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Isoperimetric regions in the plane with
density rp

Jonathan Dahlberg, Alexander Dubbs,
Edward Newkirk and Hung Tran

Abstract. We consider the isoperimetric problem in the plane with
density rp, p > 0, and prove that the solution is a circle through the
origin. We use the stability of this isoperimetric curve to prove an
apparently new generalization of Wirtinger’s Inequality.
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1. Introduction

A density on a surface is a positive function weighting perimeter and
area. In this paper, we study the isoperimetric problem on planes with
radial density. The isoperimetric problem seeks the least-perimeter way to
enclose given area. The solution is known only for a relatively small number
of surfaces (see [HHM]) and for just a few densities on the plane. For
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Gaussian density ce−a
2r2 , minimizers are straight lines; for density cea

2rb
,

with b ≥ 2, minimizers are circles about the origin (see [RCBM, Thm. 3.10]
and [MM, Cor. 2.2]). For a few special discontinuous densities, see the paper
by Cañete et al. [CMV]. For the plane with density |y|p, (p > 0), Engelstein
et al. [EMMP, Sect. 4] prove that minimizers are semicircles closed by a
segment of the x-axis.

1.1. The plane with density rp. The plane with density rp is especially
interesting because it has vanishing generalized Gauss curvature and because
it has a singularity at the origin where the density vanishes. Carroll et al.
[CJQW, Sect. 4] prove that for p < −2, minimizers are circles about the
origin (with the enclosed area on the exterior), prove that for −2 ≤ p < 0
minimizers do not exist, and conjecture that for p > 0 minimizers are non-
circular convex ovals with the origin in their interiors as in Figure 1b. Our
Theorem 3.16 proves that the minimizer is a circle passing through the origin
as in Figure 1c. For p > 0 it was already known that an isoperimetric region
exists and must contain the origin (see Propositions 3.1, 3.5). Our Proposi-
tion 2.11 shows that an isoperimetric curve passing through the origin must
be a circle. An isoperimetric curve not passing through the origin must have
only one maximum and one minimum of r (Proposition 3.12), hence only
two extrema of curvature (Lemma 3.15) contradicting the 4-Vertex Theorem
[O].

Section 5 solves the isoperimetric problem on lines in the plane with
density rp, p > 0.

a b c

Figure 1. Three possibilities for an isoperimetric region in
the plane with density rp, p > 0. The first circle (a) is
unstable, the last circle (c) is the minimizer.

1.2. Stability. Section 4 considers the second variation of the circle through
the origin in the plane with density rp, p > 0. Since the circle is a minimizer,
its second variation must be nonnegative. Theorem 4.4 shows that nonneg-
ative second variation is equivalent to an apparently new generalization of
Wirtinger’s Inequality. For p = 2 Theorem 4.5 proves that the circle has
positive second variation.
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1.3. Brakke’s Evolver. In Section 6 we use Ken Brakke’s Evolver pro-
gram to provide computational reinforcement for our results. Figure 2 il-
lustrates how Evolver suggests an isoperimetric region resembling the circle
through the origin. We also discuss anomalies created by tiny density near
the origin for high values of p, as seen in Figure 3.

Figure 2. For low values of p, Brakke’s Evolver produces
results very close to the circle through the origin.

Figure 3. For higher values of p, the singularity at the
origin gives Brakke’s Evolver trouble.

1.4. Acknowledgements. We thank Ken Brakke and Richard McDowell
for help with Evolver, and thank Professor Frank Morgan, whose guidance
and patience have been invaluable to us in writing this paper. We also would
like to thank Sean Howe and David Thompson for helpful comments. Their
new paper on “Isoperimetric problems in sectors with density” with Alex
Dı́az and Nate Harman generalizes some of our results to planar sectors and
higher dimensions.

2. Constant curvature curves in planes with density

We consider the plane with density eψ used to weight both perimeter and
area. In terms of Riemannian perimeter and area (dP0 and dA0), weighted
perimeter and area satisfy:

dP = eψdP0,

dA = eψdA0.
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For a normal variation u, the first variation satisfies

δ1(A) =
dA

dt
= −

∫
udsψ

δ1(P ) =
dP

dt
= −

∫
uκψdsψ

where in terms of the Riemannian curvature κ,

(1) κψ = κ− ∂ψ

∂n
.

We call κψ the generalized curvature. It follows that an isoperimetric curve
has constant generalized curvature.

