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Growth of solutions of a class of linear
differential equations with entire

coefficients

Saada Hamouda

Abstract. In this paper we will investigate the growth of solutions of
the linear differential equation

f (n) + Pn−1(z)ezf (n−1) + · · · + P0(z)ezf = 0

where P0, . . . , Pn−1 are polynomials.
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Introduction

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna value
distribution theory (see [5], [6]).

For n ≥ 2, we consider the linear differential equation

(0.1) f (n) + An−1 (z) f
(n−1)

+ · · ·+ A0 (z) f = 0

where A0 (z) , . . . , An−1 are entire functions with A0 (z) 6≡ 0. It is well known
that all solutions of (0.1) are entire functions. A classical result, due to Wit-
tich [7], says that all solutions of (0.1) are of finite order of growth if and
only if all coefficients are polynomials. For a complete analysis of possible
orders in the polynomial case, see [3]. If some (or all) of the coefficients of
(0.1) are transcendental, a natural question is to ask when and how many
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linearly independent solutions of finite order may appear? Partial results
have been available since the paper of Frei [1], which says that if p is the
largest integer such that Ap (z) is transcendental, then there can exist at
most p linearly independent finite order solutions of the differential equa-
tion (0.1). Recently, in a paper to appear [4], I investigated the growth of
solutions of the differential equation

(0.2) f (n) + An−1 (z) ezf
(n−1)

+ · · ·+ A0 (z) ezf = 0;

I proved that if A0 (z) is transcendental entire function of order σ (f) = 0
and A1 (z) , . . . , An−1 (z) are polynomials, then every non trivial solution
of (0.2) has infinite order. So, a natural question is to consider the case
when all Aj (z) , j = 0, . . . , n − 1, are polynomials. This question is our
investigation in this paper.

We will see that there are similarities and differences between the following
differential equations

f (n) + Pn−1 (z) ezf
(n−1)

+ · · ·+ P0 (z) ezf = 0,(0.3)

f (n) + Pn−1 (z) f
(n−1)

+ · · ·+ P0 (z) f = 0,(0.4)

where P0 (z) 6≡ 0, . . . , Pn−1 (z) are polynomials.
From [1], (0.3) has at least one solution of infinite order. While, (0.3)

may have a polynomial solution: for example f (z) = z is a solution of the
differential equation f ′′ + zezf ′ − ezf = 0.

As in [3], we define a strictly decreasing finite sequence of nonnegative
integers

(0.5) s1 > s2 > · · · > sp ≥ 0

in the following manner. We choose s1 to be the unique integer satisfying

(0.6)
ds1

n− s1
= max

0≤k≤n−1

dk

n− k
and

ds1

n− s1
>

dk

n− k
for all 0 ≤ k < s1;

where dj = deg Pj if Pj 6≡ 0 and for convenience dj = −∞ if Pj ≡ 0,
0 ≤ j ≤ n− 1.

Then given sj , j ≥ 1, we define sj+1 to be the unique integer satisfying

dsj+1 − dsj

sj − sj+1
= max

0≤k<sj

dk − dsj

sj − k
> −1 and(0.7)

dsj+1 − dsj

sj − sj+1
>

dk − dsj

sj − k
for all 0 ≤ k < sj+1.

For a certain p, the integer sp will exist, but the integer sp+1 will not exist,
and then the sequence s1, s2, . . . , sp terminates with sp. Obviously, p ≤ n,
and we also see that (0.5) holds.

Correspondingly, define for j = 1, 2, . . . , p,

(0.8) αj = 1 +
dsj − dsj−1

sj−1 − sj
,
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where we set

(0.9) s0 = n and ds0 = dn = 0.

From (0.7) and (0.8), we observe that αj > 0 for each j, 1 ≤ j ≤ p.
We mention that the integers s1, s2, . . . , sp can also expressed in the fol-

lowing manner:

s1 = min
{

j :
dj

n− j
= max

0≤k≤n−1

dk

n− k

}
;

and given sj , j ≥ 1, we have

sj+1 = min
{

i :
di − dsj

sj − i
= max

0≤k<sj

dk − dsj

sj − k
> −1

}
.

