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A proof of the Russo–Dye theorem for
JB∗-algebras

Akhlaq A. Siddiqui

Abstract. We give a new and clever proof of the Russo–Dye theo-
rem for JB∗-algebras, which depends on certain recent tools due to
the present author. The proof given here is quite different from the
known proof by J. D. M. Wright and M. A. Youngson. The approach
adapted here is motivated by the corresponding C∗-algebra results due
to L. T. Gardner, R. V. Kadison and G. K. Pedersen. Accordingly, it
yields more precise information. Incidentally, we obtain an alternate
proof of Russo–Dye Theorem for C∗-algebras. A couple of further re-
sults due to Kadison and Pedersen have been extended to JB∗-algebras
as corollaries to the main results.
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1. Introduction

In [9], R. V. Kadison obtained a characterization of the extreme points
of the closed unit ball of a C∗-algebra A as the elements x such that

(e− xx∗)A(e− x∗x) = {0},

where e stands for the identity element of A. From this, it is seen that every
unitary operator in a C∗-algebra is an extreme point of the unit ball. Sub-
sequently, B. Russo and H. A. Dye proved in [19] that the closed unit ball
of any C∗-algebra is the closed convex hull of its unitaries. This Russo–Dye
theorem has been very useful in providing means of reducing the study of
nonnormal operators to that of unitary (normal) operators and has been ex-
tensively used in unitary approximations (see [10, 15], for instance). Several
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simplifications and generalizations, e.g., [17, 12, 5], revealed that the under-
lying structure making the results hold was not the presence of an associative
product but the presence of a Jordan product (or Jordan triple product).
This provided one of the stimuli for the development of various Jordan al-
gebra or Jordan triple product generalizations of C∗-algebras, these include
JC-algebras [25], JB-algebras [1], JB∗-algebras [27] and JB∗-triples [5, 26]
together with their subclasses which are Banach dual spaces. Similar results
on linear isometries and extreme points of the unit ball have been proved,
e.g., in [6, 7, 11, 28, 29]. In [28], J. D. M. Wright and M. A. Youngson
presented a proof of Russo–Dye Theorem for Jordan C∗-algebras (original
name of JB∗-algebras), which is a modification of the proof of Russo–Dye
Theorem for J∗-algebras given by L. A. Harris (see [5]).

Russo and Dye [19] raised the point that little is known about the non-
closed convex hull of unitaries. Attention has been focused to this aspect
with the appearance of L. T. Gardner’s paper [4]; some such details are
given in [10]. In [4], Gardner obtained an elementary proof of the Russo–
Dye theorem by strengthening the fact that the open ball of radius one half
in a C∗-algebra is contained in the nonclosed convex hull of unitaries. On
this basis, R. V. Kadison and G. K. Pedersen [10, Theorem 2.1], proved
that each element of the open unit ball in a C∗-algebra is a mean of unitary
elements and as its immediate corollary they obtained Russo–Dye Theorem
for C∗-algebras.

In this and four subsequent papers, we investigate the Russo–Dye The-
orem and related geometric properties of general JB∗-algebras. In the se-
quel, our first main objective is to develop a new proof of the Russo–Dye
Theorem for JB∗-algebras along the lines of Kadison and Pedersen [10].
Unfortunately, the proof of [10, Theorem 2.1] as given by the authors (see
[10, page 251]) no longer works for general JB∗-algebras simply because the
Jordan product generally is not associative and so the associative product
of two unitary elements is not necessarily in a JB∗-algebra.

We present a new and clever proof of the Russo–Dye theorem for JB*-
algebras. The proof depends on two very nice tools due to the present
author from a recent publication [21]. The proof given here is quite different
from the above mentioned known proof by Wright and Youngson. The
approach adapted here is motivated essentially by the corresponding C∗-
algebra results due to L. T. Gardner, R. V. Kadison and G. K. Pedersen
(see [4, 10]). Accordingly, it yields more precise information. Incidentally,
we obtain an alternate proof of Russo–Dye Theorem for C∗-algebras. A
couple of further results due to Kadison and Pedersen have been extended
to JB∗-algebras as corollaries to the main results.

