.4.1) (& u,w)
(1—u ol -u)—w

1+n(l—u)—w n(l—-—u)—w
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(w + nu) (2w + (n — 1)u)2
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~<(2w+(n+1)u—§)+/\(w+u)—(2w+nu—f)+/\(w+u)>.

1 1 1 ]
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w+ u) (2w + u) 2w+ u w+u
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w+u— 1)
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(w+u— 1)

(w+ww w2 TR A

n+1)(1—u)+1

I [t ( ,
(1.19)  Gus(§) = ¢ Z/ du/( dw Fp2.4.3)(&u,w),  with
n=0"0 n

1—u)+1
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F(n;2.4.3)(€;u7 w)
2
=t 0l et =€), A +)
(1+(n+1)(1—u)— w)2
(w —u)?(2w + nu)
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w4 nu—E&+ ANw
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(w+u—1)
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(w —u)?w

Fisin(§u,w) = (w+u =8+ Aw,

Fz12)(&u,v) =

(wHu—E&)4 Nw.

(1.21) Gi7(& /du/ dw Fi3.9)(§u,w), with

u))A(2—u)

Fz9)(§u,w) =

2—u—w w+u—1 w-—1
(w—u)(w—i—u)( w+u +w—u)
(2 —u—w)?w

(w—u)?(w+u)

(wtu— &)y Aw+

(1.22) Glg(f)

Z /du/H

dw Fing30)(& 0, w),
8 Nt ]

,—uE
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with

(1—u— (w — )(N+1w+u—§)
(w—u)*(Nw + u) '

Fingzan)(§uw) =

(1.23) G19(§)

2 Z /du/ dWF(N;3.3.2)(§;U,w), with
. _
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1<N<§ S ot N+1 1’ N
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Finz3.2) (& u,w)
. (N4 Dw+u—¢
(Nw +u)((N +1 w+u)2

l—u—(N+1)(w-1) <2_ 13 _f(w—l))
(w—u)((N + 1)w + u) (N+1Dw+u w—u )
INVAY .
(1.24) Gy (&) = 8/0 du/Q_u dw F(3.4.1)(&;u,w),  with
—u)?(2w —u
Faan(§uw) = SRS (i 2u- 94 nu - (2u- 64 Au)

1—u <w+u—1+w—1>'(2u_£)+/\u

(w—u)w w w—u
2
+m'(w+2u—§)+/\(w+u).
(1.25) Ga1(€ /du/2 dw F(3.4.2)(&§;u,w), with

F(3.4.2)(&§5u,w)
w+2u—2(1—-u 2—u—w
= +
2uw w 2u
(w+2u — 2)(w — 2u + 2)
dyw?
(w+ 2u — 2)?
2uw?

)-<w+2u—§>+A<w+u>

(wH2u—E&+ ANu

(2u— &)y Nu.

1 1 .
(1.26) Gaa(§) = 8/1 du/z ) dw F(3.4.3)(&§;u,w), with

9w —w) (3w + 3 — 2
F(3.4.3)(£;u,w):( u—w) (3w + 3u — 2)

(wH+2u—E&4 Nu

du(w + u)?
—u—-w 2
—u—w)?

1 (3 =
(127) G23(§) :8/0 du/1 dw F(3.4.4)(§;ua U))

1 /3 2—2u
+ 8ﬁ du/ dw F(34.4)(§;u,w),  with
1 1
3
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F3.4.4) (& u,w)
~ (wHu—1)23w + 2u)
w?(w + u)(w + 2u)
2w+u—1) (1—u  3—u—2w (w+u—1)2
{w(w—l—2u) ( w w + 2u >_ w2(w + u) }
RQu42u—&p N (w+u)
(w+u—1)2
o)
(w+u—1)
(w4 u)(w + 2u)?

(wH+2u—8&4 ANu

(wH2u—E4 A (w+u)

2w+ 2u— &)+ Au.

2
(1.28)  Gas( / dw Fl1.3.4.5)(&;u, w)
2—2u

/ du/ dWF1345) & u,w)
1

1412 _
+ = Z/ du/ dw Fp:3.4.5)(§u,w),  with

F(n;3.4.5) (57 u, ’LU)

n(w—1 u2
N (ngui—u)(n)w—:— ;u)2 (ot Dut2u=g), Au

(1 —u—n(w—l))2

(nw + u)((n — 1)w—|—2u)2

2 —w m—1D(w—-1)+u nw—-1)+u
+{(nw%—?u)((n—1)w—i—2u) ( (n—1w+ 2u + nw + 2u )

B (n(w -1+ u)2
(nw + u)(nw + 2u)?
+ Hipgas) (& u,w) - ((n+ Dw + 2u — €)

H(n;3.4.5)(€;uvw) =

2 —w <1—u—n(w—1) l—u—(n—}—l)(w—l))
(nw +2u)((n — L)w + 2u) \ (n — Dw +2u nw + 2u

B (1—u—n(w—1))2
(nw + u)((n — 1w + 2u)

c(nw+2u—&4+ A (w+u)

}~(nw+2u—§)+/\u

LA (w+wu),  with

R

1
1 G

2 2—2u
/3 duﬁ dw F(3.4.6)(&u,w), with
O —Uu

(129)  Gas() =5 [Tau [
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F3.4.6)(§u,w))
:{ (1 —u)? (w+u—1)2

(w—uww?  (w+u)w? }'(2w+2u_f)+/\(w+u)

1—u w+u—1 w-—1 (2 —w —u)?
+{(w—u)w< w +w—u> (w—u)Q(w—f—u)}
(wH+2u—E&+ Nu
(w+u—1)°
(w + u)w?
(2 —w —u)?
(w—u)?(w + u)

“(w+2u— &) A(w+u)

2w+ 2u — &)+ ANu.

1
1 3 2—u
(1.30) G26(§) :8/0 du/2 , dw Fi;3.4.7)(§5u, w)

1 1 2—u
2 / du / dw Fgan (€ uw)

141z
+ = Z/ du/ dw Fip.3.4.7)(§u,w),  with

+17U

F(n;3.4.7) (5)
(1—u—n(w- 1))2

" o (m - ywrae) (DY

1—u—n(w-1) n—1(w-1)4u w-1
Jr{(w—u)((n—1)w+2u) < (n— 1w +2u +w—U>

A (W)

2
C(-u—n(w-1)) }.(nw+2u—§)+Au

(w—u)?(nw + u)

(1—u—n(w-— 1))2
(nw +u)((n — Dw + 2u)2

(1—u—n(w- 1))2
(w —u)?(nw + u)

“(nw42u—&)+ N (w+u)

i ((n+Dw+2u—8), Au.

+

(1.31) Gar(& / du/ dw Fy11.0)(§u,w),  with
2V(& V(1+u)

(1 — u)2 . (
(w —2u)(w —u)?

Fuyian(§) = w4 u—E&)y Aw.
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(132) Gag(6) = © / du / 0w Fay 1.2.0) (€ 1)
(eve— u)/\2

/du/ dwF(4,1.1,2.2)(§;u,w), with
E—u)VI)A

w+u—2(1—-u 2—w (2 —w)?
F(4~1-1~2'1)(£;u’w):<2u(w—u)(w—u+ 2u >+ 4uw

N2
(wHu—& Nw+ (221”3}))

w—1(2—-u—w 2-w (w—1)2

+ + -

w—u w—u w (w —u)?w
(w+u—&) ANw.

9

F(4.1.1.2,2) (& u,w) =

At
(133) Go(e / du /1 00 Fara (€ ),

=
1<N<§ L+l 5

with

Flui9)(§u,w) =

w—u

w—1 <1u +2w>_(w1)2(§u).

w—u w (w —u)?w

(1.34) Gso(é)

S

enl
> |,
141

(2 - w)2((2]\7 + Dw + 3u — f)
(Nw + 2u)?w
N (N+D)(w—=1)+u—1)((N+Dw+u—¢)
(w—u)(Nw + 2u)

2—w Jr1—u—N(w—l)
Nw + 2u w— U '

[4on Exu] dw Fin.4.1.3)(&u, w),

g
N+1" N

1<N<§ NTI

with

Fiyaa3) (& u,w) =

(1.35) Gz1(§)

ENL
Z / dU/ dw F(N;4.1.4)(£;u7w)7
N<e0 [+ 7 25T )

3
Nt1’ N

with

F(N;4.1.4)(§§U7w)
(22— w)? (N+1)w+u—& N+ Dw+3u—E
_(Nw+2u)2< (N — Dw + 2u w >
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(2 —w)?
(1.36) Gaal8 / du/Q/\(u+§v1) w — 2u)w
(1.37) G33(f)

Z /du/ N dwF(N;4.2.2)(£;u,w), with

0<N<§ N+2 N+1

F(N;4.2.2) (& u,w)
(2 — w)? ((N—I—Q)w—u—f (2N+4)w—3u—§>

- (N 42w —2u)* \ (N + 1w —2u w
(1.38) Gan(€) = % / i /1 ; dw Fig5.(&w,w), with
Fyz1)(§u,w) = (w2__21::)w (w; L ww__u2_u1> (w— &)y Au.
(1.39) Gs5(§) :é /01 du /12 dw Fy.3.2.1)(&u,w)
+ % /0 ' /2 " dw Fuga0) (€ uw),  with
Fasan(&uw) = w6 nu
Flas22)(&u,w) = A—w? (w— &)+ Au.

(w —2u)?(w — u)
1 2
(1.40) Gg@(f) :;/0 du /2_ dw F(4.343.1)(§;U7w)

1 1 0o
+8/0 du/2 dw Fy.33.2)(§u,w), with

w—i—u—2(1—u 2 —w

Fluszn(§u,w) = )-(w+2u—§)+/\u

2u( u) \w—u 2u
_9)2
W-(Zu—ﬁﬂ/\u,

Fly33.2)(&u,w) = (w (;u)(w) — )2

n 1—-u w—2+w+u—2
(w—2u)(w—u) \w—2u w—u

(2u—&)+ Nu.

(wH+2u—E&+ ANu
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0o .1
(L) G =g [ au |
n=1

1+ 1;u
1—
1+n+1{

dw Fpa.3.4.1) (& u, w)

12 1 2
+ Z/ du/ dw Flna.3.4.2)(§u,w),  with
8 n=1"0 1+177u

F(n;4.3.4.1) (& u,w)
B ((n—l—l)(w—l)—ku—l)2
 (w—w)2(nw + 2u)
(n+1)(w—1)+u—1( 2—w 1—u—n(w—1)>
(w — u)(nw + 2u) nw + 2u w—u
-((n+1)w+2u—§)+/\u,
F(n;4.3.4.2) (& u,w)

(nw42u—E&)4+ ANu

= (2 - w)’ (nw + 2u — u
B (nw + 2u) ((n — 1)w—|—2u)2 (w4 206 = £ A
(2 —w)?

+ (n+Dw+2u—¢), Au

+

(nw + 2u)?((n — 1w + 2u)
1 2
(1.42) Gss(§) :8/0 du/l dw Fly.4.1.1)(§u, w)

1 1 00
+8/0 du/2 dw Fly.4.1.2)(§5u,w),  with

(w—1)?
(w — u)w?

Fyain(§u,w) = (W =8+ A (w—u),

Y
F(4.4.1.2) (67 u, w) = (w _(;u)2l(t1)u — U) ’ (w - £)+ A (w - 'LL)
1 2
(1.43) Ggg(&) = ;/0 du /1+ dw F(4'4_2) (f;u, w), with
2 1 w—u-
Faaa(© = g (U 4 ) w0 A - )

1 1 2 S
(1.44) Gao(&) = 5 / du / dw Y F(n;4.4.3)(&u,w),  with
0 1+u

n=0
F(n;4.4.3) (57 u, w)

= (2 - w)’ ((n+2w—2u—&)  A(w—u)
(n+ 1w — 2u)2((n—|— 2)w — 2u) +
(2 —w)?
. ((n—|—3)w—2u—£)+/\(w—u).

(n+ Dw —2u) ((n+2)w — 2u)2
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To give an idea about the complexity of the problem, we notice that
in the case of the square lattice only the term Gy arises, with a different

constant and no % scaling for £&. Notice also that the limiting distribution

U satisfies (1.2).

In the case of a lattice it was actually proved in [17] that, for every
x € R2\ Q% lim, o+ 5 |{w € [0,27) : erD(x,w) > ¢}| = @5(¢). It would
be interesting to know whether a similar result holds true in the case of the
honeycomb for a generic choice of x.

The analog problem about the free path length in a regular polygon with
n sides (n # 3,4,6) seems to be out of reach at this time, due to lack of a
tractable coding for the linear flow. In the case of the regular octogon the
recent results in [21] may prove helpful.

2. Translating the problem to the square lattice with mod 3
constraints

For manifest symmetry reasons, it suffices to consider x € H, and w €

[O, %], or equivalently t = tanw € [O, %] We will simply write 72°%(x, w) =

TheX(x,t). As in [5], consider the lattice Z2My, My = (1}2 \/50/2), and the

linear transformation Tx = xMy L on R2:

T(x,y) = <a; - %, ?/%) = (2,9).
a a3

This maps the vertices (q + 5, %% ) of the grid of equilateral triangles of
unit side onto the vertices (g, a) of the square lattice Z2. The vertices of the
honeycomb are mapped exactly into Z%S), the subset of elements of Z? with
q # a (mod 3) (see Figure 3). The points of the x-axis are fixed by 7. The
circular scatterers Sg o = (20, yo)+&(cos 0, sin 0) with (2o, y0) = (¢+%, %)

are mapped onto ellipsoidal scatterers (xj, y()) +£( cos 08— Sinfo , 2 f}%e) centered

at (z(,yy) = (¢,a) = T(x0,y0). The channel of width w = 2¢, bounded by
the two lines of slope ¢ = tanw and tangent to the circle S, ., is mapped
(see Figure 4) onto the channel of width w’ = 2¢’ cosw’, bounded by the two
lines tangent to the ellipse T'(Sqq.), of slope t' = tanw’ = ¥(t), where

t=v"1(t) = 13
t+2

2t
V3 —t

The intersection of these two channels and the z-axis is the horizontal
segment centered at the origin, of length

v [o\}g] 01, ¢ =u() =

2¢ w w' 2¢’

sinw sinw sinw’ tanw’’
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FiGURE 3. The free path length in the honeycomb and in
the deformed honeycomb

In particular

etanw’ 5
2.1 g =é(w,e)= = )
(2.1) (w.e) sinw cos(m/6 + w)

We can first replace each circular scatterer S, ,. by the segment S, .

centered at (x,yo), of slope & and length W = 2¢’ (see Figures 3

3
and 4). Indeed, this change will result in altering, for each w, the free path

length 71°%(x, t) to the free path length 70°%(x, t) corresponding to the latter
model by a quantity lesser than 4v/3¢2, which is insignificant for the final
result.

Next we apply T to transport the problem from the honeycomb to the
square lattice with congruence (mod 3) constraints (or in the opposite di-
rection through 7—1). The unit regular hexagon H centered at the origin is
mapped to the hexagon T'(H) which contains (0,0) in Figure 4. Actually it
will be more convenient to replace T'(H) by the fundamental domain F' con-
sisting of the union of the square [0,1)? and of its translates [—1,0) x [0, 1)
and [0,1) x [-1,0). Let &’ = &’(w, &) be as in (2.1), ¢’ = tanw’ as above, and
consider the vertical segment V., = {0} x [—¢’,£']. Consider

‘jsD’(let/) = inf {n eNy:x' + (n,nt’) € Zé) + VE/} ,
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§ (Xé)v 0)
A

< W' o 71/?/ /3
B

et
sin(2x/3) - sin(r/3-w)

\/

FiGURrRE 4. Change of scatterers under the linear transfor-
mation T'

the horizontal free path length in the square lattice with vertical scatterers of
(nonconstant) length 2¢’ centered at points (x, yj) = (¢, a) € Zé). Consider

also qED0 (x/,t'), the horizontal free path in the square lattice with vertical
scatterers of constant length 2¢( centered at points (zf,y)) = (¢,a) € Z%?,).
Clearly qa (%', ') < G5(x',t") < g2 (¥, ') when #' belongs to an interval I’
ande_ <& =€({)<et, W eT.