We denote by n′ ≤ n − 1 the largest integer such that Pn′ (z) 6≡ 0 in (0.3)
in all this paper. If n′ ≥ 1 we define, as above, a strictly decreasing finite
sequence of nonnegative integers

s′1 > s′2 > · · · > s′q ≥ 0,

as follows:
ds′1

− dn′

n′ − s′1
= max

0≤k≤n′−1

dk − dn′

n′ − k
> −1 and

ds′1
− dn′

n′ − s1
>

dk − dn′

n′ − k
for all 0 ≤ k < s′1.

Then given s′j , j ≥ 1, we define s′j+1 to satisfy

ds′j+1
− ds′j

s′j − s′j+1

= max
0≤k<s′j

dk − ds′j

s′j − k
> −1 and

ds′j+1
− ds′j

s′j − s′j+1

>
dk − ds′j

s′j − k
for all 0 ≤ k < s′j+1.

As above, this sequence terminates with s′q, and obviously we have q ≤ n′.
Correspondingly, define for j = 1, . . . , q

(0.10) α′j = 1 +
ds′j

− ds′j−1

s′j−1 − s′j
,

where we set s′0 = n′, and we have also

α′1 > α′2 > · · · > α′q > 0.

In [3], G. Gundersen, E. Steinbart and S. Wang proved the following:

Theorem 0.1 ([3]). For equation (0.4), the following conclusions hold:
(i) If f is a transcendental solution of (0.4), then σ (f) = αj for some

j, 1 ≤ j ≤ p.
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(ii) If s1 ≥ 1 and p ≥ 2, then the following inequalities hold:

α1 > α2 > · · · > αp ≥
1

sp−1 − sp
≥ 1

s1 − sp
≥ 1

s1
.

(iii) If s1 = 0, then any nontrivial solution f of (0.4) satisfies σ (f) =
1 + d0

n .

In this paper, we will give the possible orders of solutions of (0.3). We
also give related results.

1. Statement of results

Theorem 1.1. If (0.3) admits a transcendental solution of finite order α
then

α ∈ {α1, α2, . . . , αp} ∪
{
α′1, α

′
2, . . . , α

′
q

}
,

where α1, α2, . . . , αp, α
′
1, α

′
2, . . . , α

′
q are defined in (0.8) and (0.10).

Remark 1.2. It may happen that some values of
{
α′1, α

′
2, . . . , α

′
q

}
are equal

to some values of {α1, α2, . . . , αp}, and globally we have at most n distinct
values. More precisely, if s1 = n′, then α1+k = α′k for every integer k,
1 ≤ k ≤ q; and if s1 6= n′ and si = s′j for some integers i, j then αi+k = α′j+k

for every integer k, 1 ≤ k ≤ q − j.
For example: if n = 3, d0 = 4, d1 = 3, d2 = 1, then p = 2, α1 = 5

2 , α2 = 2
and q = 2, α′1 = 3, α′2 = 2.

Theorem 1.3. If s1 = 0, then every nontrivial solution of (0.3) satifies

σ (f) ≥ 1 +
d0

n
.

A natural question is: are there cases of (0.3) when every nontrivial solu-
tion has infinite order. The answer is positive as indicated by the following
example.

Example 1.4. Every nontrivial solution of the differential equation

f (n) + P0 (z) ezf = 0,

has infinite order, where P0 (z) 6≡ 0 is a polynomial. In fact, if we suppose
that f 6≡ 0 is of finite order then by looking at ez = − 1

P0(z)
f (n)

f , we conclude
that T (r, ez) = O (log r), a contradiction.

Theorem 1.5. If sp = 0, then there is no polynomial solutions f 6≡ 0 of
(0.3).
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2. Preliminary lemmas

Lemma 2.1 ([3]). For any fixed j = 0, 1, . . . , p−1, let α be any real number
satisfying α > αj+1, and let k be any integer satisfying 0 ≤ k < sj . Then

n− k + dk + kα < n− sj + dsj + sjα.

Lemma 2.2 ([3]). For any fixed j = 1, . . . , p, let α be any real number
satisfying α < αj , and let k be any integer satisfying sj < k ≤ n. Then

n− k + dk + kα < n− sj + dsj + sjα.

Lemma 2.3 ([3]). Let α > 0. Then for any integer k satisfying 0 ≤ k < sp,
we have

n− k + dk + kα < n− sp + dsp + spα.

