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Dynatomic cycles for morphisms of
projective varieties

Benjamin Hutz

Abstract. We prove the effectivity of the zero-cycles of formal periodic
points, dynatomic cycles, for morphisms of projective varieties. We then
analyze the degrees of the dynatomic cycles and multiplicities of formal
periodic points and apply these results to the existence of periodic points
with arbitrarily large minimal periods.
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1. Introduction

Consider an analytic function f : CN → CN given by

[z1, . . . , zN ] 7→ [f1(z1, . . . , zN ), . . . , fN (z1, . . . , zN )].

We can iterate the function f and denote the nth iterate as fn = f(fn−1) to
create a (discrete) dynamical system. The periodic points of f are the points
P ∈ CN such that fn(P ) = P for some integer n. We call n the period of
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P and the least such n the minimal period of P . Denote the coordinate
functions of the nth iterate as fn = [fn

1 , . . . , fn
N ]. Then, the set of periodic

points of period n, but not necessarily minimal period n, for f is the set of
solutions to the system of equations

fn
i (z1, . . . , zN ) = zi for 1 ≤ i ≤ N.

To find the points of minimal period n, we could attempt to remove the
points of period strictly less than n from this set. In the case of f(z) ∈ C[z],
we can do this through division. Consider the zeros of

(1.1)
∏
d|n

(fd(z)− z)µ(n
d )

where µ is the Möbius function defined as µ(1) = 1 and

µ(n) =

{
(−1)ω n is square-free with ω distinct prime factors
0 n is not square-free.

For example, for n = 6 we consider∏
d|6

(fd(z)− z)µ( 6
d) =

(f6(z)− z)(f(z)− z)
(f3(z)− z)(f2(z)− z)

.

Two fundamental questions come to mind. Are the zeros of the resulting
function exactly the set of periodic points of minimal period n? Does the
resulting function have poles as well as zeros? In the case f(z) = z2 − 3

4 for
n = 2 we compute

f2(z)− z

f(z)− z
= (2z + 1)2 and f

(
−1

2

)
= −1

2
.

Thus, the answer to the first question is no, not all zeros are periodic points
of minimal period n. Additionally, this phenomenon of higher multiplicity
through collision of periodic cycles allows for the possible existence of poles.
In the single variable polynomial case, both of these questions were answered
by Morton [17, Theorem 2.4 and Theorem 2.5]. He showed that the points
of minimal period n are among the zeros of the resulting function, any zero
with minimal period strictly less than n must have multiplicity (as a zero)
greater than one, and the resulting function is always a polynomial. Morton
and Silverman conjectured the nonexistence of poles in a much more general
setting [19, Conjecture 1.1]. This article will address the minimal period of
zeros and the existence of poles in the more general setting.

We now state the more general problem. Let K be an algebraically closed
field and X/K a projective variety. Let φ : X/K → X/K be a morphism
defined over K, a function locally representable as a system of homogeneous
polynomials with no common zeros. We can iterate the morphism φ, denoted
φn, and consider the periodic points for φ. As the proofs will require tools
from both dynamical systems and algebraic geometry in which the word
cycle has two different meanings, we adopt the terminology: periodic cycle
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to be the points in the orbit of a periodic point and algebraic zero-cycle as a
formal sum of points with integer multiplicities (only finitely many nonzero).
If all of the multiplicities of an algebraic zero-cycle are nonnegative, we call
it effective. For example, for φ ∈ K[z], if the algebraic zero-cycle of periodic
points of period n is effective, then the function φn(z)− z has no poles. To
generalize construction (1.1) we follow [19] and consider the graph of φn in
the product variety X ×X defined as

Γn = {(x, φn(x)) : x ∈ X}

and the diagonal in X ×X defined as

∆ = {(x, x) :x ∈ X}.

Their intersection is precisely the periodic points of period n, and we can
determine the multiplicity of points as the multiplicity of the intersection
(see for example [22] for some basic intersection theory). Denote the inter-
section multiplicity of Γn and ∆ at a point (P, P ) ∈ X ×X to be aP (n) and
the algebraic zero-cycle of periodic points of period n as

Φn(φ) =
∑
P∈X

aP (n)(P ).

Following construction (1.1), define

a∗P (n) =
∑
d|n

µ
(n

d

)
aP (d)

and
Φ∗

n(φ) =
∑
d|n

µ
(n

d

)
Φd(φ) =

∑
P∈X

a∗P (n)(P ).

Definition 1.1. We call Φ∗
n(φ) the nth dynatomic cycle1 and a∗P (n) the

multiplicity of P in Φ∗
n(φ). If a∗P (n) > 0, then we call P a periodic point of

formal period n.

Remark. In the one variable polynomial case, Φ∗
n is called a dynatomic

polynomial and has been studied extensively such as in [14, 17, 23]. For a
more complete background and additional references in this area see [24].

To state our results precisely we need one more definition.

Definition 1.2. For n ≥ 1, we say that φn is nondegenerate if ∆ and Γn

intersect properly; in other words, if ∆ ∩ Γn is a finite set of points.

Remark. If φn is nondegenerate, then φd is nondegenerate for all d | n since
∆∩Γd ⊆ ∆∩Γn. Conversely, φ may be nondegenerate with φn degenerate,
such as when φ is a nontrivial automorphism of a curve with finite order.

1This term is inspired by “cyclotomic” much like “Tribonacci” was inspired by
“Fibonacci”.
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We now describe the results and organization of this article. In Section 2
we prove that Φ∗

n(φ) is effective for morphisms of nonsingular, irreducible,
projective varieties with φn nondegenerate and describe the possible values
of n for which a periodic point P of φ has nonzero multiplicity in Φ∗

n(φ)
resolving the conjecture of Morton and Silverman [19, Conjecture 1.1] in
the affirmative.

Theorem 1.3. Let X ⊂ PN
K be a nonsingular, irreducible, projective variety

of dimension b defined over an algebraically closed field K and let φ : X → X
be a morphism defined over K. Let P be a point in X(K). Define integers

p = the characteristic of K.
m = the minimal period of P for φ (set m = ∞ if P 6∈ Per(φ)).

If m is finite, let dφm
P be the map induced by φm on the cotangent space of

X at P , and let λ1, . . . , λl be the distinct eigenvalues of dφm
P . Define

ri = the multiplicative period of λi in K∗ (set ri = ∞ if λi is not a
root of unity).

Then:
(1) For all n ≥ 1 such that φn is nondegenerate, a∗P (n) ≥ 0.
(2) Let n ≥ 1. If φn is nondegenerate and a∗P (n) ≥ 1, then m 6= ∞ and

n has one of the following forms:
(a) n = m.
(b) n = m lcm(ri1 , . . . , rik) for some 1 ≤ k ≤ l.
(c) n = m lcm(ri1 , . . . , rik)pe for some 1 ≤ k ≤ l and some e ≥ 1.

As in the one-dimensional case, the proof is carried out by carefully ex-
amining when the multiplicity of a fixed point P in Φn(φ) is greater than the
multiplicity of P in Φ1(φ). However, several new ideas and a lot of additional
work are needed in the higher dimensional case. Some of the difficulties en-
countered are taking into account the higher Tor modules in the intersection
theory (Definition 2.1), using the theory of standard bases to obtain infor-
mation about the multiplicity of a point in Φn(φ) (Proposition 2.18), and
iterating local power series representations of the morphism.

From this detailed analysis of the multiplicities, in Section 3 we show that
periodic points of formal period n with multiplicity one and char K - n have
minimal period n. In other words, a∗P (n) = 1 for charK - n implies that P
is a periodic point of minimal period n, generalizing [17, Theorem 2.5].

In Section 4.1 we state some basic properties of Φn(φ) and Φ∗
n(φ) in-

cluding the fact that all periodic points of minimal period n are points of
formal period n (Proposition 4.1(2)). In Section 4.2 we note the similarity
to periodic Lefschetz numbers, and in Section 4.3 we state results similar
to those of [8, 13, 25] on the existence of periodic points. In particular, if
P is a periodic point, then the sequence {aP (n)} for char K - n is bounded
(Theorem 4.11), and if deg(Φn) is unbounded for char K - n, then there are
periodic points with arbitrarily large minimal periods and infinitely many
periodic points (Corollary 4.12). In Section 4.4 these results are applied to
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dynamical systems on Wehler K3 surfaces studied in [5, 23] and in Section 4.5
to dynamical systems arising from morphisms of projective space.

The cycles Φn(φ) and Φ∗
n(φ) occur with great frequency in the literature

under a variety of notations and with a number of results stemming from
the fact they are effective, see for example [14, 15, 16, 17, 18, 19, 20, 26].
In particular, [17, 26] contain Galois theoretic results in the single-variable
polynomial case where Φ∗

n(φ) has no points of multiplicity greater than one;
many of the arguments of these two articles carry through to the higher
dimensional case given that Φ∗

n(φ) is effective (see [10, Chapter 4]).
For an introduction to the algebraic geometry needed such as varieties,

morphisms, local power series representations, and basic intersection theory
see [22], for a reference for the homological and local algebra needed see
[12, 21], and, finally, for background and more discussion of the algebraic
dynamics see [24]. Much of this work is from the author’s doctoral thesis
[10, Chapter 3].

Acknowledgements. The author would like to thank his advisor Joseph
Silverman for his many insightful suggestions and ideas and also Dan Abra-
movich and Michael Rosen for their suggestions. The author also thanks
Jonathan Wise for showing him the proof of Proposition 4.16(1) and Michelle
Manes for her contribution to Proposition 4.17.