For each angle w’ the transformation 7" maps H onto F and 7! preserves
the structure of channels in the corresponding three-strip partition from
[1, 7, 10] (see also the expository paper [14]). Removal of vertical scatterers
Vyae = T(Sgae) with ¢ = a (mod 3) in the Z??)) picture results in dividing
the corresponding channel of the three-strip partition from the square lattice
model into several subchannels, and in the occurrence of longer trajectories
associated with them. This is transported by 7! back to the honeycomb
model. The key observation here is that, by the Rule of Sines,
fhex(x,t)  @(Txt)  dH(Tx,t)

€

sin(27/3)  sin(m/3 —w)  cos(m/6 +w)’

This shows that

(2.2)
Fhex(x, ) > g =  GTx,t) > 2cos(m/6tw) _ & ¢ =

£ 6\/?: 5/’
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leading to

X (£ 00) (%?ex(x,t)> = X(€ ) (dE(TX,t’)> ., VxeHVte [0

1
y el
For each interval I = [tanwy, tanws] C [0, 7] one has
T = o) < o a1 < ntro Ty
er = (1+O[I)))e.
Employing now (2.2) and the fact that € — ¢-'(T'x,t') is nondecreasing, and
taking

f[_ = T < fl < 5}‘_ = f[i = (1 +O(|]D)§/
6[ 5[
we infer

X<£I+ )(q +(Ix,t) =x 7,@) (qg(Tx,t')) <X(g, )( (Tx,t))
<X(g, )(qa’ (Tx,t')) = X(£,00) (7hex(x,1)) < X (€ ) (¢2(Tx,t'))
<X o (QEI— (Tx,t/)) =X(er (qEI_ (Tx,t/))

(=) ()
Consider

._ ditl ’ O/t
ey G = [ [ (e (60

Applying the change of variable (x',t') = (Tx,¥(t)) and employing (2.3),

_ 3Byl dt V3 __dt .
dx = *5>dx’ and 2= % o Ve infer

3 3 dt’
-G + <= - d O / t/

<B©=[[ heX< ) dxd
H><I s’°°
/t2 / dx X hex(x t))
S T e
4 (1) t'2 + t/ +1 (E%’OO> €r ’

3
= ZGI,E;(é-;)

To simplify notation, we simply denote G 1/(2q) by Gr,q throughout. We
shall employ the following result, whose proof occupies the remaining part
of the paper.
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Theorem 2. Let ¢,d > 0 such that ¢+ ¢ < 1. For every interval I C [0,1]
of length |I| < Q°¢, every & > 0 and § > 0, uniformly for & in compact subsets

K of [0,00),
2c
(2.4) G106 = 735 GO + Osuxc (e s(Q)).
where G(§) is the 41 term sum described in (1.3) above, and
_/ dt - T
1 = 241 0[0’11_3\/37

(2‘5) Ec,c’,é(Q) — Qmax{2c’—1/2,—c—c’}+5.

Proof of Theorem 1. Let Q= = Q] := L J +1 and °L < e =

e,
QQ% < ¢e;. Then qD_(X',t’) < qE_(x’,t’), SO

(51 /er ’00)( (X t )) (51 /€7 00 )(qE (X/’ t,))'

+
In a similar way, taking Q* = Q} = {%%J, ef <et = 2Q+ < g E£€+,
I

we have X (et /et 00) (q +(x t’)) X(eF jet oo )(qu+ (x/,t')). On the other hand
%—14—0( £), hence
I

§ _& < 3

=2 == (14+0(1])) =.

ef et &F (1+001D) et

We now infer

(26) Gro+((1+001))¢) < fGIE;@I*)@IE(f)

)

<26, (&) <SG (1 +0UID)E).

[GCEN V]

Now partition [O, %] into N = [¢7¢ intervals I; = [tanw;, tanw;;1] of

equal length |I;| = % < ¢, with 0 < ¢ < 1 to be chosen later. As above,
consider Q]i = Iij The intervals W(I;) partition [0, 1] and |¥(I;)| = &

Applying (2.6), Theorem 2 and the property of G of being Lipschitz on the
compact K we infer

6 - N
BINE) = i D Bl = 0Dy u(0
ot j=1

2f

<<1+O(|I|)> \/§§>+05K( —max{2c1—1/2,—c—c1})

:26[01\fG<2£

+0 ¢4 —max{c+2cl—1/2,—cl}—5'
iy 6 () + ool )
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Taking ¢ = ¢; = %, we find

PRx(¢) = % G <\2/§§> + O5 i (£1/579),

as stated in Theorem 1 and in (1.3). O

3. Some number theoretical estimates

In this section we review and prove some number theoretical estimates
that will be further used to estimate certain sums over integer lattice points
with congruence constraints. The principal Dirichlet character (mod ¢) will
be denoted by x¢. The number of divisors of N is denoted by o¢(N).

Lemma 3.1 ([2, Lemma 2.2]). For each function f € C'[0,N] of total
variation Tdvf,

N
> 1@ =22 [ @) de+ 0 ((Ifl+ T on(N)
I<gsN
(g,0)=1

Lemma 3.2 ([5, Lemma 2.2]). For each function V € C'[0, N],

N
3 S"(Q)v(q)zcw)/o V(x)dz + O (Voo + 15 V) log N) ,

1<g<n 1
(¢,0)=1
where
-1 ~1
oy = 9 <_1) _ L ( 1) __e
O llU-7) ~@lli) ~@ee
pl¢ pl¢

We need a more precise form of Lemma 3.1, as follows:

Lemma 3.3. Suppose that (r,{) = 1. For each function V € C1[0, N],

20y = €O My .
> 5 Vi) = g [ Vi e+ 0 (VI + TV 102 N)
g=r (mod £)

In particular

S ¢(2)
g==1 (mod 3)
2D iy L v de
> POV~ [ Vi
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Proof. When (k,¢) = 1, denote by k the multiplicative inverse of k (mod £).
Let G = U(Z/¢Z) denote the multiplicative group of units of Z/¢Z and G
be the group of characters x : G — T, extended as multiplicative functions
on N. Set Vy(z) = V(zd). By Schur’s orthogonality relations for characters,
for every x,s € N with (s,¢) =1,

1 1 — )1 ifz=s (mod/),
(3.1) SDzéx(ﬂf)x(ﬁ)—ZX(I)X(S)—{O fo£s (mod0).
X€ X

Taking s = r and summing over x = ¢ = md < N, we infer by Mobius
summation

32 > SD(Q)V(Q)Z(lg #la) V()Y x(a)x()

= pl0) = a e
g=r (mod ¢)
= % > M(dd) V()Y x(g)x(r)
1 [N/d] 1(d) )
= @ P a4 Va(m)x(md)x(r)
[N/d]
_ 2§ Adx(d) v (m

We split the inner sum above according to whether x = xg or x # Xo.
Employing Lemma 3.1 for the function Vj, we find that the contribution of
the former is

LN/d]
(1@ 5~ 1 wld) (90(;) /0 Vot O((IValle + TV o N)>

N
:% ZW /0 V40 (Vs +T5'V) log N)

- (mlxo) " OZ(&)) /ON V+ 0 ((IVlloo + T3'V) log N)

cw v N
=—= V+0: (Voo +T5'V)1logN) .
e(0) Jo
When x # xo, we find by partial summation and Pélya—Vinogradov (or a
weaker inequality) that the innermost sum in (3.2) is <; Tg'V + ||V |00, S0
the total contribution of nonprincipal characters in (3.2) is <y ||V ||oo log N.
U



674 FLORIN P. BOCA

Lemma 3.4 ([6, Proposition A4]). Assume that ¢ > 1 and h are integers,
T and J are intervals of length less than q, and f € CY(Z x J). For each
integer T'> 1 and any § > 0

3 f(a,b>=“Oq(ﬁ)//zxjﬂm,y)dxdyw,

ac€Z,beJ
(a,q)=1
ab=h (mod q)
with
£ <s T2||f||ooq1/2+‘5(h,q)1/2 + T|\Vf||ooq3/2+‘5(h,q)1/2 + ”VfHOJOJI| |~7|’

where || flloo and ||V f|ls are the sup-norm of f and respectively ‘%| + ‘g—g
onl x J.

For g, ¢ positive integers, denote

1 if (¢,0) =1,
—1
A, ) =< 1] (1 - %) if (¢,0) > 1.
peP
l(a,0)

Lemma 3.5. Suppose that (r,¢) = 1. For any interval Z, uniformly in |Z|,

Yooo1= A(Z’E) -“"E}q) Z| + O(00(q)).

erv (qu)zl
z=r (mod £)

Proof. Without loss of generality, take Z = [1, N]. As in the proof of
Lemma 3.3, take s = r and sum in (3.1) over x € Z with (x,q) = 1. By
Mobius inversion with z = md, we infer

1
(3.3) 2. =g X 2 x@x®

z€Z, (z,9)=1 €L el
z=r (mod ¢) (z,9)=1

— @&) 3 S @) S uld)

<eG el dlq
dlz

- @&) S u@) S x@)x ()
dlq giﬁf xeaG

LN/d]

= gp(lg) D u(d) YD x(md)x(P).
dlq

m=1l ye@
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The contribution of x = xo to (3.3) is

(3-4) 0) Zq: p(d)xo(d) 1

In the contribution of nonprincipal characters to (3.3),

1 [N/d]
(3.5) 72#@) > x(@x(@) Y x(m),
#(0) dlq xe@ m=1

X#X0
the innermost sum is <y 1 (by Pélya—Vinogradov or a weaker inequality),
showing that the quantity in (3.5) is <y 0¢(q). The statement follows now
because the sum in (3.4) is equal to 3, @ = @ when (¢,¢) = 1, while
when (g, ¢) > 1, writing ¢ = p{* -+ - pq with pq,...,p, prime divisors of ¢
and (g, ¢) = 1, this equals

pd)  e@  e@yr(, 1\ o(q)
dzq: = = H<1 ) = A(q,0) et O

q 9 5 Pi

We also need a slight extension of Lemma 3.4. Suppose that (r,¢) = 1
and denote by Z the multiplicative inverse of z (mod ¢q) when (z,fq) = 1.
The Kloosterman type sums

mx + nx
K(m7n7KQ) = Z € <£q> 3

z (mod £q)
(z,4g)=1

Rimumee= Y o(mEm),

z (mod £q)
(z,q9)=1,z=r(mod £)

mx + nx
Kz, (m,n;lq) == Z f <€q> )

I€I7 (qu):
z=r (mod £q)

will be used to estimate

Nyern(Z1,12)
i=#{(z,y) €Ty x Iy : (w,q) = 1,z =r (mod £),zy = h (mod {q) }.



676 FLORIN P. BOCA
Lemma 3.6. When (r,{) = 1, for any interval I of length less than q,
|K7.,(0,n;549)| <45 (n, q)1/2q1/2+5,

Proof. We write

KI,T<O7n;£q)
B nT\ nx 1 k(y — x)
- 2 E<EQ>_ 2 e<€q>zﬁq Ze( lq )
z€Z, (z,q)=1 z (mod £q) yel k (mod ¢q)
z=r (mod £) (z,q9)=1,z=r (mod £)
1 ~ ky
—@ Z KT(_k7n7€Q)Ze<€q> )
k (mod ¢q) yeT
and
~ ‘ mx 4+ nz\ 1 jlx—r)
K (mynilg)| = | > e (&]) 7 Yo oe < 7
z (mod £q) J (mod £)
(z,lq)=1
1 Jr )
=7 > €(€> K(m+ jq,n; {q)
j (mod ¢)
< max |[K(m + jq,n; {q)|.
J
Employing?
ky 1
(3.6) Ze() gmin{\ﬂ—i—l,k},
vz \la 2|7l

|K(0,n;Lq)| = |ceg(n)] < (n,€9) < (n,q)l <4 (n,q)"%¢"/?,
and the Weil estimate

|K (m + jg,n; £q)| < oo(£q)(m + jg,n, Lq)?(£q)"? <5 (n,q)2q1+9/2)

we infer

Kot < DL R o)+ £ 30 BeChmitl

gq k (Izl;c(l)éq) H%H

1
<5 (n,q) 21+ 4 7R (n, q)Y2q1920g10g(¢q)

< (n,q)1/2q1/2+6' 0

2Here |jz|| = dist(x,Z), € R, and ¢,(n) = K(n,0;q) = K(0,n;q) is the Ramanujan
sum.
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Lemma 3.7. Suppose that (r,¢) = 1. For any intervals T and Iy of length
less than q, any integer h and any § > 0,

~ A 7£
NotrnlT1, To) = (52 L <Pq(2(J) | Z1] |Z2| + O ((h, Q)I/QQI/QJ”S) :

Proof. We write

~ 1 k(y — hz
Nq,f,'r,h(IluI?) = Z 7 Z € <(y€)> =M+ E’
x€Z1,y€ls 9 k (mod £q) 1
(z,9)=1,z=r (mod £)

where T denotes the multiplicative inverse of z (mod ¢g) and

1 ky
(3.7) E :% Z Z e <€q> Kz, (0, —hk; {q),

k (mod £q) \ y€Z2
k#£0

1
M:% o1

z€T1,y€l2
(z,9)=1,z=r (mod ¢)

1 (Alg,0) ¢(q)
7 ( ¢y Bl 0(e0(@) ) (122 +O0))
Alg,€) (g
280 D 7, 7,1+ 0ot
From (3.6), Lemma 3.6 and (hk,{q) < (h,q)(k, q)¢, we infer as in the proof
of [6, Proposition A3]

hk, (q)'/?
(38 1Bl gy PR

k (mod ¢q) H%H
k40

k,
< q*1/2+5/2(h,q)1/2 Z ( Ci

k (mod ¢q) HTz”
k0

(1+8)/2(p, ;\1/2 (K, Q)l/Q h. q)1/2g1/2+8
<q (h,q) > o <o (ha) g T
1<k<(g—1)/2

1/2

~—

The statement follows now from (3.7) and (3.8). O

Lemma 3.8. Suppose that (r,{) = 1. Let 71, I, be intervals of length less
than q, f € CY(I1 x I3), and h € Z. For any integer T > 1 and any § > 0,

Z f(w,y)_A(EIQ,E) _Spq(g)//zlxzzf(u,v)dudv—l—g,

z€l1,yel>
(z,9)=1,z=r (mod £)
zy=h (mod {q)
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with
IV flloo|Z1 | Z2|

€ <0 T flloog"*** (h, @)% + TV Flloog™* (h, )2 + =0

Proof. This plainly follows from Lemma 3.7 as in the proof of [3, Lemma
2.2]. O

Only the case £ = 3 and x = r # 0(mod 3) is needed here, with main

term
N‘P(Q)( > % if?))(q,
> san~ER ([ ey {é e

z€ly,yels
(z,9)=1,z=r (mod 3)
zy=h (mod 3q)

4. Coding the linear flow in 2?3) and the three-strip partition

Consider ¢, ¢, 9, and I as in the statement of Theorem 2 and E. » 5(Q)
as in (2.5). For (Ag), (Bg) sequences of real numbers, we write Ag = Bg
when Ag = Bg + Osg (EC’C/,(;(Q)), uniformly for £ in compact subsets of
[0,00). Our primary aim is to estimate the quantity G g(§) from Theo-
rem 2, associated with lattice points from Z%?)) with corresponding vertical

scatterers of width 2¢ = %, as Q — oo.

It is useful to recall first the approach and notation from [7]. F(Q) denotes
the set of Farey fractions of order @), consisting of rational numbers v = %,
0<a<qg<@Q,with (a,q) = 1. The interval I will be first partitioned into
intervals I, = (v,7') with ~,7’ consecutive in Fr(Q) := F(Q) N I. Each
interval I, is further partitioned into subintervals I, ;, k € Z, defined as

Lyi = (teste—], Iy = (to,uwo), Iy—k = (up—1,ux), k€N,
where
ay — 2¢ aj, + 2
ly = y Uk = 7 s
qk qx
g =4q +kq, ax=d +ka, q,=q+kd, a,=a+kd, kelL,
satisfy the fundamental relations

k € Np,

ag-1qk — Akqk—1 = 1 = ax—19 — agp—1,
Uy g = 1@, =1 =g —a,d, ke,
2eqr N2eq, > 2e(g+¢) > 1, k>1.
Consider also a
t:=tanw and ;= —k, ke N.
qk
As it will be seen shortly, the coding of the linear flow is considerably
more involved than in the case of the square lattice. As a result our attempt
of providing asymptotic results for the repartition of the free path length will
require additional partitioning for each of the interval I, ;. For symmetry
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reasons® the mediant intervals (v, y1] and (y1,7'] will contribute by the same
amount to the main term, so we shall only consider ¢t € (v, 1], and redefine

_d+a
S d+q
This explains the appearance of the factor 2 in formula (2.4).
As in [7, Section 3] we shall consider?, when ¢ = tanw € I, k € No,

way(t) = a+ 26— qt = q(ug — 1),
we,, (t) = ag—1 — 26 — @1t = qr—1(tk—1 — 1),
wp, (1) = qpt — ap + 2 = qi(t — tx) € [0, 2¢],

Lo = (to, t-1], t_1:=m

representing the widths of the bottom, center, and respectively top channels
Ao, Ck, Bi, of the three-strip partition of [0, 1)? (see Figures 5 and 6). Clearly

{25 = w4, (t) + wp, (t) + we, (t),

Viel K-
1= qua,(t) + qrr1we, () + qrws, (1), !

