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Real and imaginary parts of polynomial
iterates

Julia A. Barnes, Clinton P. Curry
and Lisbeth E. Schaubroeck

Abstract. Julia sets for complex-valued polynomials have been well-
studied for years. However, the graphs of the polynomials themselves
and their iterates are more difficult to visualize because they are four-
dimensional. In this paper, we explore the dynamics of these functions
by analyzing the behavior of the real and imaginary parts of the iter-
ates. We also define two sets of points for which the real (respectively
imaginary) parts of the iterates remain bounded, and prove how these
sets relate to the corresponding filled Julia set. We end by applying our
results to the well-known class of functions fc(z) = z2 + c.
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1. Introduction

The subject of this paper is the real and imaginary parts of the iterates
of complex polynomials. By the nth iterate of a polynomial P , we mean the
function

Pn =

n times︷ ︸︸ ︷
P ◦ · · · ◦ P .

In general, one way to gain insight into the properties of a function is to
examine its graph. This tactic is not available to us in this case since the
graph of a function f : C → C lives in C2, which cannot be easily visualized
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in our three (real) dimensions. Therefore, we study instead the graphs of
the real and imaginary parts of the iterates; these are objects which live
in three real dimensions, and therefore can be visualized and studied. In
particular, we consider the graphs of the real and imaginary parts of Pn(z)
as n tends to infinity.

In Section 2, we provide background information, examples, and defini-
tions used throughout our discussion. Part of the background information
includes a formal definition for the filled Julia set for P , denoted K(P ).
There are also formal definitions for two sets, U(P ) and V (P ), that are re-
lated to the real and imaginary parts of the iterates of P . Basically, a point z
is in U(P ) if the set of its iterates under P has bounded real part. Similarly,
a point z is in V (P ) if the set of its iterates under P has bounded imaginary
part. We also include a theorem of Böttcher and definitions associated with
that theorem.

In Section 3 we prove some technical results used later in the paper.
In Section 4 we precisely prove the relationships between U(P ), V (P ), and
K(P ), including under what conditions U(P ) or V (P ) is equal to K(P ). In
particular, when P (z) = zd+ad−2z

d−2+· · ·+a0, we have that K(P ) 6= V (P )
if and only if the image of the positive real line is “parallel at infinity” to
a horizontal line in the complex plane and K(P ) 6= U(P ) if and only if
the image of the imaginary axis is “parallel at infinity” to a vertical line in
the complex plane. (All terms will be made precise later.) For quadratic
polynomials of the form fc(z) = z2 + c, this means that U(fc) = K(fc) and
V (fc) 6= U(fc) for all c ∈ C.

Finally, in Section 5 we discuss some qualitative differences between U(P )
and V (P ), as well as show the contour plots and corresponding filled Julia
sets for some of the surfaces of well-known polynomials to illustrate our
results.

2. Basic definitions

Here we discuss some general properties about the graphs of complex-
analytic functions. By using calculus and some complex analysis, we can
observe a few things about the graphs of their real and imaginary parts.

Theorem 1. Let f be a nonconstant complex-analytic function with real
and imaginary parts u and v. Then the critical points of f are the critical
points of both u and v. Also, each critical point is a saddle point for both u
and v.

Proof. Since f is complex analytic, the functions u and v are differentiable,
and indeed harmonic. As such, u and v satisfy a maximum modulus prop-
erty: if u (respectively v) has a maximum value on an open disk Ω, then
u (respectively v) is constant on Ω. Since f is nonconstant and analytic,
neither u nor v is constant on any disk. Hence, any critical point of u or
v cannot be the location of a local extremum, i.e., it is a saddle point. To
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Figure 1. The real and imaginary parts of f2
−1 with critical

points marked.

finish, note that every critical point of u or v is a critical point of f by the
Cauchy–Riemann equations. �

Example 2. As an illustration, consider the function f−1(z) = z2− 1. The
only critical point for f−1 is 0, while the critical points for f2

−1 are 0, 1 and
−1. See Figure 1 for graphs of Re(f2

−1) and Im(f2
−1) along with their saddle

points.