2. Effectivity of Φ∗
n(φ)

Recall that we have defined K to be an algebraically closed field, X/K a
projective variety of dimension b, and φ : X → X a morphism defined over
K. Let P ∈ X(K) and let RP be the local ring (see for example [22, II.1])
of X ×X at (P, P ) and let I∆, IΓn ⊂ RP be the ideals of ∆ (the diagonal)
and Γn (the graph of φn), respectively. The following steps outline the proof
of the effectivity of Φ∗

n(φ).

(1) Define the intersection multiplicity and show that Φ∗
n(φ) is an alge-

braic zero-cycle.
(2) Show that the naive intersection theory is, in fact, correct (Theo-

rem 2.4). Specifically, show that

Tori(RP /I∆, RP /IΓn) = 0 for all i > 0

using properties of Cohen–Macaulay modules from [21].
(3) Determine conditions on n for when aP (n) > aP (1) (Proposition

2.18). In particular, we show that if ap(n) > ap(1), there must
be a least monomial (Definition 2.13) H with H ∈ supp(φ) and
H 6∈ supp(φn). Therefore, given a least monomial H ∈ supp(φ) we
determine in general the coefficient of H ∈ supp(φn). The conditions
on n are then determined by when such a coefficient is 0 and, hence,
H 6∈ supp(φn).
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(4) Show that a∗P (n) ≥ 0 for all P and n (Theorem 1.3). Specially,
using the conditions on n from Proposition 2.18 for ap(n) > ap(1),
we check several cases to determine that a∗p(n) ≥ 0.

In what follows, the concept of dimension will be used in several different
contexts. Recall that for a ring R, we call a sequence P1 ( P2 ( P3 (
· · · ( Pn of prime ideals of R a chain of length n. The Krull dimension of
R is given by the supremum of the length of chains of prime ideals in R [21,
Section III.A.1]. We will denote

• dim R for the Krull dimension of a ring R,
• dim M for the Krull dimension of R/ Ann(M) where Ann(M) is the

annihilator of the R-module M , and
• dimK V for the dimension of the finite dimensional K-vector space

V .

2.1. Intersection multiplicity. For two irreducible curves C and D on a
nonsingular projective surface X the intersection multiplicity of a point P on
X is defined as dim(OP,X/(f, g)) where OP,X is the local ring of X at P and
(f, g) is the ideal generated by the local equations f and g for C and D at P .
This returns a nonnegative integer which can be shown to be independent
of the choice of local equations f and g. Following this model, we could
try and define the intersection multiplicity of IΓn and I∆ at a point (P, P )
as dimK(RP /(I∆ + IΓn)) = length(RP /I∆ ⊗ RP /IΓn). However, this is too
simplistic in general and does not give the correct value, see for example [9,
Example A.1.1.1]. We will use Serre’s definition of intersection multiplicity
[9, Appendix A] using Tor-modules. We first recall the definition of Tor-
modules, see [12] for a more extensive treatment.

Definition 2.1. Let M,N be R-modules. Let

· · · → Ei → Ei−1 → · · · → E0 → M → 0

be a free or projective resolution of M , in other words, an exact sequence
where each Ei is a free or projective R-module. Then we define Tori(M,N)
to be the ith homology (in other words, ker(di)/ im(di+1)) of

· · · di+1−−−→ Ei ⊗N
di−→ Ei−1 ⊗N

di−1−−−→ · · · d1−→ E0 ⊗N
d0−→ 0.

In particular,

Tor0(RP /I∆, RP /IΓn)) ∼= RP /I∆ ⊗RP /IΓn
∼= RP /(I∆ + IΓn)

recovering our “naive” intersection multiplicity as

dimK(Tor0(RP /I∆, RP /IΓn)).

Now we can state Serre’s definition of intersection multiplicity [9, Appendix
A],

aP (n) = i(∆,Γn;P ) =
b−1∑
i=0

(−1)i dimK(Tori(RP /I∆, RP /IΓn)).
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In what follows, we will actually work over the completion R̂P of RP so that
we may consider our problem over a local power series ring.

Since φn is nondegenerate, ∆ and Γn intersect properly. We also know
X ×X has dimension 2b, ∆ has dimension b, and Γn has dimension b. Con-
sequently, Φn(φ) is an algebraic zero-cycle. Thus, Φ∗

n(φ) is also an algebraic
zero-cycle.

In local coordinates, we have

R̂P
∼= K[[x1, . . . , xb, y1, . . . , yb]].

Definition 2.2. Let φ(x) = [φ1(x), . . . , φb(x)], where x = (x1, . . . , xb).
Then denote

φn(x) = [φn
1 (x), . . . , φn

b (x)]

as the coordinates of the nth iterate of φ.

Then we have

I∆ = (x1 − y1, . . . , xb − yb) and IΓn = (φn
1 (x)− y1, . . . , φ

n
b (x)− yb).

We will use the nondegeneracy of φn and the following theorem to show
that Tori(RP /I∆, RP /IΓn) = 0 for all i > 0.

Theorem 2.3 ([21, Corollary to Theorem V.B.4]). Let (R,m) be a regular
local ring of dimension b, and let M and N be two nonzero finitely generated
R-modules such that M ⊗ N is of finite length. Then Tori(M,N) = 0
for all i > 0 if and only if M and N are Cohen–Macaulay modules and
dim M + dim N = b.

Theorem 2.4. Let X be a nonsingular, irreducible, projective variety de-
fined over a field K and φ : X → X a morphism defined over K such that
φn is nondegenerate. Let P ∈ X(K). Then, Tori(RP /I∆, RP /IΓn) = 0 for
all i > 0.

Proof. Let b = dim X, then we have dim X ×X = 2b and dim ∆ =
dim Γn = b. The ideals I∆ and IΓn are each generated by b elements and ∆
and Γn intersect properly. Therefore,

dimK(RP /(I∆ + IΓn)) = length(RP /I∆ ⊗RP /IΓn) < ∞.

By [21, Proposition III.B.6] the union of the generators of I∆ and the
generators of IΓn are a system of parameters for RP . Because RP is Cohen–
Macaulay by [21, Corollary 3 to Theorem IV.D.9] we can apply [21, Corollary
to Theorem IV.B.2] to I∆ and its generators to conclude that RP /I∆ is
Cohen–Macaulay of dimension b and, similarly with IΓn , to conclude that
RP /IΓn is Cohen–Macaulay of dimension b.

We have fulfilled the hypotheses of Theorem 2.3; consequently, we have
that

Tori(RP /I∆, RP /IΓn) = 0 for all i > 0. �
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2.2. Tor0 module. If P is not a periodic point, then aP (n) = 0 for all n,
so we will assume that P is a periodic point. If aP (1) = 0, then P has some
minimal period m > 1. If m - n then aP (n) = 0, so we may replace φ by
φm and assume that P is a fixed point for φ and, hence, aP (1) > 0. For P ,
a fixed point of φ, we can iterate a local representation of φ as a family of
power series.

From Theorem 2.4 we know the naive intersection multiplicity

aP (n) = dimK(Tor0(RP /I∆, RP /IΓn))

= dimK(RP /(I∆ + IΓn))

is, in fact, correct in our situation. To prove the effectivity of Φ∗
n(φ), we

will use conditions on n for aP (n) > aP (1). To determine these conditions,
we will consider local power series representations of φ and the theory of
standard bases. For information on standard bases, see [4, Chapter 4].
Below, we recall the needed terminology.

Definition 2.5. Recall that a formal power series f ∈ K[[X1, . . . , Xh]], may
be written as

f =
∑
v∈Nh

fvX
v.

An admissible monomial ordering is an ordering on the set T of terms in
X1, . . . , Xh such that 1 < t for all t ∈ T and if t1 < t2 for t1, t2 ∈ T , then
st1 < st2 for all s ∈ T , see for example [3].

The monomial support of f is defined as

supp(f) = {fvX
v : fv 6= 0}.

If f 6= 0, then supp(f) has a least element under any admissible monomial
ordering. We call this least element the leading monomial of f , denoted by
LM(f). We denote v(f) the exponent of the leading monomial. Then

LM(f) = fv(f)X
v(f)

and we call Xv(f) the leading term of f and denote it by LT (f).
Let I be an ideal in K[[X1, . . . , Xh]]. We define the leading term ideal of

I as

LT (I) =

the polynomial ideal generated by {Xv :∃f ∈ I with LT (f) = Xv}.

Definition 2.6. A nonzero element f ∈ K[[X1, . . . , Xh]] is called self-
reduced with respect to an admissible monomial ordering if

LT (f) - F for all F ∈ supp(f)− LT (f).

For the most part, we will not be concerned with the particular admissible
ordering that is used, so in what follows we fix an admissible monomial
ordering. When necessary, we will specify a particular ordering. Finally, we
recall three facts that we will need (see [4, Chapter 4.4]).
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Theorem 2.7. The following are equivalent.
(1) There exists a standard basis for I.
(2) Every f ∈ K[[X1, . . . , Xh]] has a unique standard remainder modulo

I.
(3) Every f ∈ K[[X1, . . . , Xh]] has a standard remainder modulo I.

Theorem 2.8. Every ideal I ⊂ K[[X1, . . . , Xh]] has a universal standard
basis.

Theorem 2.9. Let I ⊂ K[[X1, . . . , Xh]] be an ideal with

dim K[[X1, . . . , Xh]]/I = 0.