Lemma 2.1. Consider R2−{0} with smooth radial density eψ(r). A constant-
generalized-curvature curve is symmetric under reflection across every line
through the origin and a critical point of r.

Proof. A curve with constant generalized curvature satisfies the differential
equation:

κψ = c.

At any critical point, by uniqueness of solutions of ordinary differential equa-
tions the curve must behave the same way whether going clockwise or coun-
terclockwise. �

Lemma 2.2. If a differentiable planar curve is symmetric across infinitely
many lines through the origin, it is a circle around the origin.

Proof. The group of symmetries of the curve includes reflections across
arbitrarily close lines through the origin, hence their compositions, hence
arbitrarily small rotations. Therefore for every θ, r′(θ) = 0, and r is con-
stant. �

Definition 2.3. Define continuous functions σ and θ along a curve C as
the angles counter-clockwise from the position vector to the tangent vector
and from a fixed vector to the position vector. Then α = σ + θ is the angle
from the fixed vector to the tangent vector, so κ = dα/ds. For a curve in
polar coordinates (r(s), θ(s)) parameterized by arc length, sinσ = rθ′ and
cosσ = r′.

Lemma 2.4. In R2−{0} with smooth radial density eψ(r), a positive gener-
alized curvature curve that encircles the origin once and has rotation index
1 is a polar graph.

Proof. Suppose there is such a curve C that is not a polar graph, parame-
terized by arc length.

Because C encircles the origin once and has rotation index 1, both θ and α
change the same amount when we travel around the curve once. Therefore,
for any initial point, σ returns to its original value.
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Since C is not a polar graph and encircles the origin once, there exist
extrema of θ, characterized by σ a multiple of π. At an extremum, κ =
κψ + ∂ψ/∂n = κψ is positive. Since

κ =
dα

ds
=
dσ

ds
+
dθ

ds

and dθ/ds = 0, dσ/ds is positive whenever σ is a multiple of π. But σ must
return to its original value, a contradiction. �

Remarks. If ψ′(r) > 0, as holds for ψ = log(rp), for p > 0, a curve with
constant generalized curvature must have κψ > 0. Indeed, at the point
farthest from the origin, κ and −∂ψ/∂n are both positive, so κψ > 0. (For
p < 0, the opposite orientation yields κψ > 0.)

Any regular Jordan curve suitably oriented has rotation index 1.
In the plane with density rp, any Jordan curve with positive generalized

curvature, even if it passes through the origin, which has undefined gener-
alized curvature, is a polar graph. To see this, introduce new coordinates
w = (x+ iy)p+1/(p+1) as in [CJQW, Prop. 4.3]. Since |dw| = rp|d(x+ iy)|,
in these new coordinates, length is just the Euclidean |dw| although area
is weighted. By [CJQW, Sect. 3], generalized curvature at each point is a
positive multiple of classical curvature in the w-plane, which must therefore
be positive. Thus the curve is locally convex in the w-plane, implying θ a
monotonic function of arc-length. Hence the curve is a polar graph.

Corollary 3.10 provides an alternative proof of Lemma 2.4 under stronger
hypotheses.

Proposition 2.5. A constant-generalized-curvature curve in a planar do-
main with smooth radial density has finitely many critical points unless it is
a circle about the origin.

Proof. If the curve has infinitely many critical points, it must have infinitely
many lines of symmetry by Lemma 2.1 because a Jordan curve intersects
a line of symmetry at most twice. Then by Lemma 2.2 it must be a circle
about the origin. �

Corollary 2.6. For a constant-generalized-curvature curve in a planar do-
main with smooth radial density, critical points are strict extrema unless the
curve is a circle about the origin.

Proof. Suppose the curve is not a circle about the origin. By Proposi-
tion 2.5 critical points are isolated. By symmetry (Lemma 2.1), isolated
critical points are strict extrema. �

Lemma 2.7. A constant-generalized-curvature polar graph r(θ) > 0 in a
planar domain with smooth radial density is symmetric under the full dihe-
dral group acting on maxima and on minima unless it is a circle about the
origin.
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Proof. Suppose the curve is not a circle about the origin. By Proposi-
tion 2.5, there are finitely many extrema. By Lemma 2.1, the curve is
symmetric under reflection across a line through a minimum, which iden-
tifies adjacent maxima. Such symmetries generate the dihedral group of
symmetries of maxima. A similar argument applies to minima. �

Proposition 2.8. A polar graph r(θ) in the plane with density rp, p real,
has vanishing first variation for given enclosed area if and only if it is critical
for the Lagrange multiplier functional

P − λA =
∫
F,

where the “Lagrangian” function F is given by

F = rp
√
r2 + r′2 − λ

rp+2

p+ 2
,

and λ is equal to the (constant) generalized curvature. (When p = −2, the
second term is −λ log r.)

