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Approximating a group by its solvable
quotients

Khalid Bou-Rabee

Abstract. The solvable residual finiteness growth of a group quantifies
how well the group is approximated by its finite solvable quotients. In
this note we present a new characterization of polycyclic groups which
are virtually nilpotent. That is, we show that a group has solvable
residual finiteness growth which is at most polynomial in log(n) if and
only if the group is polycyclic and virtually nilpotent. We also give new
results concerning approximating oriented surface groups by nilpotent
quotients. As a consequence of this, we prove that a natural number
C exists so that any nontrivial element of the Ckth term of the lower
central series of a finitely generated oriented surface group must have
word length at least k. Here C depends only on the choice of generat-
ing set. Finally, we give some results giving new lower bounds for the
solvable residual finiteness growth of some metabelian groups (including
the Lamplighter groups).
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Introduction

Let BΓ,X(n) denote the metric ball of radius n in a group Γ generated
by a finite set X with respect to the word metric ‖ · ‖Γ,X. In this article we
study the following question:

Question 1. Let P be a property of groups. How large a finite group with
property P do we need to detect elements in BΓ,X(n)? That is, what is the

smallest integer FPΓ,X(n) such that each nontrivial element in BΓ,X(n) sur-
vives through some homomorphism to a group with property P of cardinality
no greater than FPΓ,X(n)?

We will be focusing on two properties: nilpotent (P = nil) and solvable
(P = sol). The asymptotic growth of F sol

Γ is called the solvable residual

finiteness growth of Γ, while the asymptotic growth of F nil
Γ is called the

nilpotent residual finiteness growth. When the property P is relaxed, we use
the notation FΓ and call the growth the normal residual finiteness growth.

It is known that any virtually nilpotent group has normal residual finite-
ness growth which is at most polynomial in log(n) [B10]. Further, any
finitely generated linear group with normal residual finiteness growth which
is polynomial in log(n) is virtually nilpotent [BM1]. The author has been
unable to find any group that is not virtually nilpotent with such growth.
Hence, this has lead the author to believe that there may be a positive
answer to the following question.

Question 2. Is it true that if a group Γ has normal residual finiteness
growth which is at most polynomial in log(n), then Γ is virtually nilpotent?

Our first result is the following, which resolves the question for a large
class of groups. Our proof builds off of the methods in [BM1] (cf. Theorem
1.1 in that paper).

Theorem 1. If Γ has a finite-index subgroup that is residually solvable and
finitely generated then the following are equivalent:

• Γ has normal residual finiteness growth which is at most polynomial
in log(n).
• Γ is virtually nilpotent.

We also record the following result, which resolves the question for solvable
groups, while providing a new characterization of solvable groups which are
virtually nilpotent. Loosely speaking, the result shows that, except in the
“obvious” cases, there is a new universal lower bound on the difficulty of
detecting elements in finite solvable quotients.

Theorem 2. Let Γ be finitely generated. Then the following are equivalent:

• Γ has solvable residual finiteness growth that is polynomial in log(n).
• Γ is solvable and virtually nilpotent.
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The proofs of Theorems 1 and 2 are in Section 2. In our proofs we use in
an essential way the results of J. S. Wilson [Wi05].

On the other end of the growth spectrum, the first Grigorchuk group
is known to have solvable, normal, and nilpotent residual finiteness growth
which is exponential [B10]. Our next main result, proved in Section 3, shows
that the fundamental group of an oriented surface has super-polynomial,
but not super-exponential, nilpotent residual finiteness growth. The proof
of the upper bound relies on the structure theory of the group PSL2(Z[i]),
while the lower bound uses a construction due to B. Bandman, G-M Greuel,
F. Grunewald, B. Kunyavskĭı, G. Pfsiter, and E. Plotkin [B06].

Theorem 3. Let Γ be the fundamental group of an oriented surface. Then

2n � Fnil
Γ (n) � 2

√
n.

From this theorem, we obtain the following corollary (proved in Section 3).
Variants of the following corollary for free groups have been shown using
different methods (cf. Theorem 1.2 in [MP]).