The filled Julia set of a complex polynomial P (z) = adz
d + ad−1z

d−1 +
· · ·+ a1z + a0 is defined by

K(P ) = {z ∈ C : Pn(z) 6→ ∞}.
Note that the boundary of K(P ) is the well studied Julia set J(P ), the locus
of chaos of P . Its complement is known as the Fatou set. The complement
of K(P ), denoted B∞, is the attractive basin of infinity and is a subset of
the Fatou set for P . K(P ) and B∞ are well studied and have a rich theory;
good references for the background are [1] and [3].

Example 3. The filled Julia set, K(f0), for f0(z) = z2 + 0 can be easily
computed. Consider z in polar form, i.e. z = reiθ with r = |z|, and θ the
angle between the x-axis and the ray from 0 to z. When we evaluate f0(z),
we see that f0(z) = z2 = (reiθ)2 = r2ei2θ. If we continue in this fashion,
fn0 (z) = r2

n
ei2

nθ, and |fn0 (z)| = |r2n ||ei2nθ| = r2
n
. Note that

lim
n→∞

r2
n

=


0 if r < 1
1 if r = 1
∞ if r > 1.

Therefore, {fn0 (z) : n is a natural number} is bounded if and only if |z| =
r ≤ 1. Hence, the filled Julia set, K(f0), is the closed unit disk.

For other polynomials P (z), it is generally not possible to determine the
filled Julia set by hand, although it is not difficult to have a computer
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Figure 2. The filled Julia sets for z2 − 1, z2 + i, and z3 + i.

generate approximate images. See Figure 2 for Julia sets for f−1 = z2 − 1,
fi = z2 + i, and z3 + i.

Now we want to explore the similarities and differences of Re(Pn) and
Im(Pn) and their corresponding filled Julia sets. To this end, we define two
new sets.

Definition 4. For a polynomial P , let

U(P ) = {z : Re(Pn(z)) 6→ ∞}

and
V (P ) = {z : Im(Pn(z)) 6→ ∞}.

Note that we are not iterating Re(Pn) and Im(Pn); we are taking the real
and imaginary parts of the iterates of P .

The proofs of our major theorems rely heavily on the following theorem
of Böttcher. (See [3] for proofs and related discussion.)

Theorem 5 (Böttcher Theorem). Let P be a polynomial of degree d. There
exists a neighborhood A of ∞ and a univalent map ϕ : A→ C such that:

(1) B := ϕ(A) is a neighborhood of ∞.
(2) P (ϕ(z)) = ϕ(zd), i.e., ϕ conjugates P to g(z) = zd as in the com-

mutative diagram

A A

C C.

-
g(z)=zd

?

ϕ

?

ϕ

-
P

(3) The map ϕ is unique up to multiplication by a (d−1)st root of unity,
and in the case that the leading coefficient of P is one we can choose
ϕ to satisfy

lim
z→∞

ϕ(z)
z

= 1.
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We will call the plane in which P acts (i.e., the plane containing the
domain of ϕ) the polynomial plane for P , whereas the plane in which g(z) =
zd acts (i.e., the plane containing the range of ϕ) is called the uniformized
plane. We define the dynamic ray Rθ(P ) at θ ∈ R/Z for a polynomial P in
the following way:

Rθ(P ) = ϕ({re2πiθ : r > a}),
for some constant a depending on the polynomial P . Also, θ corresponds
to an angle in the uniformized plane. When the context is clear, we will
suppress the dependence on P in our notation. Hence, if we define σd(θ) =
d · θ mod 1, iterating P (z) on dynamic rays is analogous to iterating σd on
the corresponding angles. Observe that Theorem 5 implies that the image
of Rθ(P ) under P is contained in Rd·θ(P ).

We say θ is a fixed direction if P (Rθ) ⊂ Rθ∪Rθ+1/2, and θ is an invariant
direction if P (Rθ) ⊂ Rθ. As an example, for a cubic polynomial, 1/2 is an
invariant direction (since 3 ·1/2 = 1/2 mod 1), while 1/4 is a fixed direction
but not an invariant direction (since 3 · 1/4 = 3/4 mod 1).

We say that two paths γ1(t) and γ2(t) tending to infinity are parallel
at infinity if limt→∞ arg(γ1(t)) and limt→∞ arg(γ2(t)) exist and are equal.
Note that there will be exactly one ray with an endpoint at the origin that
is parallel at infinity to Rθ for any θ.