Proof. This is the standard Lagrange multiplier formulation. The formula
for F comes from

P =
∫ θ2

θ1

rpds

A =
∫ θ2

θ1

∫
rprdrdθ =

∫ θ2

θ1

rp+2

p+ 2
dθ.

Note that for p < −2 the region of finite area A is the unbounded region.
When p = −2, we mean the algebraic area of the region between the graph
and the unit circle, and the integral of rp+1 is log r. Finally, λ is equal to
dP/dA, which equals κψ. �

Proposition 2.9. In a planar domain with smooth radial density Ψ(r) =
eψ(r), the generalized curvature of a curve parametrized by arc-length is given
by

(2) κψ = κ+ ψ′(r) sinσ.

Furthermore, if κψ is constant then the function

(3) f(s) = rΨ(r) sinσ − κψ

∫
rΨ(r)dr

is constant along the curve.
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Proof. Equation (2) follows directly from the definition (1) of generalized
curvature. To prove (3), just note that

f ′(s) = r′Ψ(r) sinσ + Ψ′(r)rr′ sinσ + rΨ(r)σ′ cosσ − κψΨ(r)rr′

= r′Ψ(r) sinσ + Ψ′(r)rr′ sinσ + rΨ(r)σ′ cosσ

− (κ+ ψ′(r) sinσ)Ψ(r)rr′

= −rr′Ψ(r)(κ− σ′ − θ′)
= 0. �

Remark. For a polar graph r(θ), (3) is the standard first integral F −
r′∂F/∂r′ constant, where F is the Lagrangian function. For the metric
ds2 = dr2 + Ψ2r2dθ2, this is exactly the Clairaut relation [R, Prop 1.1], but
with a different meaning, since Ritoré’s angle is measured in the new metric.

Corollary 2.10. Along a constant-generalized-curvature curve C in a pla-
nar domain with density rp, p 6= −2,

f(s) = rp+2

(
κψ
p+ 2

− 1
r

sinσ
)

is constant, and if the constant is 0, C is either a circle about the origin or
a circle through the origin.

Proof. By Proposition 2.9(3) for density function Ψ(r) = rp, f is constant.
If the constant is 0, then r−1 sinσ = dθ/ds is constant. Hence the curve is
a polar graph. For a polar graph r(θ),

dθ

ds
=

1√
r2 + r′2

.

Therefore, r2+r′2 is constant, which implies that (r2+r′2)′ = 2r′(r+r′′) = 0.
If r+r′′ is always 0, then the curve is a circle through the origin. Otherwise,
r+ r′′ is not zero somewhere and by continuity there is a piece of the curve
where r′ = 0. By Proposition 2.5, the curve is a circle about the origin. �

Remark. For the case p = −2, all circles through the origin are geodesics,
that is κψ = 0. For them, f(s) = κψ log r − r−1 sinσ is a negative constant.

Proposition 2.11. In a planar domain with density rp, p > −1, if a
constant-generalized-curvature closed curve passes through the origin, it must
be a circle.

Proof. Since rp+1 approaches 0 for p > −1, the constant from Corol-
lary 2.10 must be 0. Hence, C is a circle. �

Proposition 2.12. In R2 − 0 with smooth radial density Ψ(r), every circle
through the origin has constant generalized curvature if and only if Ψ(r) =
crp for real p and positive c.
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Proof. By Proposition 2.9, a circle through the origin has constant gener-
alized curvature if and only if ψ′(r) sinσ is constant. But

ψ′(r) sinσ = ψ′(r)r
dθ

ds
.

Since dθ/ds is constant along every circle through the origin, constant gen-
eralized curvature is equivalent to rψ′(r) constant, which is also equivalent
to Ψ(r) = crp by explicitly solving the equation

ψ′(r)r = c1. �

Remark. This proposition shows that the plane with density rp is very
special. For general radial density, it might be impossible explicitly to solve
for constant-generalized-curvature curves, even those passing through the
origin.