Then K[[X1, . . . , Xh]]/I is isomorphic as a K-vector space to

Span(Xv | Xv 6∈ LT (I)).

For notational convenience, define In = I∆ + IΓn .

Corollary 2.10. Consider the ideal In ⊂ R̂P . Then

aP (n) = dimK(R̂P /In) = dimK(Span(Xv | Xv 6∈ LT (In))).

Proof. Apply Theorem 2.9 to R̂P and In. �

Lemma 2.11. Assume φn is nondegenerate. Then aP (n) ≥ aP (1) for all
n ∈ N.

Proof. It is clear that
Γ1 ∩∆ ⊆ Γn ∩∆

and we have a local representation of φ = [φ1, . . . , φb] at the fixed point
P . Iterating this representation involves taking combinations of the φi and
hence are all elements of the original ideal IΓ1 . Hence, we have

IΓn + I∆ = In ⊆ I1 = IΓ1 + I∆.

Therefore,
LT (In) ⊆ LT (I1)

which implies aP (n) ≥ aP (1) by Corollary 2.10. �

We next show that we may reduce to the case where the generators of the
ideal are self-reduced.

Remark. By [3, Corollary 2.2] applied to LT (I) = LT ((f1, . . . , fm)), we
know each there exist units ui ∈ K[[X1, . . . , Xh]] such that each uifi is
self-reduced.

Lemma 2.12. Let I ⊂ K[[X1, . . . , Xh]] be an ideal generated by {f1, . . . , fm}
with dim K[[X1, . . . , Xh]]/I = 0. Let ui ∈ K[[X1, . . . , Xh]] be a unit such
that uifi is self-reduced for each 1 ≤ i ≤ h and define uI = (u1f1, . . . , umfm).
Then

dimK(Span(Xv | Xv 6∈ LT (I))) = dimK(Span(Xv | Xv 6∈ LT (uI))).
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Proof. Since each ui is a unit, we have v(LT (ui)) = 0 and LT (uifi) =
LT (fi) (and similarly for any combinations of the fi). Hence we have

LT (I) = LT ((f1, . . . , fm)) = LT ((u1f1, . . . , umfm)). �

Definition 2.13. Let G, H ∈ supp(φi). A monomial G is said to contribute
to H through iteration if for some n when we substitute φn−1

j (x1, . . . , xb) for
xj for all 1 ≤ j ≤ b for each monomial in supp(φi) and formally expand the
terms to obtain φn

i as a power series in x1, . . . , xb, one of these terms is the
monomial H.

Let H ∈ supp(φi) for some 1 ≤ i ≤ b. We say that H is a least monomial
for φi if the only monomials contributing to H through iteration are xi and
H.

Example 2.14. We have

φ1(x, y, z) = x + x4 + x2z2 + xy

φ2(x, y, z) = y + y4 + xz2

φ3(x, y, z) = z + z4.

To iterate the system

φ(x, y, z) = (φ1(x, y, z), φ2(x, y, z), φ3(x, y, z))

we take
φ2(x, y, z) = φ(φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)).

Note that we have x2z2 ∈ supp(φ2
1) with coefficient 3.

(1) One x2z2 occurs from x2z2 ∈ supp(φ1) when φ1 is substituted for
x ∈ supp(φ1), and we say x contributes to x2z2 through iteration.

(2) A second x2z2 occurs from x ∈ supp(φ1) and z ∈ supp(φ3) when φ1

and φ3 are substituted for x and z in x2z2 ∈ supp(φ1), and we say
x2z2 contributes to x2z2 through iteration.

(3) The third x2z2 occurs from x ∈ supp(φ1) and xz2 ∈ supp(φ2) when
φ1 and φ2 are substituted for x and y in xy ∈ supp(φ1), and we say
xy contributes to x2z2 through iteration.

It is (3) that causes x2z2 to not be a least monomial.

The justification for this definition is Lemma 2.17, but first we examine
the coefficients of least monomials under iteration.

Denote dφP as the map induced by φ on the cotangent space of X at
P . Recall that we are assuming that P is a fixed point of φ and that K is
algebraically closed. Therefore, dφP is a b× b matrix and can always be put
in Jordan canonical form, with Jordan blocks J1, . . . , Jk of the form

Ji =


λi 1 0 0
0 λi 1 0
...

. . . . . .
...

0 · · · 0 λi

 .
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Lemma 2.15. Let F =
∏b

i=1 xei
i with ei ≥ 0 and assume F ∈ supp(φit) is

a least monomial with 1 ≤ it ≤ b. Assume that φit is in a Jordan block of
dφP of size v ≥ 1 with eigenvalue λ. Label the rows 1, . . . , v corresponding
to φi1 , . . . , φiv. Label the coefficient of F in φn

it
as cn with c1 6= 0. Let

α =
∑v

j=1 eij . Then:
(1) If deg F = 1, then

cn = λn.

(2) If deg F > 1, then

cn =


n−1∑
j=0

λj(α−1)+n−1
∏
xi|F

i6∈{i1,...,iv}

λeij
i

 c1.

Proof. We will prove both statements by induction.
(1) For the base case of n = 1, we expect to have

c1 = λ

which corresponds to the linear term of a Jordan block and so verifies the
statement for n = 1. We will assume now that the formula for cn holds and
consider cn+1.

The contribution to F in φit through iteration is given by

λxit .

Hence,
cn+1 = λ(λn) = λn+1,

confirming the formula.
(2) For the base case of n = 1, we have j = 0. We verify

c1 =

λ0
∏
xi|F

i6∈{i1,...,iv}

λ0
i

 c1 = c1.

We now assume that the formula holds for cn and consider cn+1.
The contribution to F in φit through iteration is given by

λxit + c1F,

and, hence,

cn+1 = λ


n−1∑
j=0

λj(α−1)+n−1
∏
xi|F

i6∈{i1,...,iv}

λeij
i

 c1(2.1)

+ c1(λn)α
∏
xi|F

i6∈{i1,...,iv}

(λn
i )ei ,
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where the first term comes from substituting cn−1F for xit into λxit and the
second from substituting λnxi1 , . . . , λ

nxiv for each xi | F into F . Combining
the sum and the term of (2.1) we have

(2.2) cn+1 =


n∑

j=0

λj(α−1)+n
∏
xi|F

i6∈{i1,...,iv}

λeij
i

 c1

confirming the formula. �

Remark. If F ∈ supp(φi) with λi = 0 then we know that F does not effect
LT (I1) since xi either divides LT (f) or is relatively prime to LT (f) for all
f ∈ I1. In the former, case we take the normal form of f with respect to
the known leading terms. In the latter case, we see that every term in the
local analogue of the S-polynomials is divisible by the known leading terms
and hence is already in the leading term ideal.

If F ∈ supp(φj) with xi | F and λi = 0 then we know that F does not
effect LT (I1) since xi ∈ LT (In) for all n. So we exclude from consideration
the Jordan block(s) with eigenvalue 0 and monomials divisible by xi with
λi = 0.

Lemma 2.16. Let F =
∏b

i=1 xei
i with ei ≥ 0, deg F > 1 and

F ∈ supp(φit − xit)

with 1 ≤ it ≤ b. Assume that φit is in a Jordan block of dφP of size v ≥ 1
with eigenvalue λ 6= 0. Label the rows 1, . . . , v corresponding to φi1 , . . . , φiv.
Let α =

∑v
j=1 eij . The following are conditions for the coefficient of F in

(φn
it
− xit) to be divisible by p.
(1) If λ = 1 and λi = 1 for all i such that xi | F and i 6∈ {i1, . . . , iv},

then p | n.
(2) Assume λ 6= 1 and λi = 1 for all i such that xi | F and i 6∈

{i1, . . . , iv}.
(a) If α = 0, then λ is an rth root of unity for some r | n.
(b) If α > 0, then λα−1 is an rth root of unity for some r | n.

(3) If λ = 1 and λi 6= 1 for at least one i such that xi | F , then∏
xi|F

i6∈{i1,...,iv}

λei
i

is an rth root of unity for some r | n.
(4) If λ 6= 1 and λi 6= 1 for at least one i such that xi | F and i 6∈

{i1, . . . , iv}, then

λα−1
∏
xi|F

i6∈{i1,...,iv}

λei
i
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is an rth root of unity with r | n.

Proof. We will use the description of the coefficients of F under iteration
from Lemma 2.15. Label the coefficient of F in φn

it
as cn with c1 6= 0.

If deg F = 1, then F = xit and c1 = λ and

cn = λnc1.

Since p - λ this coefficient is never divisible by p. So we restrict to the case
deg F > 1.

(1) We want cn to be divisible by p and cn is given by

cn =

n−1∑
j=0

1

 c1 = nc1

with p - c1. Hence, we must have p | n.
(2a) We want cn to be divisible by p and cn is given by

cn =

n−1∑
j=0

λj

 c1

with p - c1. Hence, we must have

λn ≡ 1 mod p

and so λ is an rth root of unity modulo p for some r | n.
(2b) We want cn to be divisible by p and cn is given by

cn =

n−1∑
j=0

λj(α−1)+n−1

 c1

with p - c1. Hence, λα−1 must be an rth root of unity modulo p for some
r | n.