1.1. Basics. We begin by recalling (from [8], for instance) the concept of
homotopes of Jordan algebras. Let J be a Jordan algebra and x ∈ J . The x-
homotope of J , denoted by J[x], is the Jordan algebra consisting of the same
elements and linear algebra structure as J but a different product, denoted
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by “ ·x”, defined by a·xb = {axb} for all a, b in J[x]. Here, {pqr} denotes the
Jordan triple product {pqr} = (p ◦ q) ◦ r − (p ◦ r) ◦ q + (q ◦ r) ◦ p where “◦”
stands for the original Jordan product.

The homotopes of our interest are obtained if J has a unit e and x is
invertible: this means that there exists x−1 ∈ J , called the inverse of x,
such that x ◦ x−1 = e and x2 ◦ x−1 = x. The set of all invertible elements
of J will be denoted by Jinv. Any invertible element x of (unital) Jordan
algebra J acts as the unit for the homotope J[x−1] (see [14]).

If J is a unital Jordan algebra and x ∈ Jinv then x-isotope of J , denoted
by J [x], is defined to be the x−1-homotope J[x−1] of J . Of course, x-isotope
is defined only for invertible element x of the algebra J . Our notation is
motivated by the symmetry that x acts as the unit for the x−1-homotope
J[x−1] of J , which is consistent with McCrimmon’s concept of isotopes [14]
and corresponds to the Jacobson’s concept x−1-isotope (see [8, p.57]).

Any two isotopes of an associative algebra are isomorphic to each other
(see [8, p.56]. Thus in the associative case, isotopy basically just changes the
unit element and does not produce new structures. However, it may cause
convenience in doing calculations; such an example is given in [13, p. 617].
However, the x-isotope J [x] of a Jordan algebra J need not be isomorphic
to J ; for such details and examples see [13, 12]. Fortunately, some features
of our interest in Jordan algebras are unaffected on passage to an isotope.
Such a feature is stated in the following result:

Lemma 1.1 ([21, Lemma 4.2]). For any invertible element a in a unital
Jordan algebra J ,

Jinv = J [a]
inv.

A Jordan algebra J with product ◦ is called a Banach Jordan algebra if
there is a norm ‖.‖ on J such that (J , ‖.‖) is a Banach space and ‖a◦ b‖ ≤
‖a‖‖b‖. If, in addition, J has unit e with ‖e‖ = 1 then J is called a unital
Banach Jordan algebra. For the basic theory of Banach Jordan algebras, we
refer to the sources [1, 3, 20, 26, 27, 28, 30].

We are interested in a special class of unital Banach Jordan algebras,
called JB∗-algebras. These include all C∗-algebras as a proper subclass: A
complex Banach Jordan algebra J with involution ∗ is called a JB∗-algebra
if ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J (cf. [27]). It is easily seen that ‖x∗‖ = ‖x‖
for all elements x of a JB∗-algebra [30].

Let J be a JB∗-algebra. An element u of a JB∗-algebra J is called
unitary if u∗ = u−1, the inverse of u. The set of all unitary elements of J
will be denoted by U(J ).

Given any unitary element u of a JB∗-algebra J , the isotope J [u] is
called a unitary isotope of J . The following lemma is a well known result,
originally due to Braun, Kaup and Upmeier [2, 12]:
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Lemma 1.2. Any unitary isotope J [u] of a JB∗-algebra J is itself a JB∗-
algebra having u as its unit with respect to the original norm and the invo-
lution “∗u” given as below:

x∗u = {ux∗u}.
Unfortunately, for nonunitary x ∈ Jinv, the isotope J [x] of the JB∗-

algebra J may not be a JB∗-algebra with the “∗u” as involution.
In [21, 22, 23, 24], the author presented various results on unitary isotopes

of JB∗-algebras. Some of these results are used in our subsequent work; in
particular, the following result plays a key role in obtaining the main results
of next section:

Lemma 1.3 ([21, Theorem 4.6]). For any unitary u in JB∗-algebra J ,

U(J ) = U(J [u]).