3. Isoperimetric problem in the plane with density rp

Our main theorem, Theorem 3.16, proves that the solution to the isoperi-
metric problem in the plane with density rp, p > 0, is a circle through
the origin. First, by Proposition 2.11, if the isoperimetric curve C passes
through the origin, it must be a circle. Otherwise, Proposition 3.12 proves
that C has only one maximum and one minimum of r. Lemma 3.15 proves
that if C has at most two extrema of radius it has at most two extrema of
curvature, contradicting the 4-vertex Theorem [O].

Proposition 3.1 ([CJQW, Prop. 4.4], after Rosales et al. [RCBM, Thm.
2.5]). In the plane with density rp, p > 0, there exists an isoperimetric region
for any prescribed area.

Proposition 3.2 ([Mo, Sect. 3.10]). An isoperimetric curve in a smooth
surface with density is smooth.

Definition 3.3. A curve is stable if it has nonnegative second variation.

Proposition 3.4. In the plane with density rp, p > 0, a circle centered at
the origin is unstable.

Proof. The density rp, p > 0, is strictly log-concave, so circles about the
origin are unstable by [RCBM, Thm. 3.10]. �

Proposition 3.5 ([CJQW, Prop. 4.5]). In a plane with density rp, p > 0,
an isoperimetric region must contain the origin in its interior or its bound-
ary.

Lemma 3.6. In the plane with density rp, homothetic expansion by a factor
µ increases weighted perimeter by µp+1 and increases area by µp+2.

Proof. This follows immediately from

dP = rpdP0

dA = rpdA0
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because homothetic expansion multiplies dP0 by µ and dA0 by µ2. �

Lemma 3.7. In the plane with density rp, p > 0, the least-perimeter
‘isoperimetric’ function I(A) satisfies

(4) I(A) = cA
p+1
p+2 .

In particular, I is smooth, I ′ > 0, and I ′′ < 0.

Proof. Let c be the perimeter of an isoperimetric region R of area 1. Every
homothetic region µR must be isoperimetric, because if another region R1

had less perimeter, by Lemma 3.6 µ−1R1 would have less perimeter than R.
Hence by Lemma 3.6,

I(A) = cA
p+1
p+2 . �

Proposition 3.8. In the plane with density rp, or in any planar domain
with smooth density and strictly concave isoperimetric function I(A), the
open region bounded by an isoperimetric curve is connected.

Proof. Suppose the open region R has several connected components Rj of
area Aj . By regularity (Proposition 3.2) and strict concavity of I,

P (R) =
∑

P (Rj) ≥
∑

I(Aj) > I
(∑

Aj

)
,

contradicting the fact that R is isoperimetric. Note that I is strictly concave
in the plane with density rp by Lemma 3.7. �

The following results give an alternative proof to that of Lemma 2.4 that
an isoperimetric curve is a polar graph.

Proposition 3.9. In the plane with density rp, p > 0, an isoperimetric
region is star shaped.

Proof. By Proposition 3.5, an isoperimetric region is connected and con-
tains the origin in its boundary or its interior. Now suppose there is an
isoperimetric region which is not star shaped. Then there must be some line
segment OA, where O is the origin and A is a point in the region, which lies
partly outside the region. Let BC be a segment of OA which lies outside of
the region, intersecting the minimizing curve at B and C. Since the region
is connected, part of the minimizing curve must go from B to C. Replace
that part of the curve with the line segment BC. Since we add the region
between the minimizing curve and BC, this change increases area. Since the
minimizing curve has to cover all the same values of r as BC, the change
does not increase perimeter. So we have a region enclosing more area than
our original isoperimetric region with equal or less perimeter, a contradiction
since by Lemma 3.7 the isoperimetric function is strictly increasing. �

Corollary 3.10. In the plane with density rp, p > 0, an isoperimetric region
is bounded by a polar graph.
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Proof. By Proposition 3.9, the region is star shaped. Suppose that the
boundary is not a polar graph. Then part of the boundary curve must be
a radial line segment. Along that line segment, κ = 0 and ∂ψ/∂n = 0
because ψ is radial. Hence κψ = 0 along part of the boundary curve. But
at the point farthest from the origin κψ > 0, contradicting the fact that the
isoperimetric region has constant generalized curvature. �

Remark. Proposition 3.9 and its proof hold for a connected isoperimetric
region containing the origin for any radial density with increasing isoperimet-
ric function I(A). Corollary 3.10 holds under a slightly stronger condition,
namely I ′(A) > 0, which implies that κψ > 0.

Proposition 3.11. The isoperimetric region in the plane with density rp is
a topological disk.