Recall [7, 10] that in the case of the square lattice, the three weights corre-
sponding to w are given by

(4'1) WAO (t) = (q - gQ)er.Ao (t)a
Wa, (1) = (gx — Q) +wp, (1),
We, () = (qr41 — £Q)+we, (t).

They reflect the area of the parallelogram of height given respectively by
WA, , We, O wg,, and length given by the distance from £Q to the bottom
of the corresponding subchannel (if £Q) is lesser than the total length of the
subchannel).

The range for g, = ¢’ + kq, respectively g;,, will be

qr €L = (Q +(k—1)¢,Q+ kq], respectively g, € Zy .

Denote by 7,14,7',7), € Z/3Z the remainders (mod 3) of ¢ — a, g, — ay,
¢'—d, g, —aj, respectively. The equality a’¢—aq’ = 1 shows that at most one
element of the triple (7,74, 7141) € (Z/3Z)? can be equal to zero. Similarly,
at most one element of the triple (r',77, 7} ) can be zero.

To ascertain the contribution of the slope t = tanw € I} to Gy g(§), we
should look at the tiling &, defined by the three-strip partition of R? (shown
in Figure 6), but also at &, its left-horizontal translate by (1,0), and at 6&,,
its down-vertical translate by (0,1). Since the slits (m,n) € Z? with m =n
(mod 3) are being removed, sinks are going to arise in the channels. This
phenomenon will lead to frequent occurrence of trajectories much longer
then in the case of the square lattice. A careful analysis of the bottom of

3Which are not geometrically obvious but become apparent after translating Gr,q (&)
into sums involving (sub)intervals (of) I, and Farey fractions from F;(Q).
4Here we use t = tanw as variable and use 72 dt

e instead of dw.
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(qk+1’+l

ak+l

(OKk-1, -1 + S)I

FIGURE 5. The three-strip partition of R?/Z? when t € I,

FIGURE 6. The tiling &, of the plane (shaded region repre-
sents R?/7?)

the channels Ag, Cr and By is required when the corresponding slit where
trajectory ends in the case of the square lattice has been removed. Besides,
there is a manifest difference between the three situations where the channel
originates at O = (0,0) (this will be referred to as Co contribution), at
(=1,0) (C— contribution), or at (—=1,0) (C| contribution), resulting from the
different congruence conditions (mod 3) satisfied by the centers of removed
slits. This is shown in Figure 6, where the small circles centered at lattice
points (m,n) with m # n (mod 3) represent the vertical slits of width 2e =
é. We were not able to spot any symmetry that would reduce the analysis
to only one of these three types of channels. The contributions to ®P* of

the five types of situations that we analyze seem to be quite different (see
Figure 19).
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-

FIGURE 7. The channels Cy, C— and C|

To attain a better visualization of the structure of channels, we shall rep-
resent the slope tanw horizontally. The possible situations are shown in
Figure 8, where dotted lines indicate that the corresponding slit has been
removed from &, in the case of Cp, from & in the case of C._ and respec-
tively from Sl in the case of C I

To clarify the terminology, by “slit ¢i” etc. we will mean the slit which is
centered at some lattice point (gx, m) and which intersects the channel that
is analyzed (there is at most one such point for given g).

5. The contribution of channels whose slits are not removed

This resembles the situation of the square lattice and will be discussed
in this section. The more intricate situation of the channels where bottom
slits are removed will be analyzed in Sections 6-9. When the “first” slit (i.e.
the one corresponding to ¢ for Ag, qx+1 for Cg, respectively g for By) is not
removed, the table from Figure 8 shows that the corresponding weight is
described in the table from Figure 9.

The weights W4, Wp, and We, are given by (4.1), as in the case of the
square lattice. The cumulative contribution is

GYH(6) = 3 G 056,
(a,8)€(Z/32)%\{(0,0)}
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with

(5.1) G§?§27a,ﬁ(g):kz 3

=0 ~yeF(Q)
g—a=a (mod 3)
qr—ar=p (mod 3)

/t’“ 2((q — €Q) 4w, (t) + (qr1 — £Q)+we, () + (g — £Q)+wp, () dt.

t2+t+1
Remark 5.1. Putting £ = ¢ — a, y = qx, and employing

l4+aq, z2y—1

4k — Ok = 4k — = )
q q

we see that the summation conditions in (5.1) are equivalent to (x,q) = 1,
z =a (mod 3), and zy = B¢+ 1 (mod 3q). Note that (g +1,¢q) =1, and
sum as follows:

k

e When o # 0, Lemma 3.8 may be applied (because (x,3q) = 1)
followed by Lemma 3.3.

e When a = 0, we have 3 # 0 and x = 3%, Z € 4(1 —I). Furthermore,
Bq+1=0 (mod 3), so g =— (mod 3) and one may first sum, as
in Lemma 3.4, over (Z,y) and the conditions

qg—a=x=3zx, 576%(1_1)7 (‘%’Q):L
(5.2) - Bg+1
q=—p (mod3), Zy==5= (modgq), yEcIy,
then sum over ¢ € [1,Q] with ¢ = —f (mod 3) employing Lem-
ma 3.3.

In all situations where sums over v € Fr(Q) with ¢ — a = o (mod 3) and
qx — ar = B (mod 3), (a, 3) # (0,0), have to be evaluated, the resulting

. 1
constant will be %)

The following elementary estimate will be used throughout.

Lemma 5.2. Forb,c,h, A\, it € R such that 0 < b,c,c+h <1 and Ae+p =0,
there exist 0',0 = 0., € [—3,3] such that

th X+ p R\
dt = R30(|\ h?0'|b — c||A|.
/C 2yl 2R +b+1) (IA] =+ [pl) + A567]b = cf|A]
Proof. This follows immediately applying Taylor’s formula twice:
/C“l a h h%(2¢+1) e
e t2Ht+1l  24c+l 2(R2+c+1)2 ’
cth 2 2
tdt h h*(2c+1 h
/ 2 |2 - 2( ) 5 )¢t 52 + &',
e PPHt+1 A+c+1l 2(2+c+1) 2(c?+c+1)
with |¢'| < 1 and |£”| < 2, and employing
1 1
— < 3lb—¢l. O
+c+1 b2+b+1‘ b




THE LINEAR FLOW IN A HONEYCOMB 683

(r, M, Te1) Co Cc C,

R JN ——

(1,1,-1) ;‘ | ; | ;‘ |
(-1,-1,1) %‘ | %‘ ﬁ |
» T ;‘ ‘ ;‘ | ; ‘
0.1,1) =l | == =l

©0,-1,-1) = | = |=
101 | —— — =l
e ;‘ | ‘ ; ;‘ ‘

(-1,0,-1) — | = ‘H
(1,-1,0) — | == | =——
» T ;‘ ~ ; | ‘ ;‘ ‘
(-1,1,0) e mag e e
» b ;‘ ~ ;‘ ‘ ; ‘

FIGURE 8. The removed slits for Co, C— and C|

Together with 0 < ¢1 — Q < ¢ A ¢/, Lemma 5.2 yields (t—1 = 71)

O w&)(t)dt_/ tdr)
' w BHt+1l ), 2+t+1

_ (1 — Q) <1>
T E D) O\@ )
(5.4) / ' ey (1) dt

, PHt+1

_/VIWW—/%(‘N—W—/% (q't — o'+ 22) dt
Y Y t

t2+t+1 2+t +1 . 2+t +1
(71 —7)% = (to —7)° L (71— t0)®
2 +7+1) 20+ +1)

+0 (g(n =)+ ¢ (n —t0)® + ' (m1 — t0)*(to — 7))

a—Q 20— Q—q 1
— 0 .
2Q%2¢ 1 (V2 + v+ 1) < a * q > * <Q3q2>
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(r, e, Nee1) Co Ce C,
(1,1,-1) [[Wa, + We, + Wsg, We, Wa, + Wg,
(-1, -1, 1) |Wa, + We, + Wg, Wa, + Wg, We,
(0,1,1) We, + Wg, W, W, + W, + Wg,
0,-1,-1) We, + Wa, Wz, + We, + Wg, Wi,
(1,0, W, + We, Wsg, W, + We, + Wg,
(-1,0,-1) W, + We, Wz, + We, + Wg, W,
(1,-1,0) W, + Wg, We, + Wg, W, + We,
(-1,1,0) W, + Wi, W, + We, We, + W,

FIGURE 9. The contribution of channels whose slits are not removed

(5.5)

t24+t4+1

0

For every k > 1, we find

b1 g, (t) dt
(5:6) /t 2+t+1
=1 e, (t) dt
(5.7) / e (f)dt_
o PPHt+1

/t—l w4, (t) dt :/uoa—f—Qs—qtdt_/“oa+26—qtdt
¢ o PHt+1 o PAt+1

(UO — t0)2 - (UO - '71)2
2(v2+v+1)
+ 0 (q(uo — t0)® + q(uo — to)?(uo — 7))
(- QP +d) ( 1 )
— 2@2(],2(]%(72 +’Y+ 1) + O Q3qq/ .

/tk1 qt — ap + 2¢ dt
t

2+t +1
2
(Q—q) +O( 1

C2Q% (o + D) qq,%_lqi> '

dt

/t’“‘l ag—1 — 26 — qp—1t
¢ 2+t+1
(Q —q)? +O< 1

C2Q%qqi (VP + 1) qql%—lqi) .

k
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=1 2¢ dt the1 —t
(5.8) / € _ =t
tx

2+t+1 Q2 +~v+1)
+ O (e(tpo1 — ti) (B — ) + et — tr)?)

gl
Q% qr—1qx(2 +v+1) Qqqi-14;

(5.9) /ttk_1 wa () dt /tt'“‘1 2e —wp, (t) — we, (t) it

. At . t2+t+1
_ Q—q (Qk+1—Q+Qk—Q>
2Q%qk1qk (v + 7+ 1) 0 Q-1

1
0 ( 2) .
99 qk—14;,

The total contribution of the error terms from (5.3)—(5.7) and (5.9) to
[ ONTI
1@(5) 18

1 )
2
VEFI(Q k=1~cF; Q) (q 'qk-14;, qqk_lqk

< =2

Z qq Qk 19k Z

’YEJ:J(Q) vE€F1(Q YEFI( )
2 12 2 6/1]

g 2w g\"g)< ¢
vE€F1(Q) 1

When summing over a family of intervals I that partition [0, 1], this adds
up to O(Q~'). Thus all error terms above can be discarded below. We
emphasize that, since the contribution of each interval I, is < [I |, we
can remove one element of F7(Q) for every I.

Applying Remark 5.1 to the inner sum in (5.1) with x = ¢—a € ¢(1 - 1),
Y = qi € Ly 1, and employing formulas (5.3)-(5.9), we find

(5.10) G, 45(6)

Q oo Q
=22 X Lewsd Y wlw)
=1 k=1 wq(1-1), y€Tk ¢=1 2€q(1-1), y€(Q~4,Q)
z=a (mod 3) z=a (mod 3)
zy=PBq+1 (mod 3q) zy=Bq+1 (mod 3q)

with C! functions f; and gq on R x (R4 \ {g,£Q — ¢,£Q}) given by

2 2

fq(%y) = (12—1—((f1——a:)2Fq<y)’ g(I(xvy) = qu(ZJ)y with
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_ Q-q (y+q-Q y—-Q\
Fq(y)_QQ(y—Q)y< y +y—61>(q Q-
Q—q)? ((y—£€Q)r  (W+q—E&Q)+
+Q2(y—q)y< y—q y )
_y+tq—Q (2Q—q—y  Q—q B
Gq(y)_QQy(erQ)( vte |y >(y+q Q)+
o 2
gz—;é +C§))2 (2@/;— a (¢—€Q)+ + (y— fQ)+> .

The innermost sums in (5.10) will be estimated employing Lemmas 3.4
or 3.8. We first need to bound || fq|leo, ||V fylloc o0 q(1 — 1) X Zyp, k > 1,
and respectively || gqlloo, [[V9qlloo o0 q(1 — 1) X (@ — ¢, Q). From y > @ in
the first case and y + ¢ — Q < Q < Q <y + ¢ < 2Q in the second one, we
find for ally € Zy ., k > 1:

(5.11) 0 < fo(w,y) < Fyly) < Qz%__qq)y <q+ (Q@—1q) (2 + ﬁ + Z))
e Okl
T Qy—qy’

(5.12) IFl(y)] < 16(£+1)(Q —q)

Qly—a?y
and for all y € (Q — ¢, Q):
2y+q) |, Cytaat+y* 3
20
Qy*

(5.14) Gl <

From (5.11) we infer

- 2(Q — q) 1 4
;HFQHWS Q Z—;(QH’“—Q)Q)(QHk—l)q) Q¢

k
which leads in turn to

Q 0 9 Q
Zq1/2+6z I falloo < g Zq71/2+6 < 8Q1/2+5_
q=1 k=1 g=1

From (5.12) we infer

| 166 +1)(Q —q) « 1
Fllloo <
;H ol Q = (Q+(k-2g+1)*(Q+(k—1)g+1)
16(€+1) 1 16(¢ +1)
ST Q kzl(Q+(k—2>q+1)(Q+(k—1)q+1) ng(Q—qul)’
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which leads to

[e.e] oo
2 24§ +1)
v < SN Flloo + | FL <5,
> IVl ;(q IFoloe + q||oo) g
and finally gives
3/2+5 1/2+§ g 1/2+0
(5.15) \Y a7
- k=1 1<q< 9<4<@Q
Q -1/245 Q
2 1
<23 (Q> SERTRT
Q — 2 —n
q= n=
Q %) Q 1
(5.16) D@D IVLlle < Y 5 < logQ.
=1 k=1 q=1Q_q+1

Taking T = [Q°], we infer upon (5.15) and (5.16) with E..s(Q) as in
Theorem 2,

Q o~
q| 1|,
S (qu/m (TWfalloe + a1V Fyllo) + DEEu \qu\loo>

q=1 k=1
<es T?Q7 YV L TQ YV log Q + [IIT Hog Q < Eew 5(Q),

while (5.13) and (5.14) yield

Q
2 (Tq”“(ﬂgqnoo +allVggll ) + 7 i Hnglloo> <5 B s(Q).

q=1

When a # 0, Lemma 3.8 applies to the innermost sums in (5.10). The
two error estimates above hold uniformly for £ in compact subsets of [0, c0),
yielding

(5.17) G, 5(5)

o Q
~ > SO -qer (Z/ Fq(y)dy+/ Gq(y)dy>

1<q<Q k=1"7 Q—q
3fq
s Q
- q
~ @ qc (Z/ Fq(y)dy+/ Gq(y)dy>
1<4<Q k=1"Zak @=q
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Applying Lemma 3.3 with £ = 3 to the sum over ¢ in (5.17) and making the
substitution (¢,y) = (Qu, Quw), we gather that G\ (&) is

I7Q7a7ﬂ
31 1 1\ ¢f
~(Z. 242 2 ) =
(4 9 4 6)((2)

1 1 [e'e)
'/Odu (/1 dwF(o.m(ﬁ;%w)Jr/1 dwF(o.z)(f;u,w)>,

with Fg.1y and F{gg) as in (1.4). The total contribution of cases a # 0 to

Gg% (€) is obtained by multiplying the quantity above by 6
When o = 0 and g = +1, we sum as above with summation conditions
in the inner sum given by (5.2) and get, employing Lemmas 3.8 and 3.2,

G 01(6) + G% 01(6)

90 qer Oqu J @ Go(y)d )
=Y (/Q Wdy+ | Galy)dy

1<q<Q
(¢,3)=

45(1 )/ du </1iudwF(0‘”(€;u,w)+/loo dw FO2) (¢ u, w)),

Applying Lemma 3.2 to the estimate below, we eventually find
(5.18) Gin(€) = ==Go(6),

with Go(€) as in (1.4).

Remark 5.3. For each angle w, the weight W, ,(t) = W,ﬁx(t) is clearly

no larger than the weight WE,C (t) from the situation where no slit is being
removed (and which corresponds, up to some scaling, to the case of the unit
square).” Since the corresponding limiting distribution ®° satisfies (1.2)
[9, 7, 12], it follows that ®"°* satisfies the second inequality in (1.2). The
first inequality in (1.2) follows for instance from

(1-—
/du/ alwﬁ(w—gﬁr

o [ wvdv 3
//0 du(l—u)/g 0T € 16

6. Channels with removed slits. The case r = r, = +1

C()

Assume first that 7 = r, = 1. Then rg4q = r+rp = —1 (mod 3). One has
to analyze the C_ and the C| contributions. We shall sum as in Remark 5.1

5Note that because of the scaling of £ this does not imply ®"**(¢) < oV (&) (see also
Figure 2).
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above, with e =¢—a€cq(l—-1),a=1,y=qy € Iy, # =1, considering

Z* _ Z*
v€FI(Q)
g—a=1 (mod 3)
gr—ar=1 (mod 3)

The table in Figure 8 shows that the weights W, ;(t) do coincide for
(C—,r =1, =1) and for (C|,r = r, = —1), so they do for (C|,r =1, = 1)
and (C—,r = r, = —1). This eventually shows that the corresponding
contribution for r = r, = —1 has the same main term and error terms as
the one for r = r; = 1 (we just need to replace 3 by —3 and «a by —a, which
will produce the same main term and error size). As a result, we shall only
take r = rp = 1 and double the total contribution in the sequel.