Corollary 4. Let Γ be the fundamental group of an oriented surface with
generating set X. Then there exists a constant C > 0 such that any nontrivial
γ ∈ Γ satisfies γ /∈ ΓC‖γ‖X.

We conclude, in Section 4, by showing new lower bounds for the normal
residual finiteness growth for some wreath products of abelian groups (the
Lamplighter groups). The proofs give explicit constructions of elements in
BΓ,X(n) that are not well-approximated by finite solvable quotients. These
results suggest that a gap might exist for the normal residual finiteness
growth of solvable groups that are not polycyclic.

Acknowledgements. I am especially grateful to my advisor, Benson Farb,
and my postdoctoral mentor, Juan Souto, for their endless support and
guidance. I thank Alan Reid for supplying the proof of Claim 3. I am very
grateful to Justin Malestein for his comments on an earlier draft. And I
thank Ralf Spatzier, Richard Canary, Matthew Stover, and Blair Davey for
helpful mathematical conversations and moral support.

1. Preliminaries

In this section we build up some notation and tools needed in the proofs
of our theorems.

1.1. Some group theory. Let Γ be a group. Set Γ(k) to be the derived
series of Γ, defined recursively by

Γ(0) = Γ and Γ(k) = [Γ(k−1),Γ(k−1)].

A group Γ is said to be solvable if G(k) = 1 for some natural number k. The
minimal such k is called the solvable class of Γ. If, in addition to Γ being
solvable, each quotient Γ(k)/Γ(k+1) is finitely generated, then Γ is said to be
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polycyclic. Equivalently, a group Γ is polycyclic if and only if Γ is solvable
and every subgroup of Γ is finitely generated. Set Γk to be the lower central
series for Γ, defined recursively by

Γ0 = Γ and Γk = [Γk−1,Γ].

A group Γ is said to be nilpotent if Γk = 1 for some natural number k. The
minimal such k is the nilpotent class of Γ.

We record the following elementary lemma:

Lemma 5. Let Γ be a finitely generated group. Then the following are
equivalent:

(1) Γ is polycyclic and virtually nilpotent.
(2) Γ is solvable and virtually nilpotent.

Proof. The implication (1) ⇒ (2) is immediate since polycyclic groups are
solvable. We now show that (2) ⇒ (1). Since Γ is virtually nilpotent, Γ
contains some nilpotent subgroup, say ∆, of finite-index. It suffices to show
that any subgroup ∆′ of Γ is finitely generated. The group ∆′ ∩∆ is finite
index in ∆′ and is a subgroup of ∆. Since ∆ is f.g. nilpotent and hence
polycyclic, it follows that ∆ ∩∆′ is finitely generated. Hence ∆′ is finitely
generated as finite generation is inherited by finite group extensions. �

1.2. Quantifying residual finiteness. Recall that a group is residually
finite if the intersection of all its finite index subgroups is trivial. Let Γ be
a finitely generated, residually finite group. Let P be a property of groups.
For γ ∈ Γ − {1} we define Q(γ,Γ, P ) to be the set of finite quotients of Γ
with property P in which the image of γ is non-trivial. We say that these
quotients detect γ. We define

DP
Γ (γ) := inf{|Q| : Q ∈ Q(γ,G, P )}.

For a fixed finite generating set X ⊂ Γ we define

FPΓ,X(n) := max{DP
Γ (γ) : γ ∈ Γ− {1}, ‖γ‖X ≤ n}.

For two functions f, g : N → N we write f � g if there exists a natural
number M such that f(n) ≤ Mg(Mn), and we write f ≈ g if f � g and
g � f . In the case when f ≈ g does not hold we write f 6≈ g. When f � g
does not hold we write f 6� g. We will also write f � g for g � f and f 6� g
for g 6� f . If there exists a natural number M such that f(n) ≤ Mg(Mn)
for infinitely many n, we say that f(n) � g(n) for infinitely many n.