Proof. Since the open region is connected by Corollary 3.8, we just need
to show that the region has no holes. But a hole could be filled in to in-
crease area while decreasing perimeter, which contradicts I strictly increas-
ing (Lemma 3.6). �

Proposition 3.12. An isoperimetric curve C in the plane with density rp,
p > 0, has one maximum and one minimum of radius.

Proof. By Propositions 3.5 and 2.11, we may assume that the origin lies
in its interior. By Lemma 2.4 and the subsequent remarks, we may assume
that the curve is a polar graph. By Proposition 3.4, it is not a circle.

By Proposition 2.5 and Corollary 2.6, C has finitely many critical points,
all strict extrema. By Lemma 2.7, it is symmetric under the dihedral group
on its maxima and minima, as in Figure 4a. Draw a circle of radius between
the maximum and minimum. If the curve has more than one maximum
or minimum, rearrange a portion of the curve as in Figure 4b, maintain-
ing area and perimeter, to create singularities, a contradiction of regularity
(Proposition 3.2).

Figure 4. A symmetric polar graph with more than one
maximum cannot be isoperimetric.

Alternative proof. We describe a transformation that preserves area and
decreases perimeter if C has more than two extrema. As above, we assume
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Original curve C Homothetic expansions Reflection yields C1

C

R

Figure 5. Decreasing perimeter while preserving area.

that C is a polar graph and has finitely many critical points, all strict ex-
trema. Since between two minima A1, A2 there must be a maximum B1, we
can enumerate all extrema A1, B1...An, Bn.

By scaling (Lemma 3.6) and symmetry (Lemma 2.7), homothetic expan-
sions of A1B1A2 by µ1 < 1 and the rest of the curve by µ2 > 1 yield A′1B

′
1A

′
2

and A′′2B
′′
2 ...A

′′
1 as in Figure 5b with perimeter and area satisfying

P (A′1B
′
1A

′
2) = µp+1

1 P (A1B1A2) =
1
n
µp+1

1 P (R),

A(OA′1B
′
1A

′
2) = µp+2

1 A(A1B1A2) =
1
n
µp+2

1 A(R),

P (A′′2...A
′′
1) = µp+1

2 P (A2...A1) =
n− 1
n

µp+1
2 P (R),

A(OA′′2...A
′′
1) = µp+2

2 A(OA2...A1) =
n− 1
n

µp+2
1 A(R),

where R is the region bounded by C. Since n > 1 we can choose 0 < µ1 <
1 < µ2 such that

µ2

µ1
=
rmax

rmin
,

so reflections of A′1B
′
1 and B′1A

′
2 across the rays that bisect angles A′1OB

′
1

and B′1OA
′
2 yield a closed curve as in Figure 5c, and also such that

n− 1
n

µp+2
2 +

1
n
µp+2

1 = 1,
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so the transformation preserves total area. We claim that the new region R′

has less perimeter than R.

P (R′) = P (A′1B
′
1B

′
2) + P (A′′2B

′′
2 ...A

′′
1) =

(
n− 1
n

µp+1
2 +

1
n
µp+1

1

)
P (R)

<

(
n− 1
n

µp+2
2 +

1
n
µp+2

1

)
P (R) = P (R),

the desired contradiction. �

Lemma 3.13. In the plane with density rp, the generalized curvature is

(5) κψ = κ+
p

r
sinσ.

For a polar graph, generalized curvature is equal to

(6) κψ = κ+
p√

r2 + r′2
.

Proof. These formulas follow immediately from the definition of generalized
curvature, κψ = κ− ∂ψ/∂n. �

Proposition 3.14. In R2−0 with density rp, p real, a constant-generalized-
curvature curve C which encircles the origin once and has rotation index
1, which by Lemma 2.4 is a polar graph r(θ), satisfies r(θ) + r′′(θ) > 0
everywhere on C.

Proof. First, we assume p 6= −2. By Corollary 2.10 and by Lemma 3.13,

c =
rp+2

p+ 2

(
κ+

p√
r2 + r′2

− p+ 2√
r2 + r′2

)
=

rp+2

p+ 2

(
r2 − rr′′ + 2r′2

(r2 + r′2)3/2
− 2√

r2 + r′2

)
= − rp+3

p+ 2
r + r′′

(r2 + r′2)3/2
,

where we have used the formula for curvature in polar coordinates. If c = 0
then by Corollary 2.10 the curve must be either a circle about the origin
or a circle through the origin. Since C does not pass through the origin, it
must be a circle about the origin where r + r′′ = r > 0. If c 6= 0, then since
r′′ is nonnegative where r reaches its local minimum, r + r′′ > 0 there and
so c < 0. Consequently, r + r′′ > 0 everywhere on the curve.