6.1. The C._ contribution. The slits ¢ and ¢ are removed, while 2g,
Qk+1, Qk+2, 2q, and g + qx4+1 are not, because 2r = ripy; = 2r, = 2,
Tht2 = Tk + 7k+1 = 0 # 1 (mod 3). Denote by T'(e), respectively B(e),
the height of the top, respectively bottom, of the slit e with respect to
the top of the strip By, with positive downwards direction. Since B(qx+1) =
2wp, +we, < T(2q) = 2(wp, +we,) < B(gry2) = 3wp, +2we, and B(2q;) =
wp, — WA, —we, < T(qr1+qr) = wp, —wa,, the slits 2¢, gri2, gri1, qer1+qr
and 2¢; lock all channels By, C;, and Ag. Two cases arise:

Ok Ok+1 Ok
Ok+1
W +1
(_ 1’ ‘9) o qk-Lz (_ l? ‘9)

By Ws, By | W,
Ck Wey Oks2
W, Ck Wew—

Ao WAy 2 QWCk Ao W, Wg,

(-1 -¢) (-1.-¢) 20 W
e |
q
2q 2q

FIGURE 10. The case t € I, 1, (C—,r =, = 1), and wp, +
we, < w4, respectively wg, + we, > w4,

6.1.1. wp, < w4, (<=t = tanw < vg41). In this case By, is locked
by the slit qxy1, while A is locked by the slits gx11, qx+2 and 2g. Two
subcases arise:

(I) wg, +we, < wy, (=1< “T‘*'s) Then B(qr+1) < T(2q) < 2e, so
Ay is locked by the slits gx+1, grr+2 and 2q (see left-hand side of Figure 10).
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The widths of the relevant three subchannels of A are (from bottom to top)
2¢ — T'(2q) = 2(a + € — qt), we, and wg,, so W, x(t) is given by®

(6.1) W (1) =2(a+e—qt) - (24— Q)4 N g +we,(t) - (a2 — €Q)+ N g
+wp, (1) - (qr1 — EQ)+ A g+ wp, (1) - (qre1 — Q)+ N g

(II) wp, < wa, < wp, +we, (<=t > “T*E) Then B(qr+1) = 2wp, +
we, < 2e < T(2q) = 2wp, + 2w, , so Ap is locked by the slits g1 and
qk+2 (see right-hand side of Figure 10). The widths of the relevant two
subchannels of Aj are (from bottom to top) 2e — B(qr+1) = g1 — qra1t
and wp, , hence in this case

(6.2) Wi x(t) = W3 (0)

= (ak+1 — qes1t) - (qrr2 — Q)+ N g
+wp, (1) - (qr1 — Q)+ N g+ wp, (1) - (qrr1 — EQ)+ A g

6.1.2. wa, < wp, (<t > vr+1). In this case Ag is locked by the slits
qr+1 and By by qg+1, qr+1 + qx and 2qg;. Two subcases arise:

(D) wa, < wp, <wa, +we, (= 1 <t < =), Then B(2gx) <
0 < T(qg+1), so By is locked by the slits gx+1 and gxy1 + gx. The widths
of the relevant two subchannels of By, are w4, and T(qx+1) = qr+1t — Qk+1,
hence in this case

3
(6:3)  W,x(t) = Wi(®)
= wa () (@1 — EQ)+ N g+ wa,(t) - (qrr1 — Q)+ N gk

+ (qrt1t — ak+1) - (o1 + ax — Q)+ A -

(V) wa, +we, < wg, (<= 2= <t). Then 0 < B(2qx) < T(qr+1),
so By, is locked by the slits gii1, qx+1 + g and 2q;. The widths of the
relevant three subchannels of By are wa,, T(qr+1) — B(2qx) = we, and
B(2qx) = 2(gxt — ax, + €), showing that in this case

4
(64)  Wa(t) = W)
=wa(t) - (qrr1 = EQ)+ N g+ wa,(t) - (qrr1 — Q)+ N qx
+we, (t) - (qre1 + qx — Q)+ N qr + 2(qrt — ay +¢)

(21 — £Q)+ N qr.

6.2. The C| contribution. Since r = 1,7y, = 1,7 + Tp1 = 7 + Thy1 =
0 # 1 (mod 3), none of the corresponding slits is being removed. Moreover,
2rpi1 = 1 #Z 0 (mod 3), thus the slit 2gx11 is not removed either, and
the slits qr+2 = ¢ + qr+1, 9k + qr+1 and 2qi41 lock the central channel
(see Figure 11). Furthermore, ordering wg,, B(qx + qk+1) = 2wp, — w4,,

6Only Ao and Bj have to taken into account here because Ci has been already consid-
ered in the previous section.
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wp, + we,, and T'(qx42) = 2wp, + we, — w4, we find as in Subsection 6.1
that the corresponding weight W, (1) is given by’

( (wg, — wae)(qk + qrr1 — EQ)+ A Qe

Hwa, +we, — wa,) 2qk+1 — EQ)+ AN qey1 i wa, <wp, <wa, +wey,
we, (qx + qry1 — Q)+ N Gy if w4, +we, < wp,,

(wa, — wp,)(Ghr2 — Q)+ A Qi1

+(wg, +we, —wAay)(2qk11 — Q)+ A qry1  if wp, <wa, < wp, +we,,
(we (Ghv2 — EQ)+ A Qi if wg, +we, < wA,-

Equivalently, if we set

W) = we, () - (42 — EQ)4 A s

Ww(iz (t) = (ar+1 — qe+1t) - (Gev2 — £Q)+ A Qo1
+2(qt —a—¢€) (2qk+1 — Q)+ N Qr41

Wf,i () = (qk+1t — aks1) - (@ + Gr1 — Q)+ A Qi1
+2(ar — e = qt) - 2qr+1 — EQ)+ A 1

Wy(i); (t) :==we,, (t) - (qr + qry1 — EQ)+ A Grg1,

then W, ,(t) is given by

Wy(,k(t) if £ <S55 A g,
6 ‘ra
(6.5) Wy(,li(t) if ¢F5 <t < g,
W«EQ (t) i yesr <t <=,
WELt) if B2 v <t

6.3. Estimating the total contribution.

6.3.1. g1 > 2Q. Inthiscase k > 1 and tp_; < aqu_g < Va1 < “T“La. The

cumulative contribution of C. and C| when r =7, =1orr =7, = —1 and
arising from (6.1)—(6.5), is given by

) (1 ()
o W) + W)
Gl =2) Y [
Q@ 2
i1 qeeT, b te+t+1
qk+1>2Q

=G5V ©) +GY5?©) + G @),

7Only the contribution of Ci needs to be taken into account here.
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Ok
Ok + Ok+1

0,-1+¢)

Bk TWBK 20k+1

Wg, — Wa,]

Cx Mﬂo + We, — Wg,

Lﬂo 1Wy[0 é—'Q
0,-1-¢
( ) Ok+1 J

]

q Ok+2

FIGURE 11. The case t € L, (C|,r = rp = 1), wy, <
wpg, < Wy, +we,

with

- QZ Z* <(Qk+1 - 5Q)+ ANg+ (Qk+1 — fQ)+ A qk>
k=1qr€Zy
Qr+1>2Q

/tkl wg, (t) dt
y, tPHt+1

-1 92(a4¢ —qt)dt
G 222 S 20 £Q+/\q/ ( coliy

2
k=1 qr€lyk i+l

qr+1>2Q

113 222 Z (Qk+2—§Q)+AQ+(%+2—€Q)+A%+1)

k=1 quI
qrk+1 >2Q

/t“ we, (t) dt
by PHt+1

This quantity is estimated employing (5.6), (A.1) and (5.7). The cumulative

contribution of the error terms from those formulas to ), G?Ql) (&) is

“C T Yo LT gt )

I yeF(Q) k=1 I veFi(

L _ ol
szqq Q'

I veF1(Q)

Qqqk 1
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so they can be discarded. Following the outline from the end of Section 5
we find

(6.6) Gy () = mcm

with G1(£) as in (1.5).

6.3.2. grt1 < 2Q. In this case i < Yra1 < a’jp:s. Furthermore, when

k> 1 we have <7< B Yea1 < B2 <ty i gy < 2Q — ¢, and
tr < g (] if 2Q —q < qk+1 < 2Q When k = 0, the
only dlfference is that ’yl =t_1 < a%—o_s = LTE In this case the cumulative

contribution of C and C| arising from (6.1)-(6.5) when r = r, = 1 or
r=7r,=—11s

Glg (O =G5V © +-- + 6157 ),
with
ter IR + W)

elgte=2y X [, e

=1qg EIq k qk
qr+1<2Q

£

W) + W)

dt
t24+t+1 ’

122 :22 Z /ak

k= lquZ & Vk+1
qk+1<2Q

wer W) + W)

123 QZ Z / t2—|—t+1 dt,

k=0 quI &
qk+1<2Q q

ate y7,(1) ()
= t 2 +t+1 ’

€L,k
2Q*Q<Qk+1 <2Q

'7k+1W —|—W()()

Pl 22 I

€I,
2Q Q<Qk+1 <L2Q
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The total contribution of errors from (A.2), (A.3) and (A.4) to ) ; G; (12. 1)(f)
is

<Y Y z( )

T ~eF1(Q q°qk—14k
1 1 1 1

<Y (antgpstrrt 77)

T o) N9° Qed (aq)? g

Q

2 1 2 8
S5 X ataX Y e

ver@ 1 = 1

showing that they can be discarded in the sequel. The same holds for
2. 2. 4 2.

GYSP(€), .. G5V (€), where for GV (€) and GV (€) one uses the

fact that k takes exactly one value as a result of ¢x1 € (2Q — ¢, 2Q)].

To finally estimate G%g’l) &),... ,G(Iﬁﬁ) (£), we proceed as in Section 5.
Taking stock on (A.2), (A.3), (A.4), respectively (A.5), (A.6), (A.7), respec-
tively (A.8), (A.9), (A.10), respectively (A.13)—(A.17), respectively (A.17),

(A.18), (A.19), we find

(6.7) GYa7 () = %Gms), j=1,....5,

with Ga(§),...,G¢(§) as in (1.6)—(1.10).

7. Channels with removed slits. The case r =0

In this case 1, = £1. The Cp contributions for (r,r;) = (0,1) and
respectively (r,r;) = (0, —1) do coincide. The C._ contribution for (r,r;) =
(0,1) coincides with the C| contribution for (r,7;) = (0, —1). We shall sum

as in (5.2), considering

YEFI(Q)
g=a (mod 3)
qr#ak (mod 3)
It suffices to only analyze the Co and C_ contributions of (r,r;) = (0,1),
allowing at the very end [ to take both values —1 and 1. The final result
will express the Co contribution when (r,7) = (0, £1), and respectively the
sum of the C contribution for (r, ;) = (0, 1) and of the C| contribution for

(r,rg) = (0,—1).

7.1. The Co contribution. The situation is shown in Figure 12. Two
cases arise:
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7.1.1. wa, < wp, (<= t > Yk41). In this case k > 1. Since y,41 <
tr—1, we must also have qpy1 < 2Q). The channel Ay is locked by the slit
Qi1 and Wo (1) = way(t) - (qe+1 — £Q)+ A ¢, with contribution

=1 a4, (t) dt
Z Z (qr+1 — 5Q+/\/ Zaigl

k= ]_qu Yk+1
Qk+1<2Q
estimated in Subsection B.1.1 as
(7.1) Gy (6) = %G (),

where G7(§) is as in (1.11).

7.1.2. wy, > wp, (<=t < Ye+1) and £Q < gr+1. In this situation
we have

Wo k(1) = wa, (1) (gr+1 — Q) + (wa, () — wp, (1)) g,
with contribution (according to whether 1 < tx—1 or tx—1 < Yg+1)

2.2
G
> Vi+1 te—1
-> ¥ pasys
I e
k=0 qn€l,) U t +t+1 T aer, t —i—t—i-l
EQ<qr+1<2Q qk+1>(£V2)Q

Employing (A.8), (A.9), respectively (5.6), (B.2) and the procedure de-
scribed at the beginning of Appendix B2, we find, with Gg(&) as in (1.12),

7.2 G2 () = L gg(9).
Ok Ok+1
(0 8) Ok+2
By 1
Ck | chk Chs3
? Wag,
Wﬂo + WCk :
Ao i IWCk
(O’ _‘9)
g9 2q éQ

FIGURE 12. The case t € I, 7 = 0, 1, = %1, Co, wp, <
Way, o =2, N =1
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7.1.3. wa, > wp, (<= t < Yk+1) and £Q > gi+1. Consider the
integer N for which gryn < €Q < qr+n+1, that is 1 < N := FQT*%J. We
will keep N > 1 and ¢ < @ fixed, and sum over

y=ar € Jgn = (£Q — (N +1)q,£Q — N¢].

| wagtwe — | ar—agxt
Let ng = LWJ = thﬁ > ]_7 SO Vk+ng+1 <t < Yk+ng and

B(qk+ny) = ws, + no(wp, + we,) < 26 < B(Qktng+1).- This shows that
the channel Ay is locked by the slits qx+1,- - -, Qhtngs Thtno+1- Suppose that
N > & Then ¢ < £Q — Nqg < N(Q — q), showing that ¢z ny < NQ and
V4N < tg. Song < N and £Q > quyN = Qrtno+1, Showing that in this case
W, kn(t) =0, Vt € I, ;. It remains that N < £. The following cases arise:
(I) B(qk+N) <2< B(qk+N+1) (<:> Ye+N+1 < t < ’7k+N)- In this case
1
(7.3) Wan () = W () = (22 = B(geen)) (grn+1 — €Q)
= (artN — Qs NE) (e N1 — EQ).
(II) B(qk+n+1) < 2¢ (<=t < Yg+nN+1). In this case
2
(7.4) W (t) =WJ3(0)
= (wg, (t) + we,, (1)) (gren+1 — £Q) + (26 — Blaran11))q
=1- fQ(’LUBk (t) + we, (t))
We find
2.3 2.3.1 2.3.2
6156 = 65 © +6F5 Y ),
with
(1)
Wv,k,N(t)
Yk+N] 2 4t+1

231 Z Z Z /

1SN <€ k=0 qi€Z, NTy n * 11Nkt N+1

232 Z Z Z /

1SN<E k=0 g1 €T, xNTy, N Iy kN Vet N 41]

2
Wy(,lz,zv(t)
t2 +t+1

where the interval I ; N (Ve N1, Ve+N] is given by

0 if gp <N(Q—¢q)or Q@+ (N+1)(Q—q) <,
(tks Ve+N] if N(Q—q) <aqr < (N+1)(Q—q),
(Vean+1,Vean] (N +1)(Q —¢) < g < Q+ N(Q — q),
(Vkan+1ste-1]  HQ+N(Q—¢q) <qr <Q+ (N +1)(Q —q),

and the interval I, ; N (7, Vk+N+1] is given by
0 if g < (N +1)(Q—q),

(tes Veanvs1] H(N+1)(Q—q) <@ <Q+ (N +1)(Q—q),
L ifQ+(N+1)(Q-q) < g
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Summing as in (5.2) and employing (B.3), (B.4), (B.5) and Lemmas 3.4
and 3.2, then changing y + N¢ to y and making the substitution (g,y) =
(Qu, Qw), we find

(7.5) Gl (6) = LGy (©),

with Gg(€) as in (1.13).
In a similar way® we infer from (B.6) and (B.7), with G1o(¢) as in (1.14),

(7.6) G232 (e) = SLauole).

e T
The innermost integrals in (1.13) and the first one in (1.14) can be nonzero
only when N >¢ -1, —2<N<foré—2<N<&-1.