Lemma 2.4. Let α be any real number satisfying α > α1, and k be any
integer satisfying 0 ≤ k < s1. Then

n− k + dk + kα < n− s1 + ds1 + s1α.

Proof. We have

n− k + dk + kα = n− s1 + ds1 + s1α + α (k − s1) + dk − ds1 + s1 − k,

and since α > α1 and 0 ≤ k < s1 we obtain

n− k + dk + kα < n− s1 + ds1 + s1α + α1 (k − s1) + dk − ds1 + s1 − k.

And we have

α1 (k − s1) + dk − ds1 + s1 − k

=
(

1 +
ds1

n− s1

)
(k − s1)−

dk

n− k
(k − n)

− (k − s1)− ds1

=
(

ds1

n− s1

)
(k − s1)−

dk

n− k
(k − s1 + s1 − n)− ds1

=
(

ds1

n− s1
− dk

n− k

)
(k − s1) +

(
ds1

n− s1
− dk

n− k

)
(s1 − n)

=
(

ds1

n− s1
− dk

n− k

)
(k − n) .

From the definition of s1 in (0.6), we obtain(
ds1

n− s1
− dk

n− k

)
(k − n) < 0,

for 0 ≤ k < s1. Thus, we deduce that

n− k + dk + kα < n− s1 + ds1 + s1α,

for 0 ≤ k < s1. �
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Lemma 2.5. Let α be any real number satisfying α > α1, and k be any
integer satisfying 0 ≤ k < n′ (n′ is the largest integer such that Pn′ (z) 6≡ 0

in (0.3)). If s1 < n′ and
ds1

n− s1
=

dn′

n− n′
, then we have

n− k + dk + kα < n− n′ + dn′ + n′α.

Proof. We have

n− k + dk + kα = n− n′ + dn′ + n′α + α
(
k − n′

)
+ dk − dn′ + n′ − k,

and since α > α1 and 0 ≤ k < n′ we obtain

n− k + dk + kα < n− n′ + dn′ + n′α + α1

(
k − n′

)
+ dk − dn′ + n′ − k;

and we have

α1

(
k − n′

)
+ dk − dn′ + n′ − k

=
ds1

n− s1

(
k − n′

)
+ dk − dn′

=
ds1

n− s1
(k − n) +

ds1

n− s1

(
n− n′

)
+ dk − dn′

=
ds1

n− s1
(k − n) +

dn′

n− n′
(
n− n′

)
+ dk − dn′

=
ds1

n− s1
(k − n) + dk

=
(

ds1

n− s1
− dk

n− k

)
(k − n) ≤ 0,

for any k satisfying 0 ≤ k < n′. Thus, we deduce that

n− k + dk + kα < n− n′ + dn′ + n′α. �

Lemma 2.6. If s1 < n′ and
ds1

n− s1
>

dn′

n− n′
, then α′1 > α1.

Proof. We have the following equivalences:

ds1

n− s1
>

dn′

n− n′
⇔ ds1 −

n′ − s1

n− s1
ds1 > dn′

⇔ ds1 − dn′ >
n′ − s1

n− s1
ds1

⇔ ds1 − dn′

n′ − s1
>

ds1

n− s1
.

Which implies that

max
0≤k<n′

dk − dn′

n′ − k
>

ds1

n− s1
,

and so
α′1 > α1. �
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Lemma 2.7. If α′1 > α1, then for α > α′1 and 0 ≤ k < n′, we have

n− k + dk + kα < n− n′ + dn′ + n′α.

Proof. We have

n− k + dk + kα = n− n′ + dn′ + n′α + α
(
k − n′

)
+ dk − dn′ + n′ − k,

and since α > α′1 and 0 ≤ k < n′ we obtain

n− k + dk + kα < n− n′ + dn′ + n′α + α′1
(
k − n′

)
+ dk − dn′ + n′ − k;

and we have

α′1
(
k − n′

)
+ dk − dn′ + n′ − k =

(
ds′1

− dn′

n′ − s′1

) (
k − n′

)
+ dk − dn′

=
(

ds′1
− dn′

n′ − s′1
− dk − dn′

n′ − k

) (
k − n′

)
≤ 0,

for any k satisfying 0 ≤ k < n′. Thus, we deduce that

n− k + dk + kα < n− n′ + dn′ + n′α. �

By using the same proofs as for Lemma 2.1 and Lemma 2.2, we can obtain
the two following lemmas:

Lemma 2.8. For any fixed j = 0, 1, . . . , q − 1, let α be any real number
satisfying α > α′j+1, and let k be any integer satisfying 0 ≤ k < s′j . Then

n− k + dk + kα < n− s′j + ds′j
+ s′jα.