If p = −2, then by equation (5),

κψ = κ+
p

r
sinσ

= κ− 2θ′.
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By the Gauss–Bonnet theorem,
∫ L
0 κψds = 2π − 4π = −2π < 0. Therefore,

κψ < 0. By equation (6),

κψ = κ+
p√

r2 + r′2

=
r2 − rr′′ + 2r′2

(r2 + r′2)
3
2

+
−2r2 − 2r′2

(r2 + r′2)
3
2

=
−r(r + r′′)

(r2 + r′2)
3
2

.

Therefore, r + r′′ > 0 everywhere on the curve. �

Lemma 3.15. In the plane with density rp, for a constant-generalized-
curvature curve which encircles the origin once and has rotation index 1,
wherever κ has an extremum, r has an extremum.

Proof. By Lemma 2.4, C is a polar graph. By Lemma 3.13,

κψ = κ+
p√

r2 + r′2

is constant. So if κ has an extremum, then so does r2+r′2, so 2r′(r+r′′) = 0.
By Proposition 3.14, r′ = 0. By Corollary 2.6, r has an extremum. �

Theorem 3.16. In the plane with density rp, p > 0, an isoperimetric curve
is a circle through the origin.

Proof. By Proposition 3.1, a minimizer exists and has constant generalized
curvature. If it passes through the origin, it is a single circle by Proposi-
tions 2.11 and 3.8. If not, the isoperimetric region contains the origin by
Proposition 3.5. By Proposition 3.12, the curve has just two extrema of r.
By Lemma 3.15 the curve has just two extrema of curvature, a contradiction
of the 4-vertex theorem [O]. �

Conjecture 3.17. Consider a plane with smooth radial density Ψ(r) = eψ(r)

except that Ψ(0) = 0. If ψ′(r) > 0 and ψ′′(r) < 0, an isoperimetric curve
must pass through the origin.

Remark. Without the singularity at the origin, Engelstein et al. [EMMP,
Conj. 6.9] conjecture that an isoperimetric curve exists and is a circle cen-
tered at the origin.

4. Stability

Theorem 4.4 deduces from the stability of our proven isoperimetric circle
in the plane with density rp an apparently new generalization of Wirtinger’s
Inequality. Theorems 4.5 and 4.6 prove that for p = 2, the isoperimetric
circle has positive second variation.

Definition 4.1. Let H be the set of all continuous and piecewise C2 func-
tions on [−π/2, π/2] with period π.
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Lemma 4.2. Consider the circle through the origin r(θ) = α cos θ in the
plane with density rp where p ≥ 0. For a variation u ∈ H preserving
weighted area to first order,

0 = δ(A) = −αp
∫ π

2

−π
2

u cosp θdθ,

the second variation of weighted perimeter is given by

δ2(P ) = αp−1

∫ π
2

−π
2

cosp θ(u′2 − 4u2 − pu2(2− sec2 θ))dθ.

Proof. This follows from [RCBM, Prop. 3.6]. �

Lemma 4.3 (Wirtinger’s Inequality [Mit, p. 127]). Let u ∈ H have integral
0 on [−π/2, π/2]. Then∫ π

2

−π
2

u′(θ)2dθ ≥ 4
∫ π

2

−π
2

u(θ)2dθ.

Proof. Since u ∈ H, the associated even-frequency Fourier series converge
to u and u′. The result follows from plugging them in. �

Theorem 4.4 (Generalization of Wirtinger’s Inequality). For u ∈ H satis-
fying

0 =
∫ π

2

−π
2

u cosp θdθ,

we have ∫ π
2

−π
2

cosp θ(u′2 − 4u2 − pu2(2− sec2 θ))dθ ≥ 0.

Proof. By Theorem 3.16, the circle through the origin is the global mini-
mizer for curves of fixed area, so its second variation must be nonnegative.
The result now follows by Lemma 4.2. �

Remark. We do not know whether the generalization of Wirtinger’s In-
equality directly implies circles through the origin are isoperimetric, al-
though the standard Wirtinger’s Inequality implies that all circles are isoperi-
metric when p = 0 [T, Sect. 6].