7.2. The C_ contribution. In this case we shall analyze the contribution
of the channels By, and C. All slits gg4p, n € Z, are removed, while neither
g nor any of 2g; + nq = qx + qk+n, n € Z, is being removed. Since T'(2qx) =
—2wy, — 2we, < 0 and B(2q; + ng) = wp, — w4, — we, + n(wg, +we, ), it
follows that By UCy is locked exactly by two of the slits 2q; +ng, n > 0. To

wagt2we, | | aptap—1—2e—(qutap—1)t
ws, Twe, | = 7i—a > 0. We

have 0 < B(2qx + noq) = wp, — w4, — we, + no(wg, + we,) < wg, + we, -
The situation is described in Figure 13. Consider also

make this precise, let ng := [

ag + agqn—1 — 2
Gk + Qk4n—1

€
(7.7) Ao 1= Ny asn— oo,
SO )\k,no—i-l <t< Ak,n()' Note that )\071 2t 1 =7 > )\072 and )\k,O >t
when k > 1, showing that for every k > 0 the intervals (Mg 41, k] cover
I, ;. The following cases arise:

7.2.1. 0 < B(qu =+ noq) < wg, (<:> )\k:,no-l—l < t < '7k+no)-
In this case C is locked by the slit 2¢gx + (ng + 1)g and By by the slits
2qr + 109 = qk + Qryno and 2q; + (o + 1)¢ = @k + Gring+1- The widths
of the three relevant subchannels of By, U Cj, are (from bottom to top) we, ,

ka - B(2Qk +nOQ) = ak+n0 - Qk+n0t7 B(QQk +WOQ) == ka - (ak+n0 _qk+n0t)7
and so in this situation W, 1 (t) is given by

= we,, (t) - (@1 + Tetno — Q)+ A Qo1 + w5, (t) - (G + Qhno — EQ)+ A i
+ (@ktno = Trtnot) ((Qk+1 + Qitne — EQ)+ Nk — (G + Qrgne — Q)+ A Qk)-

8But replacing y + (N + 1)g by y
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Ok 20« +q
20k + 29
£Q

(%))

Bi wg, [+ we,

Cx

Wg, + W,
ﬂo Ok+1 B C
(O’ _8) qu + 3q
Ok+2
q Ok+3

FIGURE 13. The case t € I, r =0, 1, =1, C, ng = 2,
wg, < B(2qk +noq) < wg, + we,

7.2.2. wp, < B(2qrx + noq) < wp, + we, (<= Yitno <t < Akyng)-
Then By, is locked by the slit g, + gr4n, and Cj by the slits g + gr1n, and
Gk + Qk+no+1- The widths of the three relevant subchannels of By U Cy are
wg, +we, — B(2qx + n0q) = we,, — (Qrtnet — kyng)s B(2qk +n0q) — wp, =
qk‘-i-not - ak+n0a kaa S0 W’Y,k‘(t) equals

2
WV(, ,zm (t)

= we, () (qet1 + Qring — EQ)+ N Q1 +wp, () - (@ + Qhgny — EQ)+ N @k
- (Qk-i-not - ak‘—l—no)

: ((Qk+1 + Ghing — EQ)+ A Q1 — (G + Qotng — EQ)+ A Qk+1)~

The following five cases arise:

(I) qr < (n — 1)(@ — q). Then /\k,n < ty, thus I%k N ()\k,n+17 )\k,n] = 0.

(II) (n—1)(Q@—¢q) < aqr <n(Q—q). Thenn > 2 and ypypn <t < App <
tx—1 in both cases k£ > 1 and k£ = 0. The corresponding contribution is

0o 00 Aew WP (t)
(2.4.1) . * v,k,n
SPRGED 9 DENEEED SN R v
n=2 k=0 ar€Tqk tk
(n=1)(Q-q)<gr<n(Q@—q)

Employing (B.8)-(B.11), Lemmas 3.8 and 3.3, and the change of variable
(¢,y) = (Qu,Quw), we find (according to whether £ = 0 or £ > 1), with
G11(§) as in (1.15),

(7.8) Gl = %Gn@).
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(II) n(Q@—¢q) <qx < Q+n(Q—q). Upon \ga <y1 =11 < A1 = %7
we see that I,y N (Aknt1, M) = Mkt Yon] U (Yean, Akn) when k> 1
and when £ = 0 and n > 2. When k = 0 and n = 1 this interval coincides
with (Xo,2,71]. The cumulative contribution is thus

2.4.2
6Pa 2@
2
R 5 /mn w ) (@) dt+/xk,n w2 () »
- 12 441 21+ 1
n=1k=1 ar€Tyk Akynt1 = +t+1 Vk+n 2+ttt

n(Q—q)<qr<Q+n(Q—q)

wl (@) o W2 (1)
7,0, 7,0,
+Z Z (/AO +1t2+t+1dt+/% t2+t+1dt

n=2 q e]’
q’>n(Q—q)
« [N Wyg 1(t) (2.4.2.1) (2.4.2.2) (2.4.2.3)
2 A P 1 U= O+ G (O + GO
q’GZq’o 0,2

For fixed k we have qé:? <n< quq so n can take at most 1+ [Q("qu <

QZ—E?q values. Employing (B.12)—(B.15), respectively (B.13)—(B.16), respec-
tively (B.17), (B.18), (B.19), we find

(7.9 GEyYe = malm GP*P (o) = malgw
G%lm)(f) mGM(f)

with G12(€) as in (1.16), G13(§) as in (1.17), and G14(&) as in (1.18).

(V) Q+n(Q—q) < @k < @+ (n+1)(Q—q). Then k > 1 and
(n+2)Q — gr+nt1 < Q —¢. In this case Iy ;N (Aknt1, M) = (Ment1, th—1]
and ty—1 < Yg+n, s0O the corresponding contribution is

) b W ()
243 v:kn
>y > [
n=0 k=1 A€,k Ak,nt1
Q+n(Q—q)<gr<Q+(n+1)(Q—q)

Note also that n can only take the value n = L%J for each k. Employing
(B.20), (B.21), (B.22) we find, with G15(£) as in (1.19),

(7.10) GO = {5 Gs(6).
V) @t 2 Q+ (n+1)(Q —q). Then k > 1, A pq1 = tp—1 and I, N
()\k n+1, )\k n] = Q)
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8. Channels with removed slits. The case 7, = 0

The main term and the error term of the Cop contribution of (r, ) = (1,0)
and of (r,r;) = (—1,0) coincide, because the corresponding weights are given
by the same formulas and one only has to replace the summation condition
g—a=1 (mod 3) by g—a = —1 (mod 3). The same thing holds for the C._
contribution of (r,7;) = (1,0) and the C| contribution of (r,7;) = (—1,0)
(see Figure 8). So it suffices to take (r,ry) = (0,1) in the sequel, doubling
the Co and the C_ contributions. This time we consider

= X
YEFI(Q)
g—a=1 (mod 3)
qx=ay, (mod 3)
8.1. The channel Cp. The slit g; is removed, while ¢ + ngg, n > 0, are
not, as shown in Figure 14. The following three cases arise:

Ok 20k 30k
£Q
0,¢&
( ) IWﬂO + Wey
Wg, + We, B lwﬂo + W,
Wj{o
Ck Wew
A
(Ov _8% q + 3qk
q+ 20k
Ok+1

q

FIGURE 14. The case t € Iy, . = 0, Co, wa, < wp,,
ng = 2, N=1

8.1.1. w4, > wp, (<=t < Yg+1). The channel By, is locked by the slit
Qi1 and W, k( ) = wg, (t) - (qu EQ)+ A g, with contribution

Ye+1

GP)(e / AT
k
Qk+1<2Q Qk+1>2Q

Employing (A.8) (which also holds for £ = 0) and (5.6), we find, with G16(€)
as in (1.20),

(8.1) GP)(6) = me(f)
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8.1.2. wa, < wy, (== t > Yit1) and £Q < gr41. In this case
k 2 17 qk+1 g 2Q, and

Wok(t) = wa,(t) - (qer1 — €Q)+ A qr + (wp, (t) — wa, (1)) g,
with contribution

GP(€) = / dt.
= le k1 t2+t+1
§Q<Qk+1
Employing (B.1) and (C.2) we find, with G17(§) as in (1.21),
(8:2) G (6) & ==Gn(S).

¢(2)

8.1.3. wa, < wp, (<=t > qr+1) and qr+1 < £Q. Again k > 1 and
qrk+1 < 2Q. Consider the integer N for which ¢+ Nqr < £Q < g+ (N+ 1)qp,

_ | @ — | WBptWe, | | gl=a
that is 1 < N = { o J < €. Consider also ng := LWAI;JWCZJ = [aqutJ =
1, and let

a + nag
q +ngk

hence Ay <t < Apmot1 and T(qg + (no + 1)gx) < 0 < T(q + nogx). The
channel By is locked exactly by the slits

(8.3) A 1=

)

/" Ve asn — oo,

Q1 =G+ G, - -+ 4+ 10qk, ¢ + (1o + 1)gy
(see Figure 14) and W, ;(t) is given by
0 if N > ny,
(ws, + we, —no(wa, +we,)) (¢+ (no+ 1)gk — €Q)  if ng =N,
(wa, +we,) (¢ + (N +1)qx — £Q)
—|—(ka +we, — (N +1)(wa, + wck))qk if N < ny,
or equivalently by

0 ifte I%k N (tk, )\ij],
(8.4) Wy(,llz,N(t) ift e I%k N ()\k,N; Ak,NJrl]?
WV(,Iz (t) ifte I%k N ()\k,NJrl; tkfl],

where

Wy (t) = (@1 + Nay — Q) (¢ + Naw)t — a — Nay),

W) =1 - £Q(way () + we, (1)).
We shall start by keeping N > 1 and ¢ < @ fixed, and summing over
§Q—q £Q—q
N+1 N

Since A\p1 = Vg1 > tr and v, > t_1 for all £, nonzero contribution only
arises from one of the following two subcases:

yZlej(L
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(D) Ngp—Q) <Q—-q<(N+1)(qgp — Q). Then t}, < ypq1 < Mgy <
tk—1 < Ak, N+1 and the contribution is

tooy WY
(331) kN dt
SDODIND DI
ISNKERk=1  qi€Zy NTgN
Q+J%+‘{<qk<Q+QT

In this case N can only take the value N = { Q:éJ for fixed k. Employing

ak
(C.3) we find, with G15(§) as in (1.22),

8.5 GE3D ey = TL_qi5(0).
( ) LQ (‘S) C(Z) 18(5)

(II) (N +1)(qr — Q) < Q —q. Then t}, < Vpy1 < Mgnv < AeN+1 < o1
The contribution

G ()

00 . AeN41 W() e 1 W(z)t
DI DI D I =BT L L
1SN<E b=1g1 €4 1NTg v \” N b Nepvpr B
w<Q+ 34

is estimated upon (C.4) and (C.7) as

(8.6) G5 7(6) = ZGhal8).

’ ¢(2)
with G19(€) as in (1.23). In this case N € {[£] — 1, [&]} suffices as a result
of the inequality £ —u < N + 2 — u.

8.2. The channel C__. In this case all slits g+ngy are removed, while slits
2q+nq, n > 0, are not. Exactly two of the latter ones lock Ay UCg. Letting

e wp, +2wey | | ap_o—2e—qp_ot
0= |wagtuwe, | — ap—qyt

2(wp, + we,) — no(wa, + we,) < 2¢, so Ay UCy, is locked exactly by the
slits 2q + nogqr and 2q + (ng + 1)gx. The situation is described in Figure 15.
Consider also

J > 0, we have wg, < T'(2¢+ nogx) =

2a + na 2e a+ na
(8.7) Phom o= 2a + nay + 2€ and v, = + k
2q + ng q + ngx
When g, < 2Q, pgn /" Y > tk—1 as n — oo and pgp = aTJrE < tg—1,

VE > 0. We also have py no—1 <t < pign, and the following two situations
can arise:

(I) wp, < T(2q + nogr) < wg, + we,, (<= fhng—1 < t < Vgp,). Then
no = 1 and the widths of the relevant three subchannels of AyU B, are (from
bottom to top) wa,, wa, + we, — T(2q + nogx) = a + nogr — (¢ + noqk)t,
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T(2q+noqi) —wp, = we, — (a+n0ak — (q+n0qk)t). This yields that W, 1 (%)
is given by

1

WAL o)

=wa,(t) - (29 + nogr — EQ)+ N g+ we, (t) - (qr42 + 10 — EQ)+ A Qrt1
— (@ + noax, — (g + nogx)t))

: <<Qk+2 +noqr — £Q)+ A qig1 — (2¢ +nogr — £Q) 4 A Qk+1)-

Ok 20 +3
q+ 2k g+ o0k
(_ls 8)
Bk qk+l P’ﬂo + ch
Ck
W, + W,
Ao Ck A [Wﬂo + We,
(-1-2) 20 + 30k
£Q B
29+ 20«
q
2q 29 + Ok
FIGURE 15. The case t € Iy, v = 1, 1, = 0, g1 = —1,
CH, ng = 2

(II) wp, +we, < T(2¢ 4+ nogr) < 2¢ (<= Vppy < t < k). Then
ng > 0 and the widths of the relevant three subchannels of Ay U C;, are:
2e—T(2q+noqr) = wa,— ((g+nogr)t—a—nogr), T(2q+noqr) — (ws, +we,) =
(g + nogr)t — a — noay, we,. This yields that W, ;(¢) is given by

(2)
W%k‘mo (t)
= way(t) - (20 +noqr, — £Q)+ N g+ we, (t) - (ar+2 +10ak — Q) A Grra
+ ((g + nogr)t — a — noay,)
: ((Qk—i—Z +nogy —€Q) , A g — (2¢ +nog, — £Q)+ A Q)~

The following three cases arise:

8.21. ng =0 (= t< aT"'E) In this case Ap is locked by the slits 2¢

and gg42. One sees that W, 1(t) = Wfk)o(t) When g2 < 2Q we have

‘ITJFE < t with zero contribution, so we must take qx11 > 2@ — ¢. When
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Gr+1 > 2Q we have k > 1 and “—JFE > tp_1, with contribution

tre—1 W
GS~3'41 Z Z / 'yk[) dt.
,Q 2
P A te+t+1
Qr+1>2Q

Employing (5.6), (5.7), (5.9) and ¢t — a = wg, (t) + wc, (t) we find, with
Goo(€) as in (1.24),

(8.8) Gy () = mGzo(f)

When 2Q — g < qx11 < 2Q we have t; < “;rg tr—1 and qi takes exactly
one value. The corresponding contribution

ate W(2)

342 q 'y7k;70(t)
——dt
S W

qr €L, k
2Q Q<Qk+1 <2Q

is estimated upon (A. 11) (A.12), (A.15), (A.16) as

89 GO Ben@. [ au [ awr g
' 2
with G91(&) as in (1.25).

8.2.2. ng > 1 and k = 0. Thenuo71:2al+7a+,25>’yl—t 1—V01>a+€

2q+q
with contribution
3 4. 3 Z /71 Ww 0.1(
a-—T+¢& 2
>Q/2 L 1
q'>2(Q—q)
Employing (C.8), (C.9), (C.10) we find, with Ga2(§) as in (1.26),
3.4.3
(8.10) G (€) = 2 Gan(©):
¢(2)
8.2.3. ng > 1 and k > 1. Note first that pz, < t; when g < 2(3:1‘1)
and ty—1 < fgn—1 when g > Q + %. In both cases I N [tkn—1 tk,n)
has measure zero, so we shall only consider gq; € [Q(T?Hq ,Q+ Q= q]. The

following four subcases arise:
(1) 72(3:1'1) < q < (Q ) A (Q + n+1) Since g, > @ we have @) < 2(%_'1),

son =1and g < % Furthermore pro <t < Vg1 < pe1 < tp—1 and the
contribution is

) (2)
STAIGED DD DU (At 0 WY [t U
2 2
k=1 quI ,k7q<Q/2 23 t +t+1 Vk,1 t +t+1
Qk@(Q—q)A?’QT’q
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Employing (C.11)-(C.14), we find, with G23(§) as in (1.27),
4.4
(8.11) Gf’@ GE =2 )G23(§)

2 —
(IT) @ <Q+ n+f Then t, < prn-1 < Vkn < Phn < th—1,
with contribution

3.4.5
Lo
0o 00 1 2
* Vk,n W,g,gn(t) fke,n Wy(ﬁn(t)
=, > S dt + 2%
e oy 21 e PHE+1
2(Q 2Q-a) oo <Q+2+1
Employing (C.15)-(C.19), we find (according to whether n =1 or n > 2)°
3.4. cr
(8.12) Gy (©) ~@ )Gz4(§)
with G24(§) as iIl (1 28)
(ITI) Q@ + n+1 e < @. This gives n = 1, ppo < th < Vg1 =
Vel < o1 < pg1, and
(1) (2)
v W t te—1 W
346) Z Z / 27,k,n()dt+/ 2'ykn()dt
= o Pt ey A1

3Q 4<qp<2(Q—q)

Employing (5.7), (5.9), (A.9) and (C.20) we find, with Ga5(¢) as in (1.29),

(8.13) Gy = 25(6).

cr
r——G

¢(2)
(IV) (Q 2 v (Q + n+1) <qr <Q+ @. For fixed k there is only one

value n can take, namely L Q=g J We have t, < pipn—1 < Vi <tp—1 < flkn

and

3.4.7
Gio ™€)

ales 1) 2)

% Ve W t tk—1 W

Xy X ([T e e

k=1n=1 a€Zq 1k Hk,n—1 +i+ Vion +t+

20-0)y (Q+ 94 ) < <Q+ 252
Employing (C.21)—(C.25) we find, with Gos(€) as in (1.30),
(34.7) j o\ ~, CI

14 ~ L .