Lemma 2.9. For any fixed j = 1, . . . , q, let α be any real number satisfying
α < α′j , and let k be any integer satisfying s′j < k ≤ n′. Then

n− k + dk + kα < n− s′j + ds′j
+ s′jα.

Lemma 2.10 ([3]). Suppose that sm + 1 ≤ k < n for two positive integers
m and k. Then

dk ≤ dsm−1 + (sm−1 − k) (αm − 1) .

Lemma 2.11 ([2]). Let f 6≡ 0 be a meromorphic function of finite order β,
and let k ≥ 1 be an integer. Then for any given ε > 0, we have∣∣∣∣∣f (k) (z)

f (z)

∣∣∣∣∣ ≤ |z|k(β−1)+ε ,

where |z| /∈ [0, 1]∪E, E is a set in (1,∞) that has finite logarithmic measure.
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3. Proof of Theorem 1.1

Suppose that (0.3) admits a transcendental entire solution f of finite order
σ (f) = α.

From (0.3), we can write

(3.1) e−z f (n)

f
+ Pn−1 (z)

f
(n−1)

f
+ · · ·+ P1 (z)

f ′

f
+ P0 (z) = 0.

If V (r) denotes the central index of f, then

(3.2) V (r) = (1 + o (1))Crα,

as r → ∞, where C is a positive constant. In addition, from the Wiman-
Valiron theory it follows that there exists a set E ⊂ (1,∞) that has finite
logarithmic measure, such that for all j = 1, 2, . . . , n we have

(3.3)
f (j) (zr)
f (zr)

= (1 + o (1))
(

V (r)
zr

)j

as r → ∞, r /∈ E, where zr is a point on the circle |z| = r that satisfies
|f (zr)| = max

|z|=r
|f (z)| , 0 < r < ∞.

Let bk denote the leading coefficient of the polynomial Pk (z) , and set
ak = Ck |bk| , where C > 0 is the constant in (3.2) and set an = Cn.

Substituting (3.2) and (3.3) in (3.1) and multiplying the both side by zn
r ,

we get an equation whose the left side consists of a sum of n+1 terms whose
moduli are asymptotic ( as r →∞, r /∈ E ) to the following n + 1 terms:

(3.4) e−r cos θranrnα, an−1r
1+dn−1+(n−1)α, . . . , akr

n−k+dk+kα, . . . , a0r
n+d0 .

We discuss three cases according to the limit of e−r cos θr .
Case 1. lim

r→∞
e−r cos θr = ∞. In this case, e−r cos θranrnα is the unique

dominant term ( as r →∞, r /∈ E ) in (3.4). This is impossible.
Case 2. lim

r→∞
e−r cos θr = c where 0 < c < ∞ . If αj+1 < α < αj for some

j = 1, . . . , p− 1, Then from Lemma 2.1 and Lemma 2.2, we have

n− k + dk + kα < n− sj + dsj + sjα,

for any k 6= sj , then asjr
n−sj+dsj +sjα is the unique dominant term (as

r → ∞, r /∈ E) in (3.4). This is impossible also. Now if 0 < α < αp then
from Lemma 2.2 and Lemma 2.3, we have

n− k + dk + kα < n− sp + dsp + spα,

for any k 6= sp, then aspr
n−sp+dsp+spα is the unique dominant term (as

r → ∞, r /∈ E) in (3.4). This gives a contradiction in (3.1). Finaly if
α > α1 then from Lemma 2.1, we have

(3.5) n− k + dk + kα < nα,

for any 0 ≤ k < n; so e−r cos θranrnα is the unique dominant term (as r →∞,
r /∈ E) in (3.4). Also, this leads to a contradiction in (3.1).
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Case 3. lim
r→∞

e−r cos θr = 0. If 0 < α < αp or αj+1 < α < αj for some
j = 1, . . . , p−1, we find the same contradiction as in Case 2. Now if α > α1,
although we have (3.5), e−r cos θranrnα is not the dominant term because

lim
r→∞

e−r cos θranrnα = 0.