Theorem 4.5. For p = 2, the equality condition for Theorem 4.4 is

u(θ) = a1 sin 2x.
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Proof. By plugging in the even-frequency Fourier series for u(θ) and inte-
grating we get∫ π

2

−π
2

cos2 θu(θ)2dθ = −a2
0 +

π

8
(a2

1 + b21) +
π

8

∞∑
n=1

(an + an+1)2

+
π

8

∞∑
n=1

(bn + bn+1)2,∫ π
2

−π
2

cos2 θu′(θ)2dθ =
π

2
(a2

1 + b21) +
π

2

∞∑
n=1

(nan + (n+ 1)an+1)2

+
π

2

∞∑
n=1

(nbn + (n+ 1)bn+1)2,∫ π
2

−π
2

u(θ)2dθ = πa2
0 +

π

2

∞∑
n=1

(a2
n + b2n).

This makes the left-hand side of the inequality stated by the lemma equal
to

6πa2
0 −

π

2
(a2

1 + b21) +
π

2

∞∑
n=1

[(nan + (n+ 1)an+1)2 − 2(an + an+1)2 + 2a2
n]

+ · · ·+ π

2

∞∑
n=1

[(nbn + (n+ 1)bn+1)2 − 2(bn + bn+1)2 + 2b2n].

By the helpful identity

(nan + (n+ 1)an+1)2 − 2(an + an+1)2 + 2a2
n

= (n2 + n− 2)(an + an+1)2 + (n+ 1)a2
n+1 + (2− n)a2

n

the sum telescopes to a sum of squares, which is nonnegative. It is zero only
when f(x) = a1 sin 2x+ b1 cos 2x, but the constraint forces b1 = 0, therefore
f(x) = a1 sin 2x. �

Theorem 4.6. For p = 2, the circle through the origin has positive second
variation for all variations except rotations about the origin.

Proof. By Theorem 4.4 and Lemma 4.5, the second variation from Lem-
ma 4.2 is nonnegative, and zero only when u(θ) = a1 sin 2θ, which corre-
sponds to rotation. �

5. Lines in the plane

We consider the isoperimetric problem on lines in the plane with density
rp for p > 0. Since density is unchanged by rotation about the origin,
we only need to consider the lines given by y = h, where h ≥ 0, with
density (x2 +h2)p/2. Theorem 5.3 shows that the solution is an interval [b, c]
determined by bc = −h2 and a prescribed weighted length.
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Proposition 5.1. On any line in the plane with density rp, p > 0, for any
given weighted length, the isoperimetric region exists as a bounded interval
containing the point on the line closest to the origin.

Proof. The density is decreasing for x < 0 and increasing for x > 0. The
result follows directly by [RCBM, Thm. 4.7]. �

Proposition 5.2. An interval {b ≤ x ≤ c} on the line y = h in the plane
with density rp, p > 0, has vanishing first variation if and only if b = −c or
bc = −h2.

Proof. Vanishing first variation means that dP/dL must be the same at
each endpoint:

−pb
b2 + h2

=
pc

c2 + h2
,

which is equivalent to (b+ c)(h2 + bc) = 0, i.e., b = −c or bc = −h2. �

Theorem 5.3. On the line y = h, h ≥ 0, in the plane with density rp,
p > 0, isoperimetric regions are segments [−b, b] for 0 < b ≤ h and then
segments [−h2/b, b], [−b, h2/b] with b > h.

Proof. By Proposition 5.1, isoperimetric regions exist and are bounded
intervals. Consider moving a segment [a, b] of fixed weighted length from
left to right. For fixed length we may assume that

da

dt
=

1
Ψ(a)

,

db

dt
=

1
Ψ(b)

.

Then the rate of change of perimeter is given by

dP

dt
=

Ψ′(a)
Ψ(a)

+
Ψ′(b)
Ψ(b)

= ψ′(a) + ψ′(b),

which is a positive quantity times (a+ b)(h2 + ab).
If the length is less than or equal to the length of [−h, h], then P decreases

until a = −b, after which it increases, so that the isoperimetric region is of
the form [−b, b]. If the length is greater than the length of [−h, h], then
P decreases until a = −h2/b, increases until a = −b, decreases until once
again a = −h2/b (the reflection arcoss x = 0 of the first such point), and
then increases. So the isoperimetric regions are the two segments [−h2/b, b],
[−b, h2/b] with b > h. �

Remarks. As a special case, the corollary says that the isoperimetric so-
lution on a line through the origin is an interval with an endpoint at the
origin.