(3) We want cn to be divisible by p and cn is given by

cn =


n−1∑
j=0

∏
xi|F

i6∈{i1,...,iv}

λeij
i

 c1

with p - c1. Hence, ∏
xi|F

i6∈{i1,...,iv}

λei
i

must be an rth root of unity modulo p for some r | n.
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(4) We want cn to be divisible by p and cn is given by

cn =


n−1∑
j=0

λj(α−1)+n−1
∏
xi|F

i6∈{i1,...,iv}

λeij
i

 c1.

Hence,

λα−1
∏
xi|F

i6∈{i1,...,iv}

λei
i

must be an rth root of unity modulo p for some r | n. �

We have now established necessary conditions on n for a least monomial
in supp(φi − xi) to not be in supp(φn

i − xi).

Lemma 2.17. Assume that φn is nondegenerate. If LT (I1) 6= LT (In), then
for some i with 1 ≤ i ≤ b there is a least monomial in supp(φi − xi) which
is not in supp(φn

i − xi).

Proof. Assume first that supp(φi − xi) ⊆ supp(φn
i − xi) for each 1 ≤ i ≤ b

and that LT (I1) 6= LT (In). In particular, there exists at least one monomial
H ∈ LT (I1) such that H 6∈ LT (In). We will establish a contradiction by
showing that H ∈ LT (Imn) for some m ∈ N.

Since supp(φi − xi) ⊆ supp(φn
i − xi) we have p - n and ri - n for each i

such that ri 6= 1. To show that H ∈ LT (Imn) for some m, we will modify
the combination of the (φi − xi) which has leading term H to produce a
combination of the (φmn

i − xi) with leading term H; this can be thought
of as modifying the finite sequence of the local analogue of S-polynomials
for I1 which results in a leading term of H. Consider the combination of
the (φi − xi) that results in a leading term of H. This is some polynomial
combination of the coefficients of monomials in supp(φi − xi) for 1 ≤ i ≤ b.
For m large enough the monomials up to some finite degree in supp(φmn

i )
are in supp(φ(m+1)n

i ) for each 1 ≤ i ≤ b. The combination of the (φi − xi)
which had leading term H, may or may not result in an element with leading
term H as a combination of the (φmn

i − xi). If not and the coefficient of
H is nonzero in the resulting element, then some monomial G of degree at
most deg(H) is the leading term. However, since LT (Imn) ⊂ LT (I1) and
deg(G) ≤ deg(H), G must also be the leading term of some other combi-
nation of the (φi − xi), consider this combination for the (φmn

i − xi). The
resulting element may or may not have G as leading term. If it does not,
there is some monomial G′ as the leading term with deg(G′) ≤ deg(G). The
monomial G′ is an element of LT (Imn) ⊂ LT (I1) and we repeat the process.
Since the degrees of these leading terms are bounded above, continuing to
examine the leading monomial for each new combination we will eventually
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arrive at a combination of the (φmn
i − xi) with a leading term already en-

countered. We can then back substitute to either get H as the leading term
of a combination of the (φmn

i −xi) or the coefficient of H in the combination
is 0. In particular, we have a polynomial combination in the coefficients of
monomials in supp(φmn

i − xi) that determines the coefficient of H as the
leading term of the S-polynomial. The polynomial combination is not iden-
tically 0 since H ∈ LT (I1), so we have some m so that H ∈ LT (Imn) which
contradicts the fact that H 6∈ LT (In) and LT (Imn) ⊂ LT (In).

Now assume that each monomial H ∈ supp(φi − xi) for some 1 ≤ i ≤ b
which satisfies H 6∈ supp(φn

i − xi) is not a least monomial for φi. The
coefficient of H in supp(φmn

i − xi) is a polynomial FH in the coefficients of
monomials in supp(φmn−1

j − xj) for all 1 ≤ j ≤ b. For m large enough, the

monomials up to some finite degree in supp(φmn
i ) are in supp(φ(m+1)n

i ) for
each 1 ≤ i ≤ b and, hence, FH is the same for every m large enough. The
polynomial FH is not identically 0 since H ∈ supp(φi − xi). This is true for
each such H, and there are only finitely many H that can affect LT (In).
Hence, there is some m, such that supp(φi) ⊆ supp(φmn

i ) for each 1 ≤ i ≤ b,
which was treated in the previous case. �

In particular, Lemma 2.17 says that if we have 1 ≤ aP (1) < aP (n),
then for some i we must have a least monomial in supp(φi − xi) not in
supp(φn

i − xi). However, this condition is not sufficient for aP (n) 6= aP (1).
Regardless, the necessary conditions on n from Lemma 2.16 will be enough
to show that Φ∗

n(φ) is an effective algebraic zero-cycle for all n ≥ 1.
The next proposition gathers our knowledge of aP (n).

Proposition 2.18. Let X ⊂ PN
K be a nonsingular, irreducible, projective

variety of dimension b defined over K. Let φ : X → X be a morphism
defined over K and P ∈ X(K) be a fixed point of φ. Denote dφP as the
map induced by φ on the cotangent space of X at P . Let λ1, . . . , λl be the
distinct eigenvalues of dφP with minimal multiplicative orders r1, . . . , rl (set
ri = ∞ if λi is not a root of unity). Then for all n ≥ 1 such that φn is
nondegenerate:

(1) aP (n) ≥ aP (1).
(2) aP (n) = 1 ⇔ λn

i 6= 1 for all 1 ≤ i ≤ l.
(3) If aP (n) > aP (1), then at least one of the following is true.

(a) ri | n for at least one i for 1 ≤ i ≤ l with ri 6= 1.
(b) char(K) | n, for char(K) 6= 0.

Proof. (1) Lemma 2.11.
(2) It is clear that aP (n) = 1 if and only if In generates the maximal ideal

of R̂P . This is true if and only if

{x1 − y1, . . . , xb − yb, φ
n
1 (x)− y1, . . . , φ

n
b (x)− yb}
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is a regular local system of parameters. Zariski and Samuel [28, Corollary 2
page 137] state that this occurs if and only if the power series

{x1 − y1, . . . , xb − yb, φ
n
1 (x)− y1, . . . , φ

n
b (x)− yb}

contain independent linear terms. This is true if and only if λn
i 6= 1 for all

1 ≤ i ≤ l.
(3) We know from Corollary 2.10 that aP (n) > aP (1) if and only if certain

monomials F has zero coefficients after iteration. Any such monomial must
be a least monomial by Lemma 2.12 and Lemma 2.17. Lemma 2.16 gives
necessary conditions on n for when a least monomial has zero coefficient
after iteration. Note that cases (2b), (3), and (4) of Lemma 2.16 are cases
where aP (n) = aP (1) since λi 6= 1 for some xi | F . Hence, the absence of
this monomial has no effect on the leading term ideal. So we are concerned
only with the conditions (1) and (2a) of Lemma 2.16. �

2.3. Proof of effectivity. We will consider several different maps over the
course of the proof, so to avoid confusion we include the map in the notation
as aP (φ, n) and a∗P (φ, n). We will also use properties of the Möbius function
throughout the rest of the article so we recall them here and will refer to them
as (M1), (M2), and (M3) in what follows. The Möbius function satisfies the
following properties [11, Chapter 2 §2]:

(M1) For gcd(m,n) = 1 we have µ(mn) = µ(m)µ(n).

(M2)
∑

d|n µ(d) =

{
1 n = 1
0 n > 1.

(M3) Möbius inversion: if F (n) =
∑

d|n f(d) for all n ≥ 1, then

f(n) =
∑
d|n

µ(n/d)F (d)

for all n ≥ 1.

Lemma 2.19. Let p be a prime in Z and let n = Mpe in Z+ with e ≥ 1
and p - M .

(1) If e = 1, then

a∗P (φ, n) = a∗P (φp,M)− a∗P (φ,M).

(2) If e ≥ 2, then

a∗P (φ, n) = a∗P (φpe−1
,Mp).

(3) Let n = qM where gcd(q, M) = 1. Then

a∗P (φ, n) =
∑
d|q

µ
(q

d

)
a∗P (φd,M).

Proof. Computing, we get

a∗P (φ, n) =
∑
d|n

µ
(n

d

)
aP (φ, d)
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=
∑
pd|n

µ

(
n

pd

)
aP (φ, pd) +

∑
d|M

µ
(n

d

)
aP (φ, d)

=
∑

d|Mpe−1

µ

(
Mpe−1

d

)
aP (φp, d) +

∑
d|M

µ

(
Mpe

d

)
aP (φ, d)

= a∗P (φp,Mpe−1) +
∑
d|M

µ

(
Mpe

d

)
aP (φ, d).

So we have

(2.3) a∗P (φ, n) = a∗P (φp,Mpe−1) +
∑
d|M

µ

(
Mpe

d

)
aP (φ, d).

(1) Considering (2.3) with e = 1, we have

a∗P (φ, n) = a∗P (φp,M) +
∑
d|M

µ

(
Mp

d

)
aP (φ, d)

= a∗P (φp,M) +
∑
d|M

µ(p)µ
(

M

d

)
aP (φ, d)

= a∗P (φp,M)− a∗P (φ,M),

where the middle equality comes from the fact that µ is multiplicative and
(p, M) = 1, property (M1).

(2) Considering (2.3) with e > 1, we have

a∗P (φ, n) = a∗P (φp,Mpe−1) +
∑
d|M

µ

(
Mpe

d

)
aP (φ, d)

= a∗P (φp,Mpe−1) + 0,

where the second equality comes from the fact that Mpe

d is not square-free
for all d | M . Replacing φ by φp and n by n/p, we may repeat the argument
to conclude that

a∗P (φ, n) = a∗P (φpe−1
,Mp).