(814) 6376 = 5 Gm(©

INote that 2Q -9 < g <Q+ % implies q > %
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9. Channels with removed slits. The case g1 = 0

In this section we consider

X=X
YEFI(Q)
g#a (mod 3)

dk+1=0k+1 (mod 3)
We shall actually sum as in Remark 5.1 over t = q¢—a € q(1 — 1), z = +1
(mod 3), ¥y = qk+1 € Zgk+1, B =0, zy = 1 (mod 3¢). The contributions
arising from = 1 (mod 3), respectively x = —1 (mod 3), will have the
same main term and error.

9.1. The channel Cp. In the formulas for Co and (r,7) = (1,—1), re-
spectively (r,7;) = (=1, 1), the corresponding main term and error coincide.
Hence, we only take (r,rg, rr+1) = (1, —1,0) and double its Co contribution.
The slits ¢ + ¢qx+1, | > 1, are not removed and lock the channel Cj (see
Figure 16). The following two situations arise:

Ok Ok + Ok+1 Ok + 20k+1
(0,88) £Q
k
= T\Nﬂo — Wg,
WCkI Ck $Wj[0 — WBk $Wﬂo V;Bk
Ao q qu+1 Ok+1
(0’ _ 8) k+1 B
~ q+ 3qk+l
2
0+ Ort Qg+ 20k+1

FIGURE 16. The case t € I, p, 7 = &1, 1, = F1, rp4q1 = 0,
Co, WA, > WS, N=1,nyg=2

9.1.1. wa, > wn, (<=t < ~Yk+1). The analysis is split in two cases:
(I) €Q < gr+2- Then (since wy, — wp, > we, <=1 < “TJ“E) we find

W(l)(t) = we,, (t) - (qrr2 — EQ) A qry1 if t < aT*E,
Wk (t)= Wv(? (t) == ((way(t) — w5, (1) - (Ghra — EQ) A qrra
+(we, (1) — wa, () + wp, (1)) Gt if ¢ > ot

e When qr11 > 2Q, we have k£ > 1 and tr—1 < e < ‘IT'HS, with
contribution

0o D
« te—1 W t

4111) / 2%1«() gt

Z 2 o 2t

=1 qrr1€Zgk+1
ar+1>(6Q—q)V2Q
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estimated upon (5.7) as

(9.1) Gl €)= 75;Gn(0)

with Go7(€) as in (1.31).
e When gi+1 < 2Q) we have “T"'E < Yet1 < tg—1 and 1 < “T"'E = Q42 >
2@) for all £ > 0. In this case the contribution

Gig ()
o0 ate W(l)(t)

* VE+1 W(z)t
- 3 / P LA dt+/ T 20y
4, TtHt+1 ate te+t+1

k=0  qr+1€Zgk+1
2Q2q1+1>(§V2)Q—q

) i W3 ()
v,k
———dt
2Q—q2qr+1>6Q—q

is estimated upon (A.15), (A.16), (A.18) (which also holds for k = 0), (A.9),
(A.20), (D.1), (5.4), as

(9.2) Gl 7€) =gy G(©)
with Ggg(f) as in (1.32).

(IT1) £€Q > qgy2. Let N be the unique integer for which ¢ + Nggy1 <
€Q < q+ (N +1)qry1 = qrr2 + Ngy1, that is 1 < N = {%J < & The
corresponding range of qr41 is

§Q —q £Q —q
N+1' N |-

Y=Qqr+1 € \7q,N = <

We take ng := { e J — [a’“*ﬁZE*q’“*ltJ > 1. Then t > “T*'E. We only

WAg—WB, Of+1—qr+1t

need < Y41, that is g1 < 2Q. In this case we take

ate
q
Naj11 — Gp—1 + 2€
(9.3) Ain 1= * S Y1 <tp_1 asn — oo,
ngk+1 — gk—1

hence Mgy <t < Agng+1 and T(q+nogr+1) = wp, +we, —no(wa, —ws,) =
wp, > T(q + (no + 1)qk+1). Thus Cy, is locked by the slits ¢ + gx+1,...,q +
(no + 1)gr+1 and W, (t) = W, i N (1) is given by

0 if ng < N,
(we, — N(wa, —wg,)) (¢ + (N + Dgrgr — Q) if ng = N,
(wa, —wp,) (g + (N +1)gri1 — £Q)

+(w0k — (N + 1) (wa, — ka))QkJrl if ng > N,
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0 ift e I%k M (7, )\k,NL
1k),N(t) ifte I%k N ()\k,Nu /\k,N—H]a
W"E,Qk) (t) ifte I%k N ()‘k,N-‘rla ’Yk+1]7

where

W (@) = (q+ (N + Dt — €Q)
((Ngeg1 — qr—1)t — Nagsq + ag—1 — 2¢),
2
WD) = we, (Dars1 — (wa (1) = wp, (1) (6Q — q).
The following three subcases arise:

(L) grr1 < Q+ &% Then Myvi1 <t and Wou(t) = W),
Vt € (tk, Yk+1]), with contribution

Vk+1

412)
Z Z Z /k t2+t+1dt

1KN<E k=0 g<eQ
Q+1€Zg k+1NTg N

%-«-1<Q+%
Employing (5.4), (D.1), (A.9) (which also holds for k = 0), we find

(9.4) G412 (6) = LG (8),

T @
with ng(f) as iIl (1 33)

(Hg) Q + +1 < qrr1 < Q+ QT In this case \; NSt < Ak N41- The
contribution

Go™(©)

00 i\ 1) (2)
O DD S R
2 2
ISNSER=0  q<€Q b i+l Mo T+
U+1€2q,k+1NTg,N
Q+%<%+1<Q+Q§q

is estimated upon (D.4), (D.5), (D.6), (D.9), with G30(¢) as in (1.34), as

(9.5) Gy () = %G%(@-

(II3) @+ Q]; < @r+1 < 2Q. In this case t; < A\; n. The contribution

G

1) 2)
SIS DU =R L
5 D)
1<N<E k=0 4<€Q oy AT M £ Tt
%+1€Iq k+1NTg, N

Q+< “FL<qp+1<2Q
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is estimated upon (D.4)—(D.7), with G31(&) as in (1.35), as

9.6 GA1(g) = Ly (9).
(9. O 56n(©
9.1.2. wy, < wp, (<=t > Yr+1). In this situation £ > 1 and 41 <
tk—1, 80 qpr1 < 2Q). Two cases arise:

(I) €Q < qx. Then W, 1(t) = we, (£)qkt1, Vt € (Vit1,tk—1], with contri-

bution
4 2. 1) / gt
Z Z —_— t2 + t + 1

k=1 q+£Q<qr+1<2Q
Employing (C.1) we find, with G32(€) as in (1.36),

(9.7) GO = 5 )G32<£>

(IT) £Q > qr. Consider the unique integer 0 < N = FQ;%J < € for

dk+1
which gx + Ngpy1 < €Q < g + (N + 1)gk+1 = G2 + Ngk+1, so the range
of gr41 is

_ € T (89t £Q+q
Y= dqk+1 q,N - Nit2 N+1|°
This time we take ng := {LJ = LMJ >0 and
0-= wE, —W A, qk+1t—ak+1 =

nag4+1 +ap—1— 2¢e
NQk+1 + qr—1

hence )‘k,no-f—l <t< )\k,no and B(Qk + nOQk+1) = Wp, + nO(/ka - w.Ao) <
wg, + we, < B(qk + (no + l)qu) Thus Cp is locked by the slits ¢ +
Qhet1s- - Gk + (0 + 1)qry1 and W, () = W, n(2) is given by

0 if ng < N,
(we, = N(wp, —wa,)) (ar + (N + Dgry1 —€Q)  if ng = N,
(wp, — wao) (ar + (N + 1)gr1 — Q)

+(wck - (N + 1)(w6k - on))QkJrl if ng > N,

(9.8) Npn o= N\ Vka1 >t asn — 0o,

or equivalently
0 if t € (Ag,n,te—1)s
Wfs?k),N(t) if t € (Ak,N41, Ak,
Wq(flk) (t) ift € (Vag1, Me,N41ls
where
Wﬁi (@) = (ar + (N +1)qes1 — €Q)
(Naggr + a1 — 28 = (Ngr1 + qe-1)t),
W) = we, ()arer — (ws, (£) — wa, (5) (EQ — ai).
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Since Ao = tx—1, the corresponding contribution is given by

4.2.2
Gi5 () =
o0 A ®3) A 4)
Sy ([ e [ R
2 2
0SN<L k=1 Q1 <2Q Ak N1 i+l Ve+1 =+t +1
Q+1€Zq k+1NTg, N

Employing (D.12), (D.13), (D.14) we find, with Gs3(¢) as in (1.37),

(9.9) Gl (€)= 2 Ga(©):

: ¢(2)
9.2. The channel C__ when r = 1 and r;, = —1. The contributions of
(C—,r =1,r, = —1) and of (C|,r = —1,7, = 1) have the same main and

error terms, so we shall consider below the former situation and double the
result. The slits ¢ + ngrp+1 are removed, while 2¢q + ngg1 are not, n > 0
(see Figure 17). Note that B(2q) = 2(wp, + wc, ) > B(qr+1) = we, + 2wp, .
Again, two cases arise:

9.2.1. wa, < wp, (< t > vr+1). The slit gi11 locks the channel Ay
and W, () = wa,(t) - (qrr1 — Q)+ A g We must have v41 < tj_1, 50
k> 1 and gr11 < 2Q. The corresponding contribution is

te—1
431 w4, (t) dt
- Y e >+Aq/7 Sl

k=1qr41€Zq k+1 k+1
Qk+1<2Q
Employing (D.2) we find, with G34(§) as in (1.38),
(9.10) Gl (€)= 2 Gu(©):

¢(2)

9.2.2. wa, > wn, (<=t < vk41). Consider first the subchannel of Ay
of width wpg, locked by the slit gz;. Its contribution is

(4 0 Z Z (qr+1 —EQ)+ A (I/ml w5, (1) di

t24+t+1
k=0 qr4+1€Zy k+1 b
Qk+1<2Q

3 * tk—1
> D (Qk+1—£Q)+/\q/ M_

k=1 qr11€Zq k41 b

Qr+1>2Q
Employing (A.8) and (5.6) we find, with G35(¢) as in (1.39),
(9.11) Gl (€) & <5 G (©):

¢(2)

The remaining part Ay of A (of total width w4, —wg, ) is locked by the
slits 2q + nogr+1 and 2q + (no + 1)gx+1, with ng uniquely determined by
2e > 2(wp, + we,) — no(wa, — wg,) = 2wp, + we,, or equivalently ng =
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Ok 2qk+1 3qk+1 4Qk+1
(—l g) Ok+1
’ q+ 4(4k+l
B + 3 B
‘ q+ 2qk+1 q G2
Ck Ok+2
Wg, é:Q B
Wf[g - WBk¢ﬂ 1 : = — ;
(_ 1, _8) Wﬂo _ VV.’Bk $ Ao Bk¢
) 20+ 4q
k+1
20 Qi3 = 20 + Ot 20 + 204sr 20+ S0ke1 *
FIGURE 17. The case t € Iy, r = 1, rp = —1, rpy1 = 0,

C, wy, > wg,, no =3

{ bl J = [a’“‘l_k_qk‘ltJ > 0. The widths of the relevant subchannels

WAy —WS, ap+1—qr+1t
(from bottom to top) are

2e = 2(wp,, + we, ) + no(wa, —ws,) = (no + L)agys —ap—1 +2¢
— ((no + 1)qr41 — qr—1)t
and we, — no(wa, — ws,) = (NoGr+1 — qr—1)t — NoGx41 + ap—1 — 2. The
following two subcases arise:

(I) ng=0(=t< “T‘*'E) From t; < aT‘Fa we infer gxi1o > 2Q. In this
situation

Wi ko(t) =2(a+e—qt) (29 — §Q)+ N g+ we, (t) - (2¢ + qry1 — Q)+ N g,

with contribution (gg11 > 2Q <= tx_1 < Yki1)

4.3.3
Gia )<5>
%kO ot W
dt dt
22+t+1 +Z Z / t2+t+1
k=0 qpi1€Tg 541 0k k=1qk+1€T4 k1 * Tk
2Q- Q<Qk+1<2Q Qk+1>2Q

Employing (A.14), (A.15), (A.16), (5.7), (A.1) we find, with G3s(§) as in
(1.40),

(9.12) G () 2 L Gag ).

T @
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(II) np=21(<=t> “;5) From “;“3 Vi1 we infer gp11 < 2Q. Taking
Ak as in (9.3) we obtain, when t € [Ag ng, Ak ng+1), that W, () is given by
((no + Dags1 — ag—1 + 2 — ((no + 1)grs1 — qk_l)t)

(29 + nogr+1 —EQ)+ N g
+ ((nogr+1 — qr—1)t — noags1 + ap—1 — 2€)
“(2¢+ (no + 1)qr41 — SQ)+ A

Ordering A ngs Akno+1 and tx, the corresponding contribution takes the
form

G349 ¢y _ i i Z Akt Wokn(t) (t) di
Q)= b 24t+1
n=1k=0 A+1€Lg k+1
Q+ g+f<Qk+1<Q+ Q=a

>‘k: n+1 W )
dt
* E: A ﬁ+¢+1
Qe+1€2q,k+1

Q+99<q41<2Q

Employing (D.8)—(D.11) we find, with G37(£) as in (1.41),

(9.13) GE,‘}SA) (6) mGz)ﬁ(ﬁ)

9.3. The channel C.. when r = —1 and r, = 1. The (C_,r =
—1,7, = 1) and (C|,» = 1,7, = —1) contributions have the same main
and error terms, so we shall consider below the former situation and double
the result. This is analogous to Section 9.2, only that this time the slits
qr + nqr+1 are removed, while 2q + nqi41 are not. Two cases arise:

9.3.1. wp, < w4, (<=t < Yr+1). The slit gry1 locks the channel By
and W, ,(t) = wg, (t) - (qr+1 — fQ)+ A qi. The contribution

44 1) e wp, (t) dt
Z Z (qh+1 — €Q)+ A Qk/ m

k=0 qr+1€Zy k41 tk

Qo1 <2Q
> * =1 g, (t)dt
+> > (Qk+1—§Q)+/\qk/ tQBk()
\ Tt
k=1 qr41€Zq k41 k
qr+1>2Q
is estimated upon (A.8), (5.3), (5.6), with G3g(¢) as in (1.42), as
(9.14) Gl () & 275G (&),

¢(2)
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Ok 20 20k +
| O+ Oey K G

(-1 ¢ IWB "W

Bk V\XIBk — WA
o 20k + 2

Cx
Ao

(-1.-e £Q

Ok+1
2qk+1
q
FIGURE 18. The case t € Iy, v = =1, 1, = 1, rpp1 = 0,

Ce, wy, <wg,, ng =1

9.3.2. wa, < wp, (<= t > ~k+1). Then &k > 1 and ¢x+1 < 2Q.
Consider first the subchannel of By of width w4, locked by gr4+1, with con-
tribution

i tp—1
4.4.2 * wa,(t)dt
G5O=Y X n-Quna [ e
k=1 qr+1€Zqk+1 k1

Qe+1<2Q
estimated upon (B.1), with G39(§) as in (1.43), as

9.15 GV () L

The remaining subchannel By, of By (of width wg, —w 4,) is locked by the
slits 2qx + nogrr1 and 2q + (no + 1)ggs1, with ng uniquely determined by
0 < B(2qx) + no(wp, —wa,) < wp, —wa, =T (qx+1), or equivalently ng :=

wey, _ | Gk—1—26—qrat
WE,, —W A, k+1t—ak+1

G39(§)-

> 0. The situation is described in Figure 18.