3. Foundational theorems

In this section we prove results that will be used later to analyze the
relationships between U(P ),V (P ), and K(P ). Throughout this section, ρ
denotes the Euclidean metric, and we will often use it to denote the shortest
distance between a point and a set. We prove the following theorems.

Theorem 6. Let P be a polynomial of degree d, and let ψ be a fixed direction
under P . If z0 ∈ B∞ and Pn(z0) 6∈ Rψ(P ) for all natural numbers n, then
lim supn→∞ ρ(Pn(z0), Rψ(P )) = ∞.

Proof. Without loss of generality, we may assume that the leading coef-
ficient of P (z) is one so that Condition (3) of Theorem 5 applies. For if
P (z) did not have leading coefficient one, we could compose with an affine
transformation µ(z) = az + b so that the polynomial Q = µ ◦ P ◦ µ−1 has
leading coefficient one and prove the result for Q.

Notice that there is a neighborhood A of ∞ and a univalent map ϕ :
A 7→ C with the properties of Theorem 5. Since z0 ∈ B∞, we may pass
to an appropriate iterate and assume z0 ∈ A and hence contained on some
external ray Rθ(P ), with θ 6= ψ.

Let Lψ denote the straight line at angle 2πψ with the positive real axis
and let γθ denote the ray with one endpoint at the origin at angle 2πθ with
the positive real axis. Let ζ0 = ϕ−1(z0), and ζn = gn(ζ0) = ζdn−1. Then
ζn ∈ γσn

d (θ) = γdnθ. Define I = (ψ − 1/(4d), ψ + 1/(4d)) and W = {z =
re2πit : t ∈ I ∪ −I and r ≥ 0}. Notice the only elements which remain in
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I ∪ −I under iteration of σd are ψ and −ψ. Therefore there is an infinite
sequence (nk)∞k=1 such that dnkθ /∈ I∪−I for all k, so ζnk

/∈W . Consider the
angles between Lψ and the rays from the origin through each ζnk

. Notice
that these angles are bounded below because ζnk

6∈ W . Combine this with
the fact that ζnk

tends to ∞ to see that ρ(ζnk
, Lψ) tends to infinity as k

approaches infinity.
Now, because limz→∞

ϕ(z)
z = 1, for any angle 2πν

lim
z→∞

arg(Rν(P )) = lim
r→∞

argϕ(re2πiν) = lim
r→∞

arg(re2πiν) = 2πν.

Therefore Rν is parallel at infinity to Lν .
Let znk

= ϕ(ζnk
) = Pnk(z0). Note that znk

must lie outside of ϕ(W ).
Consider the angles between Lψ and the ray from the origin through each
znk

in the polynomial plane. As in the above discussion for the uniformized
plane, these angles are bounded below. And, since Rψ and Lψ are parallel
at infinity, it follows that limk→∞ ρ(znk

, Rψ) = ∞. Thus,

lim sup
n→∞

ρ(Pn(z0), Rψ(P )) = ∞. �

The following proof will make use of the “little-oh” notation. By G(t) =
o(H(t)), we mean

lim
t→∞

G(t)
H(t)

= 0.

Theorem 7. Let P be a polynomial, and let ψ be an invariant direction
under P . Let Lψ denote the line through the origin which is parallel at
infinity to Rψ(P ). If z0 ∈ Rψ(P ), then lim supn→∞ ρ(Pn(z0), Lψ) <∞.

Proof. Without loss of generality, we will assume P (z) = zd + ad−2z
d−2 +

· · · + a0. Therefore Condition (3) of Theorem 5 applies, giving us a neigh-
borhood A of ∞ and a univalent map ϕ from A to C with limz→∞

ϕ(z)
z = 1.

We first prove the result in the case where ψ = 0, so that the real axis
is the invariant direction. We define a parametrization γ : [a,∞) → C of
the dynamic ray R0(P ) by γ(t) = ϕ−1(t), and we call its real and imaginary
parts x(t) and y(t) respectively. Note, by the Böttcher Theorem, that

P (γ(t)) = γ(td).

We will show that limt→∞ y(t) = 0. To do so, we first introduce the
argument function α : [a,∞) by

α(t) =
Im(γ(t))
Re(γ(t))

.