(3) Using the multiplicativity of the Möbius function for relatively prime
numbers (M1), we get

a∗P (φ, n) =
∑
d|qM

µ

(
qM

d

)
aP (φ, d)

=
∑
d1|q

∑
d2|M

µ

(
qM

d1d2

)
aP (φ, d1d2)

=
∑
d1|q

∑
d2|M

µ

(
q

d1

)
µ

(
M

d2

)
aP (φ, d1d2)



142 BENJAMIN HUTZ

=
∑
d1|q

µ

(
q

d1

) ∑
d2|M

µ

(
M

d2

)
aP (φd1 , d2)

=
∑
d1|q

µ

(
q

d1

)
a∗P (φd1 ,M). �

The next lemma provides a formula for a∗P (n) when n = lcm(ri1 , . . . , rik)
for some subset {ri1 , . . . , rik} of {r1, . . . , rl}. We clearly need that each rit

is finite, in other words, that λit has finite order, and we will also assume
that each rit 6= 1.

Lemma 2.20. Let P be a fixed point of φ. Let ri be the minimal order of
λi in K∗ for all 1 ≤ i ≤ l (set ri = ∞ if λi is not a root of unity). If n =
lcm(ri1 , . . . , rik) for some subset of nontrivial finite orders {ri1 , . . . , rik} ⊆
{r1, . . . , rl} with char K - n and square-free with no other ri dividing n, then
we have

a∗P (φ, n) =∑
d|n

µ
(n

d

)
aP (1)

+
k∑

t=1

∑
d| n

rit

µ

(
n

drit

)
cit

+
k∑

t1=1

k∑
t2=1

it2 6=it1

∑
d| n

lcm(rit1
,rit2

)

µ

(
n

d lcm(rit1 , rit2)

)
cit1,it2

...

+
k∑

t=1

∑
d| n

lcm(ri1
,...,drit

,...,rik
)

µ

(
n

d lcm(ri1 , . . . , r̂it , . . . , rik)

)
ci1,...,ccit ,...,ik

+
∑
d|1

ci1,··· ,ik

for some nonnegative constants cα.

Proof. Recall that LT (In) ⊆ LT (I1). In particular, we know that

Span(Xv | Xv 6∈ LT (I1)) ⊆ Span(Xv | Xv 6∈ LT (In)).

From Proposition 2.18, we know that aP (rit) > aP (1) for each rit since
rit 6= 1. Similarly for it1 6= it2, by replacing φ with φrit1 , we have

aP (lcm(rit1 , rit2)) > aP (rit1) if rit2 - rit1

aP (lcm(rit1 , rit2)) = aP (rit1) if rit2 | rit1
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since in the second case lcm(rit1 , rit2) = rit1 . Continuing in the same manner,
we have

aP (lcm(ri1 , . . . , rij , riγ )) > aP (lcm(ri1 , . . . , rij )) if riγ - lcm(ri1 , . . . , rij )
aP (lcm(ri1 , . . . , rij , riγ )) = aP (lcm(ri1 , . . . , rij )) if riγ | lcm(ri1 , . . . , rij , riγ ).

Again in the second case, we have lcm(ri1 , . . . , rij , riγ ) = lcm(ri1 , . . . , rij ),
so we have left to consider the first case. In particular, for any β defined as
the least common multiple of any j of {ri1 , . . . , rij , riγ}, we have

{Xv :Xv 6∈ LT (Ilcm(ri1
,...,rij

,riγ ))}

containing at least one element not in {Xv :Xv 6∈ LT (Iβ)}. To see this,
consider the ordering

xi1 < xi2 < · · · < xij < xγ < xit < · · · < xib−j−1
.

Then for each β, one of the linear terms xi1 , . . . , xij , xiγ is contained in
LT (Iβ) since it is a leading term of the associated φβ

i (x1, . . . , xb)−xi. Also,
none of the linear terms xi1 , . . . , xij , xiγ are in LT (Ilcm(ri1

,...,rij
,riγ )). Hence,

the monomial
xi1xi2 · · ·xijxγ

is in {Xv :Xv 6∈ LT (Ilcm(ri1
,...,rij

,riγ ))} but not in any {Xv :Xv 6∈ LT (Iβ)}.
This argument ensures the nonnegativity of the constants cα defined below.

We have aP (1) ≥ 1 since P is a fixed point and since

{Xv :Xv 6∈ LT (I1)} ⊆ {Xv :Xv 6∈ LT (Iκ)}

for all κ ≥ 1, we have a contribution of aP (1) to aP (d) for all d | n.
Let cit = aP (rit)−aP (1) > 0 for all 1 ≤ t ≤ k since rit 6= 1 by assumption

for all 1 ≤ t ≤ k. Since

{Xv :Xv 6∈ LT (Irit
)} ⊆ {Xv :Xv 6∈ LT (Iκ)}

for all κ with rit | κ, we have a contribution of cit to aP (d) for all d | n
rit

.
Let

cit1,it2 = aP (lcm(rit1 , rit2))−#{Xv :Xv 6∈ LT (Irit1
)}∪{Xv :Xv 6∈ LT (Irit2

)}.

If rit2 | rit1 , then cit1,it2 = 0 since lcm(rit1 , rit2) = rit1 . Otherwise, by the
argument at the beginning of the proof, there is at least one monomial not
in LT (Irt1,rt2) that is not in the complement of LT (Irt1) or LT (Irt2). Hence
cit1,it2 ≥ 0. Since

{Xv :Xv 6∈ LT (Ilcm(rit1
,rit2

))} ⊆ {Xv :Xv 6∈ LT (Iκ)}

for all κ with lcm(rit1 , rit2) | κ, we have a contribution of cit1,it2 to aP (d) for
all d | n

lcm(rit1
,rit2

) .
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Similarly, for 2 ≤ j ≤ k, let β be the least common multiple of j elements
of {rit1 , . . . , ritj , riγ} and let

cit1,...,itj ,iγ = aP (lcm(rit1 , . . . , ritj , riγ ))−#

⋃
β

{Xv :Xv 6∈ LT (Iβ)}

 .

If riγ | lcm(rit1 , . . . , ritj ), then cit1,...,itj ,iγ = 0 since lcm(rit1 , . . . , ritj , riγ ) =
lcm(rit1 , . . . , ritj ). Otherwise, by the argument at the beginning of the proof,
there is at least one monomial not in LT (Irit1

,...,ritj
,riγ

) that is not in the
complement of LT (Iβ) for each β. Hence cit1,...,itj ,iγ ≥ 0. Since

{Xv :Xv 6∈ LT (Ilcm(rit1
,...,ritj

,riγ ))} ⊆ {Xv :Xv 6∈ LT (Iκ)}

for all κ with lcm(rit1 , . . . , ritj , riγ ) | κ, we have a contribution of cit1,...,itj ,iγ

to aP (d) for all d | n
lcm(rit1

,...,ritj
,riγ ) .

Notice that by construction, none of the monomials in {Xv :Xv 6∈ LT (In)}
are counted in multiple constants cα, and all of them have been counted.
Hence, the formula holds. �

Remark. Notice that Lemma 2.20 implies that a∗P (n) ≥ 0 for all n =
lcm(ri1 , . . . , rik) since each line is either 0 or cα by property (M2) of the
Möbius function and the constants cα are all nonnegative. We may assume
n is square-free by Lemma 2.19(2).

We are now ready to prove Theorem 1.3.

Proof. Fix a point P ∈ X and let n ≥ 1 be an integer such that φn is
nondegenerate. By definition, we have

a∗P (φ, n) =
∑
d|n

µ
(n

d

)
aP (φ, d).

Suppose that φn(P ) 6= P . Then φd(P ) 6= P for all d | n, so aP (φ, d) = 0 for
all d | n since the graph Γd of φd and the diagonal ∆ will not intersect at
(P, P ). Hence, a∗P (φ, n) = 0, proving the theorem in this situation. We now
assume that φn(P ) = P .

It follows that P is a periodic point for φ, so m is finite with m | n and
aP (φ, d) ≥ 1 if and only if m | d. Computing a∗P (φ, n) in terms of φm, we
see that

a∗P (φ, n) =
∑

d|n with m|d

µ
(n

d

)
aP (φ, d)

=
∑

d|(n/m)

µ
( n

md

)
aP (φ,md)

=
∑

d|(n/m)

µ

(
n/m

d

)
aP (φm, d)
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= a∗P (φm, n/m).

Therefore, we can replace φ by φm and n by n/m and assume that m = 1.
We will consider a number of cases, but first we recall from Proposi-

tion 2.18 that aP (φ, 1) = 1 if and only if ri 6= 1 for all 1 ≤ i ≤ l.

Case 1. n = 1, in other words n = m.
In this case, we have

a∗P (φ, n) = aP (φ, 1).

Since P is assumed to be fixed by φ,

a∗P (φ, n) = aP (φ, 1) ≥

{
1 always
2 if ri = 1 for some i.

Case 2. n > 1 and aP (φ, n) = aP (φ, 1).
Let d | n; then Proposition 2.18 states that

aP (φ, 1) = aP (φ, n) = aP (φd, n/d) ≥ aP (φd, 1) = aP (φ, d) ≥ aP (φ, 1).

Hence, aP (φ, d) = aP (φ, 1) for all d | n. So

a∗P (φ, n) =
∑
d|n

µ
(n

d

)
aP (φ, 1) = 0

by property (M2) of the Möbius function, since n > 1 by assumption.