If s1 = n′, then from Lemma 2.4, we have

n− k + dk + kα < n− n′ + dn′ + n′α,

for any 0 ≤ k < n′. So, there exists only one dominant term in (3.4) (as
r →∞, r /∈ E). A contradiction.

If s1 < n′ and
ds1

n− s1
=

dn′

n− n′
, then from Lemma 2.5, we have

n− k + dk + kα < n− n′ + dn′ + n′α,

for any 0 ≤ k < n′. As above, there exists one dominant term in (3.4) (as
r →∞, r /∈ E), which leads to a contradiction.

If s1 < n′ and
ds1

n− s1
>

dn′

n− n′
, then from Lemma 2.6, we have α′1 > α1.

Now we will use the sequence α′1, α
′
2, . . . , α

′
q. If 0 < α < α′q or α′j+1 < α < α′j

for some j = 1, . . . , q − 1, by using Lemma 2.8 and Lemma 2.9, we find the
same previous contradiction. Now if α > α′1, from the Lemma 2.7, we have

n− k + dk + kα < n− n′ + dn′ + n′α,

for any 0 ≤ k < n′. As above, this gives a contradiction.
Thus, the possible values of α are {α1, α2, . . . , αp} ∪

{
α′1, α

′
2, . . . , α

′
q

}
.

4. Proof of Theorem 1.3

Suppose to the contrary that there exists a non trivial solution f of (0.3)
which satisfies σ (f) = β < 1 + d0

n . Then, we can write

(4.1) β = 1 +
d0

n
− τ,

where τ is a positive constant.
Since s1 = 0, from (0.6) we have

(4.2) dk ≤
n− k

n
d0, k = 1, 2, . . . , n− 1.

From (0.3) we can write

(4.3) − P0 (z) = e−z f (n)

f
+ Pn−1 (z)

f (n−1)

f
+ · · ·+ P1 (z)

f ′

f
.

By taking arg z ∈
(
0, π

2

)
, we can get |e−z| < 1; and from Lemma 2.11 and

(4.3), we obtain

(4.4) |P0 (z)| <
n∑

k=1

|z|dk+k(β−1)+ε ,
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where |z| large enough (|z| /∈ E) and dn = 0.
From (4.4), (4.2) and (4.1), we get

|P0 (z)| <
n∑

k=1

|z|d0−kτ+ε < n |z|d0−τ+ε ,

where |z| is sufficiently large (|z| /∈ E) . This is not possible if we choose
0 < ε < τ. Thus σ (f) ≥ 1 + d0

n .

5. Proof of Theorem 1.5

Suppose that f 6≡ 0 is a polynomial solution of (0.3).
From (0.3), we can write

−P0 (z) = e−z f (n)

f
+ Pn−1 (z)

f (n−1)

f
+ · · ·+ P1 (z)

f ′

f
,

which implies that f must be of degree at most n− 1. So we get

(5.1) − P0 (z) = Pn−1 (z)
f (n−1)

f
+ · · ·+ P1 (z)

f ′

f
.

It follows from (5.1) that

(5.2) d0 ≤ max
1≤k≤n−1

{dk − k} .

By Lemma 2.10, we have

(5.3) dk ≤ dsp−1 + (sp−1 − k) (αp − 1) ,

for all k = 1, . . . , n− 1, since sp = 0. Therefore, from (5.3), the definition of
αp in (0.8), and the fact that sp = 0, we obtain for any 1 ≤ k ≤ n− 1,

dk − k ≤ dsp−1 − k + (sp−1 − k) (αp − 1)(5.4)

≤ d0 +
k

sp−1

(
dsp−1 − d0 − sp−1

)
.

Since αp > 0 and sp = 0, it follows from the definition of αp in (0.8)
that dsp−1 < sp−1 + d0. Hence from (5.4), we obtain dk − k < d0 for all
1 ≤ k ≤ n − 1. But this contradicts (5.2). This completes the proof of
Theorem 1.5.
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