It was shown in [B10] that if X,Y are two finite generating sets for the
residually finite group Γ, then FΓ,X ≈ FΓ,Y. This result actually holds for

the more general FPΓ function when the property P is always inherited by
subgroups:

Lemma 6. Let Γ be a finitely generated group and P be a property of groups
that is always inherited by subgroups. If ∆ is a finitely generated subgroup of
Γ and X,Y are finite generating sets for Γ,∆ respectively, then FP∆,Y � FPΓ,X.
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Proof. As any homomorphism of Γ to Q, with Q having property P , re-
stricts to a homomorphism of ∆ to a subgroup of Q, it follows that DP

∆(h) ≤
DP

Γ (h) for all h ∈ ∆. Hence,

FP∆,Y(n) = sup{DP
∆(g) : ‖g‖Y ≤ n, g 6= 1}(1)

≤ sup{DP
Γ (g) : ‖g‖Y ≤ n, g 6= 1}.

Further, there exists a C > 0 such that any element in Y can be written in
terms of at most C elements of X. Thus,

(2) {h ∈ ∆ : ‖h‖Y ≤ n, h 6= 1} ⊆ {g ∈ Γ : ‖g‖X ≤ Cn, g 6= 1}.

So by (1) and (2), we have that

FP∆,Y(n) ≤ sup{DP
Γ (g) : ‖g‖Y ≤ n, g 6= 1}

≤ sup{DP
Γ (g) : ‖g‖X ≤ Cn, g 6= 1} = FPΓ,X(Cn),

as desired. �

Since we will only be interested in asymptotic behavior, we let FPΓ be the
equivalence class (with respect to ≈) of the functions FPΓ,X for all possible

finite generating sets X of Γ. Sometimes, by abuse of notation, FPΓ will stand
for some particular representative of this equivalence class, constructed with
respect to a convenient generating set.

1.3. Connections to word growth and normal subgroup growth.
Given a finitely generated group Γ with generating set X, recall that word
growth involves studying the asymptotics of the following function:

wΓ(n)

:= |{γ ∈ Γ : the word length of γ with respect to X is no more than n}|.

Subgroup growth is the asymptotic growth of

sΓ(n) := |{∆ ≤ Γ : [Γ : ∆] = n}|.

Normal subgroup growth is the asymptotic growth of

sCΓ (n) := |{∆C Γ : [Γ : ∆] = n}|.

Gromov’s Polynomial Growth theorem [G81] equates virtual nilpotency to
having polynomial word growth. The following lemma is a slight improve-
ment of Proposition 2.3 in [BM1].

Lemma 7. Let Γ be a finitely generated, residually finite group generated
by X. If

exp(exp([log log(n)]3)) � wΓ,X(n),

for infinitely many n, then FΓ,X(n) 6� (log(n))r for any r ∈ R.
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Proof. We first recall a basic inequality from [BM1] (Inequality (1) in that
paper) that relates word growth, normal subgroup growth, and normal resid-
ual finiteness growth:

(3) log(wΓ,X(n)) ≤ sCΓ (FΓ,X(2n)) log(FΓ,X(2n)).

To prove the theorem with this inequality, assume to the contrary that
there exists r ∈ R such that FΓ,X � (log(n))r. In terms of � notation,
inequality (3) becomes:

log(wΓ,X(n)) � sCΓ (FΓ,X(n)) log(FΓ,X(n)).

Taking the log of both sides, we obtain

log log(wΓ,X(n)) � log(sCΓ (FΓ,X(n))) + log(log(FΓ,X(n))).

This inequality, in tandem with the assumptions

exp(exp([log log(n)]3)) � wΓ,X(n) for infinitely many n,

FΓ,X(n) � (log(n))r,

and log(sCΓ (n)) � (log(n))2 (see [LS03, Corollary 2.8]) gives

[log log(n)]3 � (log log(n))2 + log log log(n),

for infinitely many n, which is impossible. �

Following the proofs in [BM1], we achieve the following two corollaries.