Case 3. aP (φ, n) > aP (φ, 1) and charK - n.
By the assumptions in this case, we know that at least one ri | n. Let

n = lcm(ri1 , . . . , rik)M where M is not divisible by any ri. Then we have

a∗P (φ, n) =
∑
d|M

a∗P (φd, lcm(ri1 , . . . , rik))

by Lemma 2.19(3). However, since ri - M for all 1 ≤ i ≤ l, for d | M , we
also have ri - d for all 1 ≤ i ≤ l. Additionally, n 6= 0 implies p - n, so we
cannot be in any condition of Proposition 2.18(3). Consequently,

a∗P (φ, n) =
∑
d|M

µ

(
M

d

)
a∗P (φd, lcm(ri1 , . . . , rik))

=
∑
d|M

µ

(
M

d

)
a∗P (φ, lcm(ri1 , . . . , rik))

= 0

by property (M2) since a∗P (φd, lcm(ri1 , . . . , rik)) is constant over d | M . So
we can assume that n = lcm(ri1 , . . . , rik) and ri - n for i 6∈ {i1, . . . , ik}. If



146 BENJAMIN HUTZ

n is not square-free, then by applying Lemma 2.19 to any prime factor q
ej

j

with ej > 1, we get

a∗P (φ, n) = a∗P

(
φq

e1−1
1 ···q

ej−1

j ,
n

qe1−1
1 · · · qej−1

j

)
.

So we may replace n by n

q
e1−1
1 ···q

ej−1

j

and φ by φq
e1−1
1 ···q

ej−1

j and assume that

n is square-free. We are now in the case of Lemma 2.20 and use the same
notation. Since every inner sum is either 0 or cα by property (M2) of the
Möbius function, we have that a∗P (φ, n) ≥ 0 because every cα is nonnegative.
By assumption, at least one ri divides n, so we know that cn will be positive
since it will have at least one additional monomial. Additionally, the sum
associated to cn will be cn by property (M2) since it is summing over the
divisors of 1. So we have shown that{

a∗P (φ, n) ≥ 1 if M=1
a∗P (φ, n) = 0 otherwise.

Case 4. aP (φ, n) > aP (φ, 1) and charK - n.
We can write n = lcm(ri1 , . . . , rik)peM with (rit ,M) = 1 = (p, M) by

Proposition 2.18. If M > 1, then

a∗P (φ, lcm(ri1 , . . . , rik)pe) = a∗P (φ, d lcm(ri1 , . . . , rik)pe)

for all d | M since M is not in one of the forms of Proposition 2.18(3). So

a∗P (φ, n) =
∑
d|M

µ
(n

d

)
aP (φd, lcm(ri1 , . . . , rik)pe)

=
∑
d|M

µ
(n

d

)
aP (φ, lcm(ri1 , . . . , rik)pe)

= 0,

by property (M2) where the first equality is from Lemma 2.19(3). So assume
M = 1. Computing, we have

a∗P (φ, lcm(ri1 , . . . , rik)pe)

= a∗P (φpe−1
, lcm(ri1 , . . . , rik)p)

= a∗P (φpe−1
, lcm(ri1 , . . . , rik)p)− a∗P (φpe−1

, lcm(ri1 , . . . , rik))

= a∗P (φpe
, lcm(ri1 , . . . , rik))− a∗P (φpe−1

, lcm(ri1 , . . . , rik)).

Considering the maps φpe
and φpe−1

, we have charK - lcm(ri1 , . . . , rik).
As in Case 3, we may assume that lcm(ri1 , . . . , rik) is square-free and use
Lemma 2.20 to write a∗P (lcm(ri1 , . . . , rik)) in terms of the nonnegative con-
stants cα. Since we are working with constants cα for different maps, we
include the map in the notation as cα(φpe

). The constants that contribute to
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a∗P (lcm(ri1 , . . . , rik)) are associated to α = lcm(ri1 , . . . , rik) since the Möbius
sum is not identically 0 in that case by property (M2). So if

aP (φ, lcm(ri1 , . . . , rik)pe) = aP (φ, lcm(ri1 , . . . , rik)pe−1),

then cα(φpe
) = cα(φpe−1

). If we get additional least monomials with zero
coefficient after iteration, in other words,

aP (φ, lcm(ri1 , . . . , rik)pe) > aP (φ, lcm(ri1 , . . . , rik)pe−1),

then cα(φpe
) > cα(φpe−1

). Hence,{
a∗P (φ, n) = 0 if aP (φ, lcm(ri1 , . . . , rik)pe) = aP (φ, lcm(ri1 , . . . , rik)pe−1)
a∗P (φ, n) > 0 if aP (φ, lcm(ri1 , . . . , rik)pe) > aP (φ, lcm(ri1 , . . . , rik)pe−1).

Hence, a∗P (φ, n) ≥ 0 always; and if a∗P (φ, n) > 0, then n is in one of the
stated forms. �

Remark. If char K = 0, then in Theorem 1.3 we have a∗P (n) ≥ 1 if and only
if n = m or n = m lcm(ri1 , . . . , rik) since we know precisely the conditions
for aP (n) > aP (1).

Note that Morton and Silverman [19, Corollary 3.3] show that for dim X =
b = 1, if n1 - n2 and n2 - n1, then Φ∗

n1
(φ) and Φ∗

n2
(φ) have disjoint support.

They use this fact to construct units in K called dynatomic units similar
to the construction of cyclotomic and elliptical units. In the general case,
the nondivisibility condition may not imply disjoint supports because there
are more possible forms of n. In particular, n1 = mr1 and n2 = mr2 could
satisfy the divisibility condition, but Φ∗

n1
(φ) and Φ∗

n2
(φ) do not have disjoint

support.

3. Periodic points of formal period n with multiplicity one
have minimal period n.

In this section we use the detailed description of the multiplicities from
Section 2 to show that periodic points of formal period n with charK - n
and multiplicity one have minimal period n, generalizing [17, Theorem 2.5].

Theorem 3.1. If P is a periodic point of minimal period m for φ, then
a∗P (n) ≥ 2 for all integers n > m with char K - n and a∗P (n) 6= 0.

Proof. Let n > m ≥ 1 be any integer for which a∗P (n) 6= 0. Since

a∗P (n) =
∑
d|n

µ
(n

d

)
aP (d)

and aP (d) 6= 0 only for m | d, we must have m divides n. Computing
a∗P (φ, n) in terms of φm, we know that

a∗P (φ, n) = a∗P (φm, n/m).
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Hence, we may replace φ by φm and n by n/m and assume that P is a fixed
point. From Theorem 1.3 we know that for a∗P (n) 6= 0 and charK - n we
have that n is of the form

n = lcm(ri1 , . . . , rik).

Case 1. n = ri for some 1 ≤ i ≤ b (in other words, k = 1).
If λi is in a Jordan block of dφP of size > 1 then consider as i the first

row of the Jordan block. Let β be the size of the Jordan block. In other
words xi, . . . , xi+β are the rows of the Jordan block. Let

δ =

{
i β = 1
i + β β > 1.

Case 1.1. λj 6= 1 and λn
j 6= 1 for all j 6= i.

We have aP (1) = 1 and need to compute aP (n). We know
xj ∈ supp(φn

j (x)− xj) j 6= i, β = 1
xj+1 ∈ supp(φn

j (x)− xj) i ≤ j < i + β, β > 1
xj ∈ supp(φn

j (x)− xj) j 6∈ {i, . . . , i + β}, β > 1

and, using Lemma 2.15 for the description of the coefficients of a monomial
after iteration, we know that

(3.1) x2
i 6∈ supp(φn

δ (x)− xδ).

With the appropriate choice of admissible monomial ordering, we have xj

for j 6= i is a leading term of one of the φn
k(x) − xk for k 6= δ. Since all of

these leading terms are relatively prime they are part of the generating set
of a standard basis and we need only consider the monomial

xe
i ∈ supp(φn

δ (x)− xδ).

From (3.1) we must have e ≥ 3. So then we have

LT (In) ⊂ {x1, . . . , xi−1, x
3
i , xi+1, . . . , xb}.

By Lemma 2.20, we have added at least {xi, x
2
i } to the complement of the

leading term ideal and so
a∗P (n) ≥ 2.

Case 1.2. λn
j = 1 for some j 6= i.

We have xi in LT (Id) for any d < n but not in LT (In) and xj 6∈ LT (In).
So we have added at least

{xi, xixj}
to the complement of LT (In), and by Lemma 2.20 we have

a∗P (n) ≥ 2.

Case 2. k > 1.
We have that n = lcm(ri1 , . . . , rik).
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Case 2.1. λj 6= 1 for j 6∈ {i1, . . . , ik}.
We have aP (1) = 1. From Case 1.1 we know that aP (ri) ≥ 3 for each

i ∈ {i1, . . . , ik}. Hence, we add at least

{xi1 · · ·xik , x2
i1 · · ·xik}

to the complement of the LT (In). So by Lemma 2.20 we have

a∗P (n) ≥ 2.