Recall that an element x of a JB∗-algebra J is called positive in J if x∗ =
x (self-adjoint) and its spectrum σJ (x) is contained in the set of nonnegative
real numbers where σJ (x) = σJ (x) = {λ ∈ C : x−λe is not invertible inJ }.

The following lemma is a main result of paper [21], which says that any
invertible is positive in a certain unitary isotope, where the unitary comes
from the polar decomposition of the invertible. This is a nice tricky result
and its technical proof involves the well known Stone–Weierstrass Theorem
and functional calculus.

Lemma 1.4 ([21, Theorem 4.12]). Every invertible element x of the JB∗-
algebra J is positive (in fact, positive invertible) in the isotope J [u] of J ,
where u ∈ U(J ) and is given by the usual polar decomposition x = u|x| of x
considered as an operator in some B(H).

2. Russo–Dye Theorem

We follow the lines of L. T. Gardner [4] and R. V. Kadison and G. K.
Pedersen who proved similar result for C∗-algebras. In Theorem 2.1 of [10],
Kadison and Pedersen by following Gardner [4] proved that each element
of the open unit ball in a C∗-algebra is a mean of unitaries and then the
Russo–Dye Theorem for C∗-algebras was immediately obtained . Their proof
for Theorem 2.1 (as appeared in [10, page 251] no longer works for general
JB∗-algebras simply because the Jordan product generally is not associative
and so the associative product of two unitary elements is not necessarily in
a JB∗-algebra.

Here, we adapt a new approach to resolve this difficulty, which is highly
nontrivial. Given the nature one might expect that we are showing the result
for special Jordan algebras given by C∗-algebras and for the exceptional case
separately. Instead, we shall give a unified approach that is general enough
to cover all exceptional as well as all special JB∗-algebras including all C∗-
algebras. This also provides a different proof of [10, Theorem 2.1], hence an
alternate proof of the Russo–Dye Theorem for C∗-algebras.
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As our main tools, we shall use results that have been fixed in the previous
section as lemmas to obtain the strict extensions of Russo–Dye Theorem [10,
Theorem 2.1 and its Corollary on p. 251] to general JB∗-algebras.

We need another lemma which says symbolically that all invertible ele-
ments of norm at most one are the mean of two unitaries:

Lemma 2.1. For any JB∗-algebra J ,

Jinv ∩ (J )1 ⊆ 1
2
(U(J ) + U(J )).

Proof. Let x ∈ Jinv. Then, by Lemma 1.4, x is positive invertible in the
isotope J [u] of J , for a certain u ∈ U(J ). In particular, x is self-adjoint
in J [u]. Hence, by [22, Theorem 2.11], x ∈ 1

2 (U(J ) + U(J )). �

The next result claims the existence of certain unitaries:

Theorem 2.2. Let J be a unital JB∗-algebra, s ∈ (J )◦1 (the open unit ball)
and v ∈ U(J ). Then, for any positive integer n, v + (n − 1)s =

∑n
i=1 ui

where the ui’s are unitaries in J .

Proof. By Lemma 1.2, v is the identity of the v-isotope J [v] of J . But
‖s‖ < 1. Therefore, by [21, Lemma 2.1(iii)], v+s and so 1

2(v+s) is invertible
in J [v]. Hence, by Lemma 1.1, 1

2(v + s) is invertible in the original algebra
J . Also note that ‖1

2(v + s)‖ ≤ 1. Thus, by the previous Lemma 2.1, there
exist two unitaries y and z in J such that v + s = y + z. The assertion now
follows by induction on n. �

The following result extends joint results of Kadison and Pedersen [10] to
general JB∗-algebras. Its part (iii) is a JB∗-algebra strict analogue of the
famous Russo–Dye Theorem [19].

Theorem 2.3 (Russo–Dye). (i) Let x be an element of a JB∗-algebra
J with unit e such that ‖x‖ < 1 − 2n−1 for some n ≥ 3. Then
there exist ui ∈ U(J ), i = 1, 2, 3, . . . , n such that x = 1

n

∑n
i=1 ui.

(ii) (J )◦1 ⊆ coU(J ).
(iii) coU(J ) = (J )1.