Since limz→∞
ϕ(z)
z = 1, we find that

x(t)
t

→ 1 and
y(t)
t

→ 0 as t→∞.
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Therefore,

(1) α(t) → 0 as t→∞.

Choose b > a large enough so that for all t > b we have that x(td) > x(t) >
|y(t)| ≥ 0.

By way of contradiction, assume that y(t) 6→ 0 as t → ∞. Then there
exists ε > 0 so that D = {t > b : |y(t)| > ε} is unbounded. In the following,
we only consider t ∈ D. We see that

γ(td) = P (γ(t))

= (x(t) + iy(t))d + ad−2(x(t) + iy(t))d−2 + . . .+ a0

= (x(t) + iy(t))d + o(td−1).

Expanding (x(t) + iy(t))d, and using limt→∞
xd−2y
td−1 = limt→∞

xd−2

td−2 · yt = 0,

γ(td) = (x(t))d + id(x(t))d−1y(t) + y · o(td−1) + o(td−1)

= (x(t))d + id(x(t))d−1y(t) + (y + 1)o(td−1).

For simplicity of notation, we will now use x = x(t) and y = y(t). By
definition of α,

|α(td)| =
∣∣∣∣dxd−1y + (y + 1)o(td−1)

xd + (y + 1)o(td−1)

∣∣∣∣
=

∣∣∣∣∣yx
(
dxd−1 + (1 + 1

y )o(t
d−1)

xd−1 + ( yx + 1
x)o(td−1)

)∣∣∣∣∣ .

Since t ∈ D, we have 1+ 1
y ≤ 1+ 1

ε and limt→∞
y+1
x = limt→∞ α(t)+ 1

x(t) = 0,
so

|α(td)| =
∣∣∣∣yx
(
dxd−1 + o(td−1)
xd−1 + o(td−1)

)∣∣∣∣
=

∣∣∣∣∣∣yx
d+ o(td−1)

xd−1

1 + o(td−1)
xd−1

∣∣∣∣∣∣ .
Since limt→∞

xd−1

td−1 = 1 and o(td−1)
xd−1 = o(td−1)

td−1 · td−1

xd−1 ,

|α(td)| =
∣∣∣∣yx
(
d+ o(1)
1 + o(1)

)∣∣∣∣ ,
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and for t ∈ D sufficiently large,

|α(td)| >
∣∣∣y
x

∣∣∣ = |α(t)|.

However, if |α(td)| > |α(t)| and x(td) > x(t), then |y(td)| > ε (since
|y(td)| = |α(td)|x(td) > |α(t)|x(t) = |y(t)|). An inductive argument shows
that |α(t)| < |α(td)| < · · · < |α(td

n
)| < · · · , contradicting that α(t) → 0.

Therefore, we conclude that y(t) → 0 as t → ∞. Thus, although R0 is not
necessarily equal to the real axis, it is parallel at infinity to the real axis =
L0. Therefore, the function z 7→ ρ(z, L0) is bounded for all z ∈ R0. Since
Pn(z0) ∈ R0 whenever z0 ∈ R0, this means that ρ(Pn(z0), L0) is bounded
for all n.

If ψ 6= 0, consider instead the function Q(z) = e−iψP (eiψ/dz) which has a
leading coefficient of one. The proof above shows that Im(Q(t)) → 0 as t→
∞, which is equivalent to saying that arg(P (eiψ/dt)) → eiψ. Furthermore,
since ψ is an invariant direction under P , arg(P (t)) → eiψ as t→∞. Thus
ρ(Pn(z0), Lψ) is bounded for all n, and lim supn→∞ ρ(Pn(z0), Lψ) is also
bounded. �

Corollary 8. Let P be a polynomial, and let ψ be a fixed direction under
P . Let Lψ denote the line through the origin which is parallel at infinity to
Rψ. If z0 ∈ Rψ(P ), then lim supn→∞ ρ(Pn(z0), Lψ) <∞.

Proof. Since ψ is a fixed direction under P , the dynamic rays Rψ(P ) and
Rψ+1/2(P ) are invariant under P 2. By the Theorem 7, if z0 ∈ Rψ then

lim sup
n→∞

ρ(P 2n(z0), Lψ) <∞.