All of the minimizers have positive second variation except for [−h, h],
which has vanishing second variation.
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6. Brakke’s Evolver for the plane with density rp

The Evolver program, written by Ken Brakke [B1, B2], takes a given
initial shape and evolves it towards the least-energy shape satisfying certain
conditions. By setting energy to be weighted perimeter, we can use Evolver
to make conjectures about the isoperimetric region in the plane with density
rp for various values of p > 0.

The program calculates the area of a region in the plane with density rp by
taking the line integral of the vector field (rp(−y), rpx) along the boundary
of the region. We thank Ken Brakke for help with this formula.

For p = 0, any initial condition will rapidly flow to a circle, which is
the isoperimetric region in this case. Similarly, for small p, the program
consistently flows toward a circle through the origin (see Figure 6).

Figure 6. For low values of p, Brakke’s Evolver produces
results very close to the circle through the origin.

Unfortunately, Evolver struggles with regions of very high or very low
density. This means that as p increases and density near the origin goes to
zero, the program makes smaller and smaller changes near the origin and
converges very slowly, as in Figures 7 and 8.

Figure 7. With p = 3, the density near the origin is so
small that Evolver takes a very long time to extend the shape
to the origin. This figure is evolved from a convex pentagon
to the right of the origin.

The program often drastically slows its rate of movement when close to
going through the origin, resulting in a situation where the program gets
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stuck near a particular suboptimal shape. As it converges, the shape some-
times retains vestiges of its initial condition (see Figures 8–10).

Figure 8. With p = 3 Evolver has difficulty extending the
initial shape to go through the origin. This figure started out
as a nonconvex pentagon, with its nonconvex vertex closest
to the origin.

Figure 9. With p = 3, Evolver also has difficulty bring-
ing the shape back to go through the origin, if it starts out
with the origin in the interior. Here most of the shape is ap-
proximately circular, but the part near the origin is stretched
out.

Figure 10. With p = 10, the initial square is still clearly visible.

The program can also get stuck on clearly suboptimal intermediate stages.
If an edge overshoots the origin, the low density can make it very difficult
for the shape to recover.
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Figure 11. With p = 3, Evolver also has difficulty cor-
recting after overshooting. The density is too small for it to
quickly correct the knot at the origin.

Figures 7–9 and 11 show the results of different starting conditions for
p = 3, after hundreds of iterations (enough to reach a circle through the
origin for smaller p). The results do show a certain degree of similarity, but
they behave very differently near the origin. All these shapes have perimeter
within a third of a percent of one another, so we can see that they differ
only in regions of extremely low density. The shapes will gradually converge
with more iterations, but we do not have a practical solution to the issue of
low-density regions for higher values of p.

Fortunately, we can still get useful information from the program even
if its behavior is inconsistent near the origin. Lemma 2.1 tells us that a
constant-generalized-curvature shape containing a circular arc must be a
circle, and by Proposition 2.11 an isoperimetric circle must go through the
origin. We cannot directly tell whether a shape in Evolver contains a circular
arc, as the shape is numerically represented by a polygon, so this fact is not
immediately useful. Still, it does show how we can guess a shape’s behavior
near the origin by looking at what it does further away.

There is one further caveat regarding our use of Evolver. The outcome of
the simulation is sensitive not just to the starting shape, but to how much
that starting shape is refined before the program starts to iterate: the more
vertices the program has for each edge, the less it changes the overall shape
of the edge. Although different initial conditions do converge to similar
solutions for any given value of p, the shape rarely changes too much after
a certain degree of refinement.

With the help of Richard McDowell, we have also calculated generalized
curvature in Evolver. In calculating ∂ψ/∂n, we need to keep track of suc-
cessive vertices.

An initial trial run of the above procedure for p = 3 as in Figure 11.
resulted in the data in Table 1. The sign of the curvature is clearly wrong,
as the version of the code used calculated the wrong unit normal.
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The outliers come from the vertices and edges closest to the origin. This
is to be expected since Evolver’s curves do not go exactly through the origin
and ∂ψ/∂n blows up near the origin.

Table 1. Computed Generalized Curvature

Number Radial Norm Generalized Curvature
1. 0.00332 -903
2. 0.01254 -63.3
3. 0.01254 -63.3
4. 0.02454 -16.4
5. 0.02453 -16.4
6. 0.03668 -7.07
7. 0.03668 -7.07
8. 0.04886 -3.92
9. 0.04886 -3.92
10. 0.06106 -3.14
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