Here, coU(J ) and coU(J ) denote the convex hull of U(J ) and its norm
closure, respectively.

Proof. (i) Since ‖x‖ < 1−2n−1, we have ‖(n− 1)−1(nx− e)‖ < 1. Hence,
by taking v = e and s = (n − 1)−1(nx − e) in Theorem 2.2, we get
nx =

∑n
j=1 ui, for some unitaries ui in J . This proves part (i).

(ii) Suppose x ∈ (J )◦1. Then there exists an integer n ≥ 3 such that
‖x‖ < 1− 2n−1. Therefore, x ∈ coU(J ) by part (i).

(iii) Clearly, coU(J ) ⊆ (J )1. On the other hand, we have (J )◦1 ⊆ coU(J )
by part (ii). Thus (J )1 ⊆ coU(J ) because ¯(J )◦1 = (J )1. �

Remark 2.4. There is no strict analogue of Russo–Dye Theorem for more
general JB*-triples (cf. [26]) just because an arbitrary JB*-triple has no unit.
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It is worth mentioning that the number of unitaries in part (i) of Theorem
2.3 is the least possible for general (unital) JB∗-algebras , for otherwise,
[10, Proposition 3] provides a counterexample from C∗-algebras. As men-
tioned in the previous section, Wright and Youngson [28] also obtained the
Russo–Dye Theorem for JB∗-algebras with an entirely different proof. Our
approach to obtain the Russo–Dye Theorem for general JB∗-algebras gives
more information about the number of unitaries required in the approxima-
tions.

Corollary 2.5. Each element of a unital JB∗-algebra J is some positive
multiple of a sum of three unitaries in J .

Proof. Let x ∈ J and ε > 0. Let y = (3‖x‖+ ε)−1x. Then ‖y‖ < 1
3 .

Hence, by Theorem 2.3, there exist three unitaries u1, u2, u3 in J such that
y = 1

3(u1 + u2 + u3). Thus, x = (‖x‖+ ε
3)(u1 + u2 + u3). �

In the next result um(x) denotes min
{
n : x = 1

n

∑n
j=1 uj

}
, where the uj

are unitaries in the JB∗-algebra J . We have the following relation between
um(x) and the distance from nx to the unitaries:

Corollary 2.6. Let x be an element of a unital JB∗-algebra J and let dn

denote the distance from nx to U(J ) with n ≥ 2. If dn < n − 1, then
um(x) ≤ n. On the other hand, if um(x) ≤ n, then dn ≤ n− 1.

Proof. Suppose dn < n− 1. Then there exists u ∈ U(J ) with

‖nx− u‖ < n− 1

and so ‖(n− 1)−1(nx− u)‖ < 1. Hence, (n− 1)−1(nx− u) ∈ (J )◦1. In The-
orem 2.2, replacing s by (n− 1)−1(nx− u) and v by u, we deduce that x is
the mean of n elements of U(J ) (as x = 1

n(v + (n− 1)s)). Thus um(x) ≤ n.
For the other hand, suppose um(x) ≤ n. Then x = r−1

∑r
i=1 ui for some

1 ≤ r ≤ n with ui’s in U(J ). Then ‖x‖ ≤ r−1
∑r

i=1 ‖ui‖ = 1. Further,
‖rx− u1‖ = ‖

∑r
i=2 ui‖ ≤ r− 1. Hence ‖nx− u1‖ = ‖(n− r)x + rx− u1‖ ≤

‖rx − u1‖ + ‖(n − r)x‖ ≤ r − 1 + n − r = n − 1 because ‖x‖ ≤ 1. Thus
dn = infu∈U(J ) ‖nx− u‖ ≤ ‖nx− u1‖ ≤ n− 1. �

Remark 2.7. It should be emphasized that the strict inequality in first part
of the above result is significant. For example, let ∆ be the closed unit disk
in the complex plane C and let n be any integer ≥ 2. Then for the function
f ∈ CC(∆) defined by f(z) = (1− 1

n)z+ 1
n we have dist (nf,U(CC(∆)) = n−1

but f can not be the mean of n unitaries in CC(∆) so that um(f) > n; for
more details see [16, pp. 374–375].
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