The widths of the relevant two subchannels of By, are (from top to bottom)
B(2q;, + nogqr+1) = ((no + 1)gg+1 + qk_l)t — (no + 1)agy1 — ax—1 + 2¢ and
wg, —wA, —B(2qr+10qk+1) = noak41+ax—1 —2¢ — (noqr+1+qr—1)t. Taking
this time A, as in (9.8) we find, for t € (Mg ng+1, Mengls that W i n, (1) is
given by

(((no + Dgrs1 + qr—1)t — ((no + 1)ag41 + ag—1 — 26))
- (2gk + nogr1 — §Q)+ A gk

+ (noak+1 + ag—1 — 2 — (noGr+1 + Qk—l)t>
+(2ax + (no + 1) grr1 — €Q) | A i
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Since Ao = tx—1 the corresponding contribution is given by

443

=5 DI SR (e T v
n=0k=1 qx+1€Zq k+1 Ak,nt1 + +
Qk+1<2

Jk+

Employing (D.14) and (D.15) we find, with G4o(&) as in (1.44),

(9.16) G (6) & G (6).
“ ¢ ( )
0.08|-
06 }\
S
osf 006l
04f
sk 004}
02f
0.02
01f T —
L L L
05 10 15 20 25 30 00 05 10 15 20 25 30
010 \
b 008
0.08|- T
0061
0.06|-
004
004
~__
002} 002 ~
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
00 05 10 15 20 25 30 00 05 10 15 20 25 30
0,08
0.06|-
004}
\
002 T~
‘ ‘ ‘ ‘
00 05 10 15 20 25 30

FIGURE 19. The individual contributions of G, . ..

.G to Phex
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Appendix A.

k > 1. In this case,

(A1) /tt’“‘1 2(a+e—qt)dt

. 24+t +1
te—1 t— tg t— te—1 2
:_2(/ A | Qqadt)+/ oy
L Pt . i+ P Ht+1
B Q—q Qe+1 — 2Q  qry2 — 2Q
- 2 2 +
2Q%q1qk(V2 + v+ 1) qk—1 qr

1
+O0 | =—55—|-
(Qq2q§_1>

k > 1 and gr4+1 < 2Q. Here:

(A.2) /tkl we, (t) dt (2Q — gry1)” n O( 1 ) .

s 2414 T 8Q2q 12 (Y Ay + 1) Qqq;
(A3) /tkl 2(qt — ar +e)dt _ (2Q — qr41)? L0 ( 1 )
' a-e  2+t+1 4Q%¢ (VP +v+1) Q%qq)

Kk

b1 4, () dt
(A4) /_ 5 O()
ag—e t*+t+1

ak

uo 2 — gt uo 2 — qt
— Mdt_ udt
s 2 4t+1 e, PHE+1
9 -
_ 2Q — qr+1 <Qk+Qk+1_2Q+Qk_Q>
4Q%q—1qk (V2 + v+ 1) 2qy, Q-1

1
Lo (2 2) .
q°qk—19

Ak

(A5) /qk w.a, (t) dt

oy PPHEH1
_/"o aﬂgqtdt—/uo arE_dly
e BT e t2+t+1
_ 2Q — qrt1 <Qk+1 -Q L % + Qr1 — 2Q>
4Q% 1 (V2 + v+ 1) Qrt1 24y

1
+ 0 - |
ki,
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ap—¢

(A.6) / S Ul W P (2Q — qr11)? L0 <1> ‘
o/

Pt l T 82 g (P v+ 1) 9941
le,*E
Ta, 2(ap —e —qit)dt
(A.7) / a (ak2 qk )
Yot te+t+1

_ (2Q - QR+1)2 + O 1
AQ%qrap (VP +y+1) 19051

(A.8) /t s (D (911 — Q)" 40 ( 1 ) .

L B2Ht+1l 2022, (R + 1) 4930311
Vi+1 1) — t Ye+1 _ t
(4.9) / ong) wm()dt_/ Mdt
" 2+t+1 tr 441
(Qk+1 - Q)2

2% g (V2 v+ 1)

1
+O0 | —55—1-
499541

k > 0 and gr4+1 < 2Q — q. Here:

e+ 2(gt —a —¢)
A.10 ——=dt
(A.10) /tk 2+t+1

_/7k+1 2(qt—a—z—:)dt_/t’“ 2(qt—a—s)dt

ate t2+t+1 ate t24+t+1
q q
_ Q1 — Q <2Q ~ ki1 2Q — Qk+2>
2Q%qk @1 (V2 + v+ 1) Q1 qk

1
tOl 52
4 i1

k > 0 and 2Q — q < gr+1 < 2Q. It follows that 0 < gr42 — 2Q < ¢,
k:LQQ%HJ,and:
a+te
D t)dt U0 g 4 2 — qt uo 2 — qt
(A1) quoU:/ Hffth_/ at2—gqt
24t+1 ), t24+t+1 ate t24+t+1

q

_ (qr+2 — 2Q)(qk + 2qk+1 — 2Q) n ( 1 >
8Q%qq (v +v+1) *d'q

tg




(A.12)

(A.13)

(A.14)

(A.15)

ifk>1

(A.16)
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/af qt — a /
t t+t+1

qt — a /t’c qt — a

dt — _—

24+t+1 y PAt+1
_ (@es2 —2Q)(@r—2+2Q) < 1 >

8Q%qqz (v +y +1) Q3¢

ate 2

/ o wg, (W) dt  (gry2 —2Q) o < 1 >

W PEtHl 8Q%q( +y+1) Q*qqi;)

ate

(g2 — 2Q)*

/“T we, (t) dt
e Ht+1

B /tk—l we, (t) dt /
Sy BHt+1l e

ate
q

Qr+2 — 2Q)

/q 2(a+e—qt)dt
t 24+t+1

4Q%qq; (v +y + 1)

Q-q

B=1 e, () dt
t24+¢t4+1

CAQ%qq( + v+ 1)

/”T we, (t) dt
o PEAt+1

/

Y a/_ /t
o Ht+1

/“0a+25—qtdt
o PHt+1

g2 — 2Q)

(%

/

+

2q

2Q — Qk+1) n

e 24+t +1

Q—q

-

Y a/_ /t
/ gt
o

“o a—l—2€—qtdt
ate 24+t+1
q

2Q —q1

CAQ%q¢' (VP +1)

(

q/

+

2q

)+of

1
O
(Qqq’qi

1
O -
(Qqqi

1

Q%qq”

)

)

)

717
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W g, (1) dt
A7 TR
(A.17) /a+e 24+t +1
q
ifw%*m#%ﬁ /T%“W*%ﬁ
L B2t noo i+l
_ 2Q — qr41 (Qk—i-l —Q | 2= 2Q>
4Q%qqr1 (V> +y + 1) Tk41 2q
1
o)
Q%qqrqr+1
Ve+1 — t 2Q — 2 1
(g [ty POZ i) o).
e 24141 8Q%*¢*qk+1(v* +v+1) 9°Gj 11

Tt 2(gt —a—¢g)dt (2Q — k1) 1
(A.19) /m e = g0 (g )
ate P\ ae "9k 1

q

g [ e

ate t24+t4+1
q
0<# itk > 1,
 (2Q — @)’ qrss q3f1271) !
- 2,22 2
8P (0 + L) 0<q31q,2 if ko = 0.
Appendix B.

B.1. Estimates for the Cp contribution when (r,7r;) = (0,1). Here
w and W,gzlz are as in (7.3) and (7.4).

v,k,n

B.1.1. For k > 1 and gr4+1 < 2Q:
lk—1

(B.1) / wa,(t)dt
gl

oy Pt
g 42 — gt W g+ 2% — gt
_/ ajaqﬁ_/ at2 -t
Ye+1 t2+t+1 te—1 e+t +1
_ 2Q — qr+1 1 —Q @ —Q
= 502 2 +
2Q%qr—1qp+1 (V2 +v+ 1) Q1 Q-1
1
+O0 | =———1.
(Qqui+1>

Summing as in (5.2) and employing Lemma 3.4, we infer
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G (©)

= > > > (y+q—£Q)+Aq/“wA°(t) dt

t24+t4+1

Be{-1,1} k=1 a=3icq(1-I),(iq)=1 Tt
1<g<@Q Y=aqk€Lq 1, Y<2Q—q
g=—p (mod 3) Ba+1

Fy="4= (mod q)

~ 1CB3) plg) (7977 2Q—q—y <y+q—Q y—Q)
-3 ﬁe{z_;l}q/cg 2P0t \ vra vy

(y+q—£EQ)+ Nqdy.

Estimate (7.1) follows applying Lemma 3.2 and making the change of vari-
able (¢,y) = (Qu, Qw).

B.1.2. For k > 1 and gx4+1 > 2Q:

(B.2) ) —ws (),
' th t2+t+1
_ /7’““ Ul — Qr1t o, /7’““ i1 — Qer1l o,
t t2+t41 b, PHt+l
_ Q—q <%+1Q+Qk+12Q>
2Q%qr—1qk(V + v+ 1) ak Q-1
1
0 ) |
(QQQQka+1

B.1.3. Whenn>1and n(Q —¢) < g < (n+1)(Q —q):
en W () dt
(B_3) / ;,k,n( )
\ 2 tt+1

k

Vetn Af+n — Qk-l-nt
(Gh+nt1 — Q) /tk P

(Qk+n - ”Q)Z(Qk+n+1 - fQ) 1
2.2 2 + O 2 .
2Q%q qpn (V2 + v+ 1) 497 Qtn

Here and below <¢ means uniformly for £ in compact subsets of [0, 00).
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B.1.4. Whenn>1land (n+1)(Q —¢) < ¢ < Q +n(Q — q):

vein W (t)dt
(B.4) / ﬁyﬂLL*
Vek4n+1 t + t + 1
Vhtn Qk4n — Qk’-i-nt
= (Qrsns1 — 5@)/ o TR dt
Vk+n+1 t2 +t+1

B Qkint1 — §Q 1
= 5 5 + O¢ — |-
2kt (VC + 7+ 1) QUe+n i1
B.1.5. Whenk>land Q+n(Q—q¢) < ¢ <Q+(n+1)(Q—q):
(B.5)
/tkl W) (b dt
5 t24+t+1

k+n+1

e Qg = Qrgnl TR A — Qranl
R e
Ve+n+1 t? +t+1 te—1 t? +i+1

_ ((TL + 2)Q - Qk-i-n—i-l)(Qk—i-n-i-l - gQ) ( Q qk+n — (’I”L + 1)@)

+
2Q%qk—1Gknt1 (V2 + v+ 1) Qktn+1 k-1

1
0 )
49k -19k-+n9k+n+1
B.1.6. Whenn>1and (n+1)(Q—q) <@ <Q+ (n+1)(Q —q):

/%+n+1 d  _ a-(+)Q@-a) (1
th P+t+1l QarGrintr1 (V2 +7+1) Qai 1ny1)

R
t t2+t+1

Y+n+1 t — 123 t —
y t“+t+1 N t“+t+1

a — (n+1)(Q —q) ( Q +Q_q>+0<1>7

2Q%qkGkan+ 1 (VP Y+ D) \Gngks1 @ Q*¢ 1in
yielding
Vh+n+1 W(z) t)dt
(B.6) / 72”"“( )
\ 2 4t+1

_ Gketn1 — (n+1)@Q <Qk+n+1 —£&Q I £(Q — Q)>
2QkGk+n+1 (V2 +v+1) Qktntl a

1
+0¢ | ——|.
¢ (Qqq13+n+1>

dt

k
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B.1.7. When ¢, > Q+ (n+1)(Q — q) formulas (5.8) and (5.9) yield (here
k>1)

(2)

te—r W7 (t) dt

(B.7) / ﬁi
t t“+t+1

_ Q—gq (Q—q Q—gq
2@ 1ak(V v+ 1) (2 5( Q-1 * Qe >)

1
+ Og 5 .
99,19k

B.2. Estimates for the C contribution when (r,r;) = (0,1). Here
Ak is as in (7.7).

B.21. (n—1)(Q—q) < qr <n(Q —¢q). In this case n > 2. When k > 1
we have

(B5) A”“W““ﬁ

. tPHt+1
_ /tk—l ar1 =2 —quat /tk_1 ar1 =2 —qeat
" 2441 New  PHtEl

_ g — (n = 1)(@ —q) (Q—q+(n+1)Q—qk+n>
2Q%qk(qk + Qrtn—1)(V +7+1) \ @ Q + Qrin—1

1
+0|—5——=]-
4919

Men g, (t) dt
(B.9) / S
L BRAt+1

_/’\kv” qrt — ay + 2¢
i 24+t+1

(4 = (0 = 1)@~ )’ +O< ! )_

2Q%qk(qk + Grin-1)? (2 + 1) 13 G

t24+t4+1

. Akesn C_Ik—l-nt — Qk+n dt bk Qk+nt — Qk4n dt
- 20141 B 24+t+1
Yk+n t + Yk+n
_ q — (n—1)(Q —q)
2Q%qk(qk + Qrgn—1)(P2+v+1)

_((n+1)QQk+n+n(QQ)qk>+O< 1 )

Gk + Gk+n-1 qx qqg%m

>\k,n t —
(B.10) / QkAn® — Okgn g,
tg
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When k£ = 0 formulas (B.9) and (B.10) still hold. The main term in (B.8)
remains the same but we need a more careful estimate to control the error
term, getting

Ao.n t)dt
(B.11) / ey (f) di
o  PHt+1

)\O,n t— to t— )\O,n /t_ / 2
:/ ZQflﬁ_/ faﬁi/ qioatoe,
vy  PHt+l y Pt +1 w Pt

_ 1 — (n=1)Q ((N+1)Q—qn+Q—q>
2Q%¢(¢' + gn1)(V? +v +1) q + qn q

1
+0 () |
QP2

Since n only takes one value n = L%J for fixed k, the error terms in

(B.8)-(B.11) do not play a role in the final asymptotic formula.

B.2.2. Whenk>1and n(Q —¢q) < ¢ < Q+n(Q —q):

(B.12) A N e, (f) dt

k,n+1 t2 + t + 1
= /tkl p—1 — 2€ — qe-1t dt — /tk1 e dt
- 21t11 Mo 2 4+t+1
2Q — ¢

©2Q%(qk + Qhtn—1)(@k + Gin) (V2 H Y+ 1)
. <(Tl +2)Q — Ghtnt1 n (n+1)Q — qk+n>
Qi + Qi4n Qk + Qk+n—1

+O<<n—f>3q2qz>'

(B.13) /A e e (t)dt

oy P HEH1
_/)‘k’" qrt — ap + 2¢ dt_/)"c’"“ qrt — ap + 2¢ gt
th 2 +t41 t 2 +t41
2Q —q

©2Q%(qk + Ghtn—1)(ak + Gorn) (V2 + 7+ 1)

'(Qk+n—1_(n_1)Q+Qk+n_nQ>+O< 1 )

Gk + Qk4n—1 Gk + Qk+n qu;?;rn
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Ve+n _ t
(B.14) / wdt
by te+t+1

k,n+1

723

202Gk 1n(ak + Qrn) (V2 + 7+ 1) qaqp

)‘k:,n t —
(B_15) / w dt
Ye+n t + t + 1

((n+1>Q_Qk+n)2 < 1 >

= + 0
2Q%Grn (qh—1 + Qo) (V2 + 7+ 1) .

B.2.3. When £ =0 and n > 2 we have tg < A pnt1 < Y < Aon < th—1.

Analog formulas as (B.12)—(B.15) hold, with same main terms and

Ao.n t)dt
(B.16) / 71500()
o 2t

0,n+1

Ao,n t— A0,n+1 t—
~ t“+t+1 ~ t“+t+1

Ao,n 't —a 2 A0,n+1 "t —a 2
_</ q2a+5ﬁ_/ q2a+5ﬁ>
t 24+t+1 " 24+t+1
_ 2Q —q
2Q%(¢" + qn-1)( + qn) (2 + v+ 1)
2)Q — 1)Q — 1
<(n+ )Q Qn+1+(n+ )Q Qn>+0< >

7 +qn ¢ + gn-1 aq'qp

B.2.4. When k=0 and n =1 we have t) < Ag2 < v1 < Aog,1. We have

" t)dt Nt —a 42 A2 o't —qa/ 42
(B.17) / WM>:/ qa+€ﬁ_/ dt—d +2
N BHE+HL Jy 24t +1 o o PPFt+1

_ (1 — Q)*(d' +2q1) +O< 1 )
2Q°¢2(¢' + 1)>(V2 +v+1) @Q3qq' )

oap —qit (1 — Q)? < 1 )
( ) N PP HE+1 2Q°1(¢" + q1)>(2 +~v+1) Q%q
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m t)dt
(B.19) / 1550#
Xo.2 t-+t+1

~ A Y A 't
_/ ;'qﬁ_/ gty
)\O’Qt +t+1 " t“+t+1

a+2e a+2e
a a-+2—qt e a-+2—qt
- ——dt + ——dt
A 2+t 41 S A

0,2

_ a—Q <3Q—Q2+2Q—CJ1)
2Q%21 (¢ + 1) (V2 +v+ 1)\ ¢+ ¢ ¢
+0<1 )

Q3qq' )

B.2.5. When Q+n(Q —¢q) <@ <Q+ (n+1)(Q —q):

(B.20) Am” we, (t) dt

—_— t24+¢t4+1
2
_ ((n+2)Q — Gryn+1) Lo o
2Q%qr—1(qk + @rgn)> (V2 + 7+ 1) Q4qk-147 .,
br—1 t)dt
(B.21) / 71;’5%( )
Neny 2+ 1

_ /tkl qrt — ay, + 2¢ db — /)"“"*1 qrt — ay + 2¢ g
t t

t24+t+1 24+t4+1

_ (n+2)Q — Grynt1
2Q%qk—1(qk + Qorn) (V2 +v+1)

— -n 1
.<Q g Qin Q>+O<2 2>‘
qr—1 Tk + Qrtn Q=qq;,

-1 ¢ — t
k+n qk+n
(B.22) /A e
_ /’Yk+n Af+n — Qk—l—nt dt — /fykjLn Af+n — Qk+nt dt
Aemin P 4, PPHt+1

_ (n+2)Q — Grynt1
2Q%qi—1(qk + Qoyn) (V2 +v+1)

— — 1 1
) <Qk+n nQ 4 dk+n (n + )Q) +0 s .
qk + Qtn qr—1 Q9% 1y,

Appendix C.
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C.1. Estimates for the Co contribution when (r,r;) = (1,0). Here

Ak,n is as in (8.3) and Wéllgn and Wﬁz as in (8.4).