Case 2.2. λj = 1 for some j 6∈ {i1, . . . , ik}.
We know xj 6∈ LT (I1) and hence xj 6∈ LT (In). Additionally, xi1 · · ·xik ∈

LT (Ih) for h | n with h < n, but xi1 · · ·xik 6∈ LT (In) since rit divides n for
each 1 ≤ t ≤ k. Consequently, we add at least

{xi1 · · ·xik , xi1 · · ·xikxj}

to the complement of LT (In). So by Lemma 2.20 we have

a∗P (n) ≥ 2. �

Example 3.2. Theorem 3.1 does not hold for charK | n. In other words,
we may have a∗P (n) = 1, but P is a periodic point of minimal period strictly
less than n if char K | n. For example, consider charK = 3, dim X = 2, and
φ : X → X defined near a fixed point P as

φ1(x1, x2) = x1 + x2
1 + x1x2

φ2(x1, x2) = 2x2 + x2
1.

Then with the monomial ordering x2 < x1, the leading term ideal is gener-
ated by {x2

1, x2} and, hence, aP (1) = 2. Iterating, we have

φ3
1(x1, x2) = x1 + x3

1 + x1x2 + higher order terms

φ3
2(x1, x2) = 2x2 + x2

1 + higher order terms.

Then we have the leading term ideal is generated by {x3
1, x2} and, hence,

aP (3) = 3. Then computing

a∗P (3) = aP (3)− aP (1) = 1,

but P is a fixed point for φ.

4. Properties and consequences

Unless otherwise stated, we assume that X is a nonsingular, irreducible,
projective variety of dimension b defined over K and that φ : X → X is a
morphism defined over K such that φn is nondegenerate.
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4.1. Basic properties.

Proposition 4.1. Let m,n ≥ 1 be integers such that φmn is nondegenerate.
Then

(1) If aP (n) > 0, then aP (mn) > 0 for all m.
(2) If P is a periodic point of minimal period n for φ, then a∗P (n) 6= 0.

In particular, points of minimal period n are points of formal period
n.

(3) aP (n) =
∑

d|n a∗P (d).
(4) If aP (n) > 0, then for m the minimal period of P for φ we have

a∗P (m) > 0, for all d < m we have a∗P (d) = 0, and

a∗P (φ, n) = a∗P (φm, n/m).

Proof. (1) The multiplicity aP (n) > 0 implies that P is a periodic point
of period n. In other words, φn(P ) = P and, consequently, φnm(P ) = P .
Therefore, P is a periodic point of period mn, so it has nonzero multiplicity
in Φmn(φ).

(2) Since φd(P ) 6= P for all d < n, we have

aP (d) = 0 for all d < n.

So we have that

a∗P (n) =
∑
d|n

µ
(n

d

)
aP (d) = aP (n) 6= 0,

where the last inequality comes from the fact that P is a periodic point of
period n.

(3) The definition of Φ∗
n(φ) is

Φ∗
n(φ) =

∑
P∈X

a∗P (n)(P ).

We also have

a∗P (n) =
∑
d|n

µ
(n

d

)
aP (n).

We can apply Möbius inversion (M3) to get

aP (n) =
∑
d|n

a∗P (d),

which gives the factorization as desired.
(4) The multiplicity aP (n) > 0 implies that φn(P ) = P and, hence, that

P is a periodic point. Consequently, P has some minimal period m ≤ n.
By (2), m satisfies a∗P (m) > 0. It is the minimal such value because for
any d < m we have that P is not a periodic point of period d and, hence,



DYNATOMIC CYCLES FOR MORPHISMS OF PROJECTIVE VARIETIES 151

aP (d) = 0. So we have a∗P (d) = 0 for d < m. Finally, computing a∗P (φ, n)
in terms of φm we have

a∗P (φ, n) =
∑

d|n with m|d

µ
(n

d

)
aP (φ, d)

=
∑

d|(n/m)

µ
( n

md

)
aP (φ,md)

=
∑

d|n/m

µ

(
B

d

)
aP (φm, d)

= a∗P (φm, n/m). �

In the next proposition, we summarize some of the facts about a∗P (n) in
terms of Φ∗

n(φ).

Proposition 4.2. Let m,n ≥ 1 be integers with φmn nondegenerate.
(1) a∗P (φ,mn) ≥ a∗P (φm, n).
(2) If (n, m) = 1, then Φ∗

n(φm) =
∑

d|m Φ∗
nd(φ).

(3) Let m = pe for some prime p and e ≥ 2. Then Φ∗
npe(φ) = Φ∗

np(φ
pe−1

).
(4) If n = pe1

1 · · · per
r for distinct primes p1, . . . , pr with e1, . . . , er ≥ 2

and m = pe1−1
1 · · · per−1

r , then Φ∗
n(φ) = Φ∗

p1···pr
(φm).

Proof. (1) This is clear from Lemma 2.19.
(2) We need to see that

a∗P (φm, n) =
∑
d|m

a∗P (φ, nd).

By the Möbius inversion formula (M3), this is equivalent to

a∗P (φ,mn) =
∑
d|m

µ
(m

d

)
a∗P (φd, n).

Computing the right-hand side, we have∑
d|m

µ
(m

d

)
a∗P (φd, n) =

∑
d|m

µ
(m

d

)∑
d′|n

µ
( n

d′

)
aP (φd, d′)

=
∑
d|m

∑
d′|n

µ
(m

d

)
µ
( n

d′

)
aP (φ, dd′)

=
∑
d|m

∑
d′|n

µ
(nm

dd′

)
aP (φ, dd′)

=
∑

d′′|nm

µ
(nm

d′′

)
aP (φ, d′′)

= a∗P (φ, nm).

(3) This is Lemma 2.19(2).



152 BENJAMIN HUTZ

(4) This is Lemma 2.19(2) applied to each pi. �

Proposition 4.3. deg(Φ∗
n(φ)) =

∑
d|n µ

(
n
d

)
deg(Φd(φ)).

Proof. Computing:

deg(Φ∗
n(φ)) =

∑
P∈X

∑
d|n

µ
(n

d

)
i(Γd,∆X ;P )

=
∑
d|n

µ
(n

d

) ∑
P∈X

i(Γd,∆X ;P )

=
∑
d|n

µ
(n

d

)
deg(Φd(φ)). �

4.2. Similarities to periodic Lefschetz numbers. Proposition 4.3 looks
remarkably similar to the definition of periodic Lefschetz numbers. In this
section we describe the connection.

Definition 4.4. Following the notation of [8], let φ : M → M be a con-
tinuous map on a complex manifold M . Define the Lefschetz number of φ
as

L(φ) =
∑

x∈Fix(φ)

ind(φ, x),

where Fix(φ) ⊂ M is the set of fixed points and ind(φ, x) is the Poincaré
index of φ at x. So L(φ) is the sum of the multiplicities of the fixed points
of φ with either a negative or positive sign depending on whether φ − id
preserves or reverses orientation at x. We refer the reader to [8] for a more
detailed definition of L(φ).

The periodic Lefschetz number of period n is then defined as

l(φn) =
∑
d|n

µ
(n

d

)
L(φd)

The Lefschetz Fixed Point Theorem states that L(φn) 6= 0 implies that φn

has a fixed point, in other words, φ has a point of period n, but this does not
imply that the point is of minimal period n. The periodic Lefschetz numbers
were defined to help address this situation. Several papers, including [8,
13], have studied when l(φn) 6= 0 implies that there exists a periodic point
of minimal period n. We will address the relationship between deg(Φn),
deg(Φ∗

n), L(φn), l(φn), and the existence of period points.

Definition 4.5. A map φ is transversal if aP (1) = 1 for fixed points P .

Definition 4.6. We define the degree of an algebraic zero-cycle to be the
sum of multiplicities of the points.

Proposition 4.7. (1) deg Φn(φ) ≥ L(φn).
(2) If φn is transversal, then:
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(a) a∗P (n) = 1 if and only if P is a point of minimal period n for φ
and a∗P (n) = 0 otherwise.

(b) deg(Φn(φ)) is the number of periodic points of period n for φ.
(c) deg(Φ∗

n(φ)) is the number of periodic points of minimal period
n for φ. In particular, if deg(Φ∗

n(φ)) 6= 0, then there exists a
periodic point of minimal period n.

Proof. (1) Since deg(Φn(φ)) is the sum of the multiplicities of the periodic
points of period n for φ, in other words, the fixed points of φn and L(φn)
is the sum of the same multiplicities with either a positive or negative sign,
we have the desired inequality.

(2a) The map φn is transversal implies that φd is transversal for all d | n
and hence aP (d) = 1 for all periodic points P of period d | n. Therefore,
if the minimal period of P is n, then we have a∗P (n) = aP (n) = 1 since
aP (d) = 0 for d < n.

Assume that P is a periodic point of minimal period m | n and compute

a∗P (m) = a∗P (φm, 1) = aP (φm, 1) = 1.

Since a∗P (m) = a∗P (φm, 1), we may replace φ by φm and assume that m = 1.
Now computing a∗P (n) we have

a∗P (n) =
∑
d|n

µ
(n

d

)
aP (d) =

∑
d|n

µ
(n

d

)
1 = 0

by property (M2) of the Möbius function.
Properties (2b) and (2c) follow directly from the definition of transversal

and (2a). �

Remark. Proposition 4.7(2) is similar to [8, Theorem A].

4.3. Applications. Before we state the results, we note that in the case
of a polarized algebraic dynamical systems Fakhruddin [7] has shown that
the periodic points are Zariski dense in X, which implies the existence of
infinitely many periodic points. However, polarization is a stronger assump-
tion than what is needed below. Although, both the dynamical systems on
Wehler K3 surfaces and from morphisms of PN are examples of polarized al-
gebraic dynamical systems. Regardless, we include a discussion of these two
situations because we are able to determine properties of deg(Φn) which is of
interest in and of itself; and for Wehler K3 surface we resolve an additional
question of Silverman.