Further, P (z0) ∈ Rψ ∪Rψ+1/2, so

lim sup
n→∞

ρ(P 2n(P (z0)), Lψ) <∞.

Combining these bounds, we see that lim supn→∞ ρ(Pn(z0), Lψ) <∞. �

4. Relationship between U(P ), V (P ) and K(P )

In this section, we describe the sets U(P ) and V (P ), as well as how they
relate to K(P ).

Theorem 9. Let P be a polynomial. Then K(P ) = U(P ) ∩ V (P ).

Proof. By the triangle inequality,

|Pn(z)| ≤ |Re(Pn(z))|+ | Im(Pn(z))| ≤ 2|Pn(z)|
so (Pn(z))∞n=1 is bounded if and only if (Re(Pn(z)))∞n=1 and (Im(Pn(z)))∞n=1

are both bounded. �

Lemma 10. Let P be a polynomial. If ψ is a fixed direction for P and Rψ
is parallel at infinity to the real (or imaginary) axis, then Rψ ⊂ V (P ) (or
U(P ) respectively).
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Proof. If z ∈ Rψ, then Corollary 8 implies that lim supn→∞ ρ(Pn(z),R) <
∞; this is exactly that Im(Pn(z)) is bounded for all n. The proof for U(P )
is analogous. �

Theorem 11. Let P be a polynomial. Let Rψ denote the dynamic ray
parallel at infinity to the positive real axis and Rθ denote the dynamic ray
parallel at infinity to the positive imaginary axis.

(1) If θ is not a fixed direction, then U(P ) = K(P ).
(2) If θ is a fixed direction, then

U(P ) = K(P ) ∪
∞⋃
n=0

P−n(Rθ ∪Rθ+1/2).

(3) If ψ is not a fixed direction, then V (P ) = K(P ).
(4) If ψ is a fixed direction, then

V (P ) = K(P ) ∪
∞⋃
n=0

P−n(Rψ ∪Rψ+1/2).

Proof. We will prove the claims relevant to U(P ), since the arguments for
V (P ) are analogous.

Suppose first that θ is not a fixed direction, and let z0 /∈ K(P ). By
way of contradiction, suppose that Re(Pn(z0)) is bounded as n → ∞, i.e.,
{Pn(z0) : n ∈ N} lies in some vertical strip S = {Re(z) < M1} for some
M1 > 0. Let I = [α, β]∪ [α+1/2, β+1/2] be a neighborhood of {θ, θ+1/2}
such that σd(I) ∩ I = ∅. Notice that every dynamic ray in S converging to
infinity is parallel at infinity to the imaginary axis. Let ν 6∈ {θ, θ + 1/2}.
Then Rν cannot be parallel at infinity to the imaginary axis because dynamic
rays parallel at infinity are unique. Thus Rν ∩ S is bounded for all such ν,
and the only dynamic rays intersecting S in an unbounded set are Rθ and
Rθ+1/2.

We define the set A = ∪ν 6∈IRν . Note that the boundary of A is ∂A =
Rα ∪ Rβ ∪ Rα+1/2 ∪ Rβ+1/2. Therefore ∂A ∩ S must be bounded. Thus
there is some M2 such that ∂A ∩ S is contained in the disk of radius M2

centered at the origin, D(0,M2). Suppose that (C\D(0,M2)) ∩ S ∩ A is
nonempty. Then ∂A must have a nonempty intersection with (C\D(0,M2))
and S. But this contradicts the definition of M2. Thus (C\D(0,M2))∩S∩A
is empty. Since the orbit of z0 is unbounded and by assumption contained
in S, there is some k such that |P k(z0)| > M2. Since P k(z0) ∈ S, it is not
in A, so is on a dynamic ray Rξ for some ξ ∈ I. Therefore, P k+1(z0) lies
on the dynamic ray Rd·ξ. By definition of I, we know that d · ξ is not in
I, thus P k+1(z0) ∈ A. Additionally, |P k+1(z0)| > M2, so P k+1(z0) is not
in the strip S, contradicting the assumption that Re(Pn(z0)) is bounded.
Therefore, U(P ) = K(P ).