C.1.1. For k >1 and qrp+1 < 2Q:

©1) / we, () dt _ (2Q ~ i)’ +O( ! )
:

e P+ 20202 (P A+ 1) 99145

2 4+t+1 t2+t+1

_ (2Q — qr+1)?
2Q%¢; | qr1(V2 4+ +1)

1
+O0|—5—].
99, _19k+1

C1.2. Fork>landn(g—Q)<Q—q¢<(N+1)(g —Q):

th—1 _ te—1 —
(C.2) / wg,, (t) — w4, (t) dt:/ Qr+1t — Qg1 gt
5 v,

k+1 k41

. 24t+1 C2Q%¢_ (g + ngp)(P+y+1)

1
40| —5———
qq;_, (q + naqx)

te—1 n _ n 2
(C.3) A (g+ng)t —(atnay) . ((n+1)Q—(¢+na))

C.13. Fork>1land (n+1)(qx — Q) <Q—q:

1
(C.4) /Ak’n+1 Wv(»lz’,n(t) at Q1 + 1 — EQ
‘ Meom t2+t+1  2(q+ngr)(qur1 +ngr)?* (¥ +v+1)

o o)
*\qar(q + na) (@1 +nar) )

te—1 dt
C.5 _—
(C.5) A t2+t+1

k,n+1

_ (n+2)Q — qry1 — NG 1
pr— 2 O 27 .
Qar—1(qrs1 +ngr) (V> +v+1) 4951k
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(C.6) /:k_l vl 2 ualt)

TR o S
Yk — .t Tk — gt
:/ ;Ik qk dt—/ <2lk; Wt
Nowas 2L+ b 2t

_ (n+2)Q — qry1 — N Q q — Q
202 2 1 +
Q*Gr—1(qr1 +nqe) (V2 + v+ 1) \ @1 + g Q1

1
+O| 5
Te—19k+1

2
©.7) /t’“l Wﬁ (t) gt — (n+2)Q — qry1 — NGk
' Negs 2 HE+1 2Qqk—1(qr+1 +ngr) (Y2 + v + 1)
_ <Qk+1 + gy —€Q | ak-1 — E(gr — Q))
Qk+1 + Nqk qk—1

1
+O€< 3 )
491

C.2. Estimates for the C_ contribution when (r,r;) = (1,0). Here
i n and vy, are as in (8.7).

C.2.1. For ¢2 > 2Q:
" t) dt "'t —a +2 Cgt—d +2
(C_S)/ wey()dt / Wdt_/q dt—a'+2 ,
ate t2 4141 o t2PAHt+1 w @ tPHt+1

q
a+te
71 t — t —
N / ;zadt_/q ar-a g,
5 tPrt+l 5 tPHt+1
2Q — q1)? 1
(2Q —q1)"g3 +O< )

- 8Q%%qi (v v+ 1) Q*¢*q

Mwg, (t) dt Y0 wy, (t) dt Y0 w4, (t) dt
(C.9) Pt ] e Pt 1T Pt
u a £ ,Y

q q

_(20-a)Ba-2Q) < 1 )
8Q%qgi (v +v+1) Q3¢)

noar —qit (2Q — q1)* ( 1 )
C.10 dt = 10 .
(C.10) /a+e 2 4t4+1 8Q%¢*q1(v? + v+ 1) " P*Q?

q
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C.2.2. WhGHHZIaHd%<Qk<2 (Q—i—nﬂ)
Hiesn t) dt U g+ 2 — gt uo 2% — qt
(c.n)/ wM):/ Wdt_/ axre—dy
b tHt+1l f, 24+t 41 o Ut

_ (n+1)g—2(Q—q)
2Q2qr(2q + ngr) (V2 +v + 1)

— + — 1
‘<Qk+1 @ a+na nQ>+O< a 2>'
Ik 2q + ngx Qq°q;,

(C.12) / e e (8) dt

. t2+t+1
" 221t11 . t2+t+1

o (n+ g —2(Q—q)
C2Q%qk(2q + ngi) (2 + v+ 1)
_(Q—q+(n+2)Q—q—(n+1)qk>+O< 1 >
@ 2q + ngy, Qqar—14;)

Venoq + nag — (q + nqg)t
C.13 dt

. (Q+an _Q)2 +O <1>
2Q%¢2(q +nar) (V2 + v+ 1) aa)

HEk,n —_
(C.14) / (q +nqx)t — (a + nay) &t

2+t+1
_ (¢ +ngr — Q)* L0 <1)
20Q%(q + ngy) (2q + ngr)?(2 + v + 1) '

k,n

Q
C.2.3. When 22=9 q) Q—l— n+1’ n, k>
For n > 2 we have

e, t)dt uo 2 — qt w0 g4 2 — qt
(C.15) / / a+e—qt dt—/ atze—at dt
. t2+t+1 oy 2T+ pon 2HTH1

B 2Q — qx
C2Q%(2¢ +nqr) (20 + (n = Dgr) (7% + 7 + 1)
‘ <Q+(n_1)(Qk’_Q) n Q+n(Qk—Q)>
29+ (n— 1)k 2q + nqy

o <(n = 11)3612(11?;) '
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For n = 1, the error can be improved (since 2Q — g < 2¢ and py 1 —7 < i)
as follows:

HE,1 t) dt
(C.16) / %
L0 t“+t+1

Pt gt —a —e Hrtedt
== T T
weo Pt o 2HE+1

k,0 k,0
2Q — gk <Q+Q+Qk_Q)
T 2220+ a0)(20) (2 7+ 1) \ 2¢ 2q + qi

w0 (guz).

Since 0 < (n+1)Q —q—ngp <Q—q¢<q¢ and 0 < ngx — (n+1)Q < 2Q,
we find:

(C.17) / e we(t) db
I

- t24+t+1
_ /tk1 Uh—1 — 26 = qeat /t’“l Uh—1 — 26 = qeat
- 2 B 2
Mk,n—1 t +t+1 HKk,n t +t+1
2Q — q

T 2Q2(2q + nar) (20 + (n — Dar) (2 + 4+ 1)
. (Q—q—n(Qk—Q) +62—61—(n+1)(61k—62)>

2+ (n— 1)k 2q + nqy
1
‘o ( : ) |
qqi_, (g + (n — 1)qx)
Yknoa 4+ nag — (g 4+ ngg)t
(C.18) / dt
Hk,n—1 t2 + t + 1

2

_ (@—q—nlw—Q))
2Q(q + na) (24 + (n — D) (2 +~v +1)

1
@) .
i <nqq£ (g+ (n— 1)Qk)2>

Bk (g 4 ngp)t — (@ + nag,)
(C.19) /V o dt
_ (¢+ nlar - Q)* O( 1 >
2Q%(q + nqr) (2q + nge)*(v? + v + 1) ndqqt)”

We check that the contribution of error terms is negligible. Note that when
n = 1 we must have 2¢ > 2Q — ¢, > QQ—&;q = %, so q = % The

k,n
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errors in (C.15)—(C.19) add up to

<§;g% E:ZQW+ZZ§Z%“

k=1~veF(Q n=2k=1~eF(Q qqz—lqz
Sy 3’@1 Sy

SIDIE =
= 1~yefcz>qqk*1 AT "~ Vgt

k=1~veF(Q) ¢’ qk
+ZZM <<Z

n=1k=1

729

©(q) _ _
Z q3 + Qc 1 < Qc 1.
2<<@Q

C.2.4. For k> 1 and gr4o < 2Q:

lk—1 t
(C.20) / =LA
Vk+1 e+t +1

(2Q — qr+1)? 1
= +0(——").
2Q02¢2_ g1 (V2 + 7+ 1) 3

9495, _19k+1
(C.21)

/tkl w4, (t) dt
Hk,n—1 tQ +i+ 1

_/“0 a+2€—qtdt_/“° a+2€—qtdt
Mk,n—1 t2+t+1 tre—1 t2+t+1

_ (n+1)Q — q—ngy (
2Q%qr—1 (20 + (n = Var) (V2 + v+ 1)

1 Q—q 1
* O(q(2q+ (n— 1)qk)2 (QZQk—l " Q(2Q+ (n— 1)%)))

When n > 2, the error is < pErm—"E When n = 1, we can improve on the
k—14},
error term:

tk—1 2% — gt th—1 — gt th—1 dt
(C.22) / ajsqﬁ:_/‘ g%qﬁ+/ _edr
k.0 t“+t+1 aT+s t“+t+1 aT+s t“+t+1

_ 2Q — qr11 1 2Q — g1
T 402 2 1 D)
Q*qqp—1(2+~v+1) Qk—1

+0 ot 1
Qeq;_, P4, Q*Pq—1 )

Q+(n_1)(Qk—Q)+Qk_Q>

2¢ + (n—1)q Q-1
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(C.23) /%1 we, (B dt (n+1)Q — ¢ —ngy)’
' P 2+t+1 20Q2%q_1 (2q + (n— 1)qk)2(72 +v+1)
1
+0 )
(qqﬁ_l (2¢+(n — 1)Qk)2>

Yen a4 nag — (q + ng)t
(C.24) / dt
HBrn—1 t2 + t + 1

_ «n+DQ—q—n%f +O<:l>.
2Q%(q +nqr) (2 + (n — Da) " (V2 + v+ 1)

(C.25) /V’“‘l (q—l—n(i;;)i;ial%- nay) it
((n+1)Q — ¢ — ngy)” +O< 1 >

C2Q%¢2 (g+ng)(E+v+1) Q2%qq?

k,n

Appendix D.
When £ > 1 and ¢x41 < 2Q:

(D‘l) /t’Yk+1 we, (t) dt

2+t+1
:/t‘“1 ag—1 — 26 — g1t dt—/tkl ag—1 — 26 — qr—1l gt
t 2+t+1 __— 2+t+1

_ Q1 — Q (Q—q+2Q—qk+1>+O< 1 )
2Q%q g1 (V2 + 7+ 1)\ o Qo1 qqk-14;

=1 a4, (t) dt
(D-2) / £2 —f(—) t+1
Vk+1

:/”0 a+25—qtdt_/“0 a+25—qtdt
ey At . 2+t+1

k+1 k-1

2Q — qrsr <Qk+1_Q+Qk_Q>+O< 1 )

C2Q%qk1Gki1 \ Gk Q-1 By gy
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When g11 > 2Q:

(D.3)
/ml 2a+e—qt)dt
t 2+t 41

Vet gt — e gt — Tkl 2edt
:_</ ja/ﬁ_/ ;z(ld0+/ edt
, Pt , PHt+1 o Pt

_ Gr+1 — @ <Qk+22Q+Qk+12Q>+O< 1 >
2Q%qrqr1 (V2 + v +1) q Qo1 qi

D.1. Estimates for the Cp and the C._ contributions when (r,rg) =
(1,—1) and w4, > wa,. Here Ay, is as in (9.3).

D.1.1. IfQ+ % < qpr1 € 2Q and k > 1, then

(D.4)
/ml we, (t) dt
Ak7n+1t2+t+1
tr—1 L — 92— a1t tr—1 L — 9 — g1t
:/ ak125Qk1dt_/ ak12€%1dt
At te+t+1 Vet te+t+1
_ 2Q — qr41 ((n+1)(2Q—Qk+1) n QQ—Qkﬂ)
2Q%qk11(ngr1 +2¢) (2 +v+1) nQr+1 + 2q Q1

1
+0| —5——5—1-
495 19;+1

When k£ = 0, one can improve on the error as follows:

T we, (t) dt
(D.5) / Rl
A0,n+1 +i+

_ /%q/t_al+2€dt /Ao’n“q’t—a'+25dt
B w Pttt to 2 +t+1

Y1 t— A0,n41 t—
+</faﬁ_/ QQ(lﬁ>
L P4t ; 2+t+1

- 20 -a ((”+1)(2Q—Q1)+2Q—Q1>
2Q%q1(nq1 +2q) (V2 + v +1)

nqi + 2q q1
1
o <Q2q2cJ’> '
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D.1.2. Whenn >1and Q + % < qer1 < 20Q:

Vel w4, (t) — wp, (1)
D.6 9 k7 dt
(D-6) /A t2+t+1

k,n+1

2Q%qk+1(nqr1 +29)2°(V + v+ 1) qql%—i—l

D7 ARl (@i — Qr—1)t — Nak41 + g1 — 26 gt
(D7) t24¢t4+1
Ak,n
_ (2Q — qr11)?
2Q%(nqr41 + 29)*((n — Vg +2¢) (V2 + v+ 1)

1
+O0| =551
(QquiH)

D.1.3. When n > 1 and Q—I—% < Q41 < Q—I—%, we have 0 <
(n+1)(gr1 — Q) +q—Q < L% and

dt

(D.8) /’\’“’"+1 (n+ Dagt1 —ap—1 + 26 — (R + 1)qry1 — qu—1)t
RS 24+t+1

(n+1)(grp1 — Q) + 49— Q) O( 1 >

k

2Q%¢ (ngrs1 +29) (V2 + v+ 1) ntqqiql,,
(D.9)
tr t2+t41 Ak,n Akyn

_ (n+1)(grs1 —Q)+q¢—Q <2Q—Qk+1 N Q — q—n(qr+1 —Q)>
2Q%qe(nqr 1 +2¢) (V2 + v+ 1) \nges1 +2¢ Qe

1
o) [ a—
(nQQqqkqﬁ,H )

D.1.4. Whenn>1and Q + % < qpr1 < 2Q:

(D 10) /)\k,n+1 (n + 1)ak+1 — Q-1 + 2e — ((n + ]-)q1c+1 — Qk—l)t
' A t2+t+1

_ (2Q — qry1)?

B 2
2Q%(nqr+1 +2¢) ((n — Dar1 +2¢)" (V2 +v +1)

1
+0 )
<(n2 —n+ 1)q3q,%+1>

dt

k,n
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Mentt (nggi1 — qro1)t — nag1 +ap_y — 2€
(D.11) / e dt
)‘k,n
(2Q — qr41)?

- 2Q2%(nqrs1 + 2q)2((n — Dagr41 + 2q) (vV+~+1)

1
+O0| 5551
(anquiH)

D.2. Estimates for the Co and the C| contributions when (7, 1) =
(1,—1) and wga, < ws,. Here we take Ay, as in (9.8), k& > 1, and
Tr+1 < 2Q.

Ant1 t)dt
(D.12) / we, (t) dt
.

ey PHt+1
_ /t’“ ag—1 — 2 — qp—1t di — /t’ﬁ1 ag—1 — 26 — g1t ”
Vh+1 2 +t+1 Aknt1 i1

(2Q — qr41)*((2n + 2)qrs1 + Gr—1) Lo ( 1 )
P T 2 |-
2Q%¢2 1 (n+ Dgrs1 + ar—1) (P +7 + 1) 99g—19k+1

)‘k,n+1 —
(D.13) / we () —wal(t) 4
¥

2
. 24t
_ /Ak’"*l Q1 — ap41
— Esslimias
SRy

_ (2Q — qr41)? 1
= 5 + 0 7} .
2Q%q1 ((n+ Vg1 + @r—1) (2 + v+ 1) 9941

(D.14) dt

2+t+1
_ (2Q — qrt1)?
- 2
2Q%(ngrt1 + qe—1) (N + Vg1 + qe—1) (P +v+ 1)

+0 !
(M3 +1)qq3 14311 ]

/)‘k',n Nag+1 + agp—1 — 2 — (TIQkJrl + Qkfl)t
A

k,n+1
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(D.15)
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dt

/)\k’” (n+ Dgrs1 + qr—1)t — (n+ ags1 — ap—1 + 2¢
A 2 +t+1
= (2Q - Qk+1)2
2Q2(ng11 + qe—1)2((n + D1 + qr—1) (2 + 7+ 1)
1
(n3 +1)ad7_ 1941

k,n+1

+0
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