Proposition 4.8. There are only finitely many points of minimal period n
for any fixed n with φn nondegenerate.

Proof. Fix any integer n ≥ 1 with φn nondegenerate. Proposition 4.3
provides a formula for the degree of Φ∗

n(φ). Since φn is assumed to be
nondegenerate, Bézout’s Theorem states that Γd and ∆ intersect in a finite
number of points for all d | n; in other words, deg(Φd(φ)) is finite. Hence,
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deg(Φ∗
n(φ)) is finite, so there can only be finitely many periodic points of

minimal period n. �

Theorem 4.9. There exists M > 0 such that for all q prime, q > M ,
deg(Φ∗

q(φ)) 6= 0, and φq nondegenerate, there exists a periodic point with
minimal period q for φ.

Proof. We want to show that there exists a P with a∗P (q) 6= 0 that is a
periodic point of minimal period q. We know that for q prime we have

deg(Φ∗
q(φ)) = deg(Φq(φ))− deg(Φ1(φ)).

There are only finitely many fixed points for φ by Proposition 4.8, and
for each fixed point only finitely many n relatively prime to char K such
that aP (n) > aP (1) by Theorem 1.3. Hence, after excluding those finitely
many numbers (including charK), each time deg(Φq(φ)) > deg(Φ1(φ)) the
additional degree comes from at least one periodic point of minimal period
q. �

Corollary 4.10. If there are infinitely many primes q 6= charK such that
deg(Φ∗

q(φ)) 6= 0 and φq is nondegenerate, then there exists P ∈ X with an
arbitrarily large minimal period for φ, and φ has infinitely many periodic
points.

Proof. By assumption, we have infinitely many primes q with deg(Φ∗
q(φ)) 6=

0. Applying Theorem 4.9, we then have infinitely many primes q with a
periodic point of minimal period q. �

Remark. Corollary 4.10 appears to be similar to applications of periodic
Lefschetz numbers such as those in [6, 8].

Theorem 4.11. If P is a fixed point of φ and φn is nondegenerate for all
but finitely many n ∈ N with char K - n, then the sequence

{aP (n)}n∈N
char K-n

is bounded.

Proof. From Theorem 1.3 we have that for a fixed point P for φ, aP (n) 6=
aP (1) for only finitely many n with char K - n. Hence the sequence must be
bounded. �

Corollary 4.12. If deg(Φn(φ)) is unbounded for char K - n and φn non-
degenerate, then there are infinitely many periodic points for φ and, hence,
periodic points with arbitrarily large minimal periods.

Proof. Consider the prime numbers q ∈ Z with q 6= charK. We know that
deg(Φq(φ)) is unbounded, and the only contributions come from fixed points
or points of minimal period q. Since the sequence {aP (q)} is bounded for
all fixed points P , there must be contributions to deg(Φq(φ)) from periodic
points of minimal period q for infinitely many primes q. �

Remark. Theorem 4.11 and Corollary 4.12 are similar to [25].
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4.4. Wehler K3 surfaces. A Wehler K3 surface S ⊂ P2×P2 is a smooth
surface given by the intersection of an effective divisor of degree (1,1) and
an effective divisor of degree (2,2). Wehler [27, Theorem 2.9] shows that a
general such surface has an infinite automorphism group. Briefly, the two
projection maps

px : S → P2
x and py : S → P2

y

are in general double covers, allowing us to define two involutions of S, σx

and σy, respectively. To define σx, we consider p−1
x (x) = {(x,y), (x,y′)}

and define σx((x,y)) = (x,y′). To define σy, we consider

p−1
y (y) = {(x,y), (x′,y)}

and define σy((x,y)) = (x′,y). These two involutions do not commute, gen-
erating an infinite automorphism group. The associated dynamical systems
are studied in [1, 2, 5, 23].

Theorem 4.13. Dynamical systems on Wehler K3 surfaces have points
with arbitrarily large minimal period and infinitely many periodic points. In
particular, there exists a constant M such that for all primes q > M there
exists a periodic point of minimal period q.

Proof. From [23, page 358] we know that the Lefschetz numbers of the
maps φn = (σx ◦ σy)n are given by

L(φn) = (2 +
√

3)2n + (2 +
√

3)−2n + 22.

So we have

(4.1) L(φn) ≥ 22n.

By Proposition 4.7(1)

(4.2) deg(Φn(φ)) ≥ L(φn),

hence, we have that deg(Φn(φ)) is unbounded as n increases. Applying
Corollary 4.12, we have the result.

To show the second portion, recall that

deg(Φ∗
q(φ)) = deg(Φq(φ))− deg(Φ1(φ)).

In other words, whenever deg(Φq(φ)) > deg(Φ1(φ)) we have deg(Φ∗
q(φ)) 6= 0.

Combining (4.1) and (4.2), we have that for k larger than some constant C
we have deg(Φ∗

q(φ)) 6= 0. Applying Theorem 4.9 now gives the desired
result. �

Definition 4.14. Let S be a Wehler K3 surface and let A be the subgroup
of the automorphism group of S generated by σx and σy. Let Bk ⊂ A be the
cyclic subgroup generated by φk = (σx◦σy)k. LetAP = {φ ∈ A :φ(P ) = P}.
For any subgroup B ⊂ A, let S[B] = {P ∈ S(K) :AP = B}. Recall that we
are assuming K is algebraically closed.

The following proposition addresses a remark of Silverman from [23, page
358].
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Proposition 4.15. #S[Bq] →∞ as q →∞ for q prime.

Proof. From Theorem 4.13 we have that there are periodic points of infin-
itely large prime minimal period and, in particular, periodic points of prime
minimal period for all primes larger than some constant M . Hence, S[Bq]
will increase as q increases. �

4.5. Morphisms of projective space. We also apply our results to mor-
phisms of projective space. Let φ : PN → PN given by N + 1 homogeneous
forms of degree d with no common zeros. We need to compute the intersec-
tion number for ∆ and Γn, which are contained in PN × PN .

Let D1 and D2 be the pullbacks in PN × PN of a hyperplane class D in
PN by the first and second projections, respectively.

Proposition 4.16. (1) The class of ∆ is given by
N∑

j=0

DN−j
1 Dj

2.

(2) The class of Γn is given by
N∑

j=0

dN−jDN−j
1 Dj

2.

Proof. (1) By the Künneth formula, the diagonal must be a class in

HN (PN × PN ) =
N∑

j=0

HN−j(PN )⊗Hj(PN ).

Now, HN−j(PN ) ⊗ Hj(PN ) is a 1-dimensional space for all 0 ≤ j ≤ N ,
spanned by the Poincaré dual of DN−j

1 Dj
2. We can write

∆ =
N∑

j=0

ajD
N−j
1 Dj

2.

To determine the coefficient aj , we should intersect ∆ with the dual of
DN−j

1 Dj
2. This is Dj

1D
N−j
2 . So let i∆ : ∆ ↪→ PN × PN and compute

(DN−j
1 Dj

2) · (∆) = i∗∆(DN−j
1 Dj

2) · P
N = DN · PN = 1

using the fact that i∗∆(D1) = i∗∆(D2) = D, a hyperplane class on PN .
(2) Again, by the Künneth formula, the graph must be a class in

HN (PN × PN ) =
N∑

j=0

HN−j(PN )⊗Hj(PN ),

and we can write

Γn =
N∑

j=0

ajD
N−j
1 Dj

2.
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Let iΓn : Γn ↪→ PN × PN . To determine the coefficients aj , we compute

(DN−j
1 Dj

2) · (Γn) = i∗Γn
(DN−j

1 Dj
2) · P

N = dN−jDN · PN = dN−j

using the facts that i∗Γn
(D1) = dD and i∗Γn

(D2) = D. �

Proposition 4.17. A morphism φ : PN → PN given by N +1 homogeneous
forms of degree d has

deg(Φn(φ)) =
N∑

j=0

(dn)j .

Proof. We first compute the number of fixed points of φ. By Proposi-
tion 4.16, we compute the intersection number of Γ1 and ∆.

(Γ1) · (∆) =

 N∑
j=0

DN−j
1 Dj

2

 ·

(
N∑

k=0

dN−kDN−k
1 Dk

2

)

= 0 +
N∑

j=0

dN−jDN
1 DN

2 =
N∑

j=0

dj .

Since each fixed point has multiplicity at least 1,
∑N

j=0 dj is the maximum
possible number of fixed points.

The points of period n are fixed points of φn and φn is given by N + 1
homogeneous forms of degree dn. Therefore,

deg(Φn(φ)) =
N∑

j=0

(dn)j . �

Theorem 4.18. A morphism φ : PN → PN given by N + 1 homogeneous
forms of degree d > 1 has periodic points with arbitrarily large minimal
periods and infinitely many periodic points. In particular, there exists a
constant M such that for all primes q > M there exist periodic points of
minimal period q.

Proof. The degree of Φn(φ) is clearly unbounded from Proposition 4.17, so
we apply Corollary 4.12 to conclude the first result.

To see the second result, notice that

deg(Φ∗
q(φ)) = deg(Φq(φ))− deg(Φ1(φ))

= ((dq)N + · · ·+ (dq) + 1)− (dN + · · ·+ d + 1)

= ((dq)N − dN ) + · · · (dq − d) > 0.

Hence, we apply Theorem 4.9 to conclude the result. �
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