Now suppose that θ is a fixed direction. By Theorem 6, the orbit of any
point which does not eventually map into Rθ or Rθ+1/2 has unbounded real
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Figure 3. The zero level curves for Im(f0) and Im(f2
0 ) .

part. However, by Corollary 8, the orbit of any point which maps into Rθ
or Rθ+1/2 has bounded real part. Therefore, U(P ) is the union of K(P )
together with all points eventually mapping into Rθ ∪Rθ+1/2. �

Example 12. We consider the well-known family of functions fc(z) = z2+c.
The functions fc(z) are conjugate to z2 by the Böttcher Theorem. Under
z2, the real axis is a fixed direction, and the imaginary axis is not. After
conjugating back to z2 + c by ϕ(z), the real axis is parallel at infinity to R0,
and is therefore a fixed direction for fc(z) as well. Similarly, the imaginary
axis is parallel at infinity to R1/4, which is not a fixed direction because
it maps to R1/2 under z2 + c. Thus, by Theorem 11, U(fc) = K(fc) and
V (fc) 6= K(fc).

Example 13. In particular, a direct application of Theorem 11 to the func-
tion f0(z) = z2 shows that

V (f0) = K(f0) ∪ {re2πiθ : θ = k/2n for k, n ∈ N}.
Note that V0 is dense in C∞. One way to see this description of V (f0) is that
the zero level curves for Im(fn0 ) correspond to the points which eventually
land on the real axis. The level curves for Im(f0) and Im(f2

0 ) are illustrated
in Figure 3.

Example 14. For monic centered polynomials, that is, polynomials of the
form

P (z) = zd + ad−2z
d−2 + · · ·+ a0,

we have the following results about U(P ) and V (P ). For all values of d,
V (P ) 6= K(P ) since the real axis is a fixed direction as described in Exam-
ple 12. For even values of d, U(P ) = K(P ), again by the same reasoning
used in Example 12. For odd values of d, the imaginary axis is a fixed
direction, so U(P ) 6= K(P ).

5. Illustrations and conclusions

In this section, we compare the graphs of Re(P k(z)) and Im(P k(z)) to
the filled Julia set K(P ) for some familiar functions P . We also outline the
differences between Re(fnc ) and Im(fnc ).
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Figure 4. The zero level curves for Re(f0) and Re(f2
0 ).

The contour diagrams of Re(P k(z)) and Im(P k(z)), along with the corre-
sponding filled Julia set K(P ), are presented in Figure 5 for a few common
polynomials. The contour plots show the contour lines for function values
of −2 and 2, with the shading indicating relative height of the regions in
between the curves. The alternating shading indicates that the height of the
surface oscillates away from the filled Julia set. Notice that the filled Julia
sets are beginning to appear in the center of these images, even after a small
number of iterations. Though they look very similar, the contour plots of
the real and imaginary parts of the iterates are not identical.

Comparing Figures 3 and 4, we see the zero level curves behave differently
for the real and imaginary parts of the iterates of f0. We noted in Example 13
that the zero level curves of Im(fn0 ) contain those of Im(fn−1

0 ), giving us
an infinite number of external rays that are contained in V (fc) \ K(fc).
Figure 4 illustrates that this is not the case for the real part. In particular,
points along the zero level curves of Re(f0) are not on the zero level curves
of Re(f2

0 ), indicating that, when Re(f0(z)) is zero, Re(f2
0 (z)) is not zero.

Extending this reasoning to further iterates, we see that if z /∈ K(f0) then
Re(fn0 (z)) does not remain bounded.

As we have seen in this paper, the filled Julia sets for polynomials are
closely related to the sets U(P ) and V (P ), which correspond to the real
and imaginary parts of the iterates of P . For polynomials of odd degree
with leading coefficient of one, U(P ) 6= K(P ) and V (P ) 6= K(P ). For
polynomials of even degree with leading coefficient of one, U(P ) = K(P )
and V (P ) = K(P ). In particular, this means that for the well-known family
of functions fc(z) = z2 + c, U(fc) = K(fc) and V (fc) 6= K(fc) even though
the contour plots for the real and imaginary parts of the iterates of fc(z)
seem to be the same and the filled Julia set seems to appear in the centers
of the contour plots.
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Figure 5. Mathematica images of contour plots for
Re(P k(z)) and Im(P k(z)); FracTool images of filled Julia
sets for the corresponding functions
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