Corollary 8. Any finitely generated solvable group has normal residual
finiteness growth which is at most polynomial in log(n) if and only if the
group is virtually nilpotent. �

Proof. Since virtually nilpotent groups are linear [A67], any virtually nilpo-
tent group has polynomial in log(n) normal residual finiteness growth (see
[B10]). If suffices to show that any finitely generated solvable group that
has normal residual finiteness growth which is at most polynomial in log(n)
is virtually nilpotent. Milnor’s Theorem in [M68] states that any finitely
generated solvable group which is not virtually nilpotent must have expo-
nential word growth. This fact along with the normal residual finiteness
growth assumption on Γ contradicts Lemma 7. �

Corollary 9. Any finitely generated solvable group Γ that is virtually nilpo-
tent has solvable residual finiteness growth bounded above by (log(n))k for
some k. �

2. The Proofs of Theorems 1 and 2

Proof of Theorem 1. It follows, from Theorem 0.2 in [B10], that if Γ is
virtually nilpotent then FΓ(n) is at most polynomial in (log(n)). Hence, it
suffices to show that Γ is virtually nilpotent if FΓ(n) is at most polynomial in
log(n). Let ∆ be a finite-index subgroup of Γ that is residually solvable and
finitely generated. If ∆ is virtually nilpotent, then Γ is virtually nilpotent.
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Further, by Lemma 6, F∆(n) is at most polynomial in log(n). Hence, we
may assume that Γ is residually solvable and finitely generated. Suppose Γ
is not virtually nilpotent, then by Theorem 1.1 in [Wi05], it follows that Γ
must have word length greater than

exp exp([log(n)]1/3)

for infinitely many n. But we claim that having such word growth contra-
dicts Lemma 7. Indeed, the assumption in Lemma 7 is satisfied if

exp(exp([log log(n)]3)) � exp(exp([log(n)]1/3)),

which is clearly true. �

Proof of Theorem 2. If Γ is virtually nilpotent and residually solvable,
then by Lemma 0.4 in [LM91], Γ is solvable. So by Corollary 9, we see that
Γ must have solvable residual finiteness growth which is at most polynomial
in log(n). This completes one direction of the proof. To finish, we must show
that if Γ has solvable residual finiteness growth which is at most polynomial
in log(n), then Γ is virtually nilpotent and solvable. By Theorem 1, Γ is
virtually nilpotent. Hence, as Γ is residually solvable, Γ must be solvable by
Lemma 0.4 in [LM91]. �

3. Proof of Theorem 3

Let Γ be the fundamental group of a compact surface. Since Γ contains a
free group, the lower bound of the theorem follows from the following claim
and Lemma 6.

Claim 1. We have Fnil
Z ∗Z(n) � exp[

√
n].

Proof. Let x and y be generators for Z ∗Z. Let u1(x, y) = x−2y−1x and

un+1(x, y) = [xun(x, y)x−1, yun(x, y)y−1].

By Theorem 1.1 in [B06], un(x, y) 6= 1 for all n. Moreover, un ∈ Γ(n) and
‖un‖ ≤ C4n for some natural number C. By a well-known result of Hall,

Γ(n) ⊂ Γ2n (see, for example, Lemma 2.7 in [MP]). Further recall that if
Q is a finite group of nilpotence class 2n, then |Q| > 22n . Drawing all this
together gives

Fnil
Γ (C4n) ≥ 22n .

Let m = [log2(
√
n)], where [·] denote the floor function and n is large enough

to ensure that m is positive. We have

Fnil
Γ (C4m) ≥ 22m .

Since [log2(
√
n)] ≥ log2(

√
n), we have 22m ≥ 2

√
n. Further, [log2(

√
n)] <

log2(
√
n) + 1, so because F nil

Γ is a nondecreasing function in n,

Fnil
Γ (C22[log(

√
n)]) ≤ Fnil

Γ (C22 log2(
√
n)+2) ≤ Fnil

Γ (4Cn).
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Hence,

Fnil
Γ (4Cn) < 2

√
n.

Since 4C is greater than one, we get

Fnil
Γ (n) � 2

√
n. �

Before proving the upper bound in Theorem 3, we first prove some pre-
liminary results.

Claim 2. Let ∆ be the kernel of the group homomorphism

φ : PSL2(Z[i])→ SL2(Z /2Z)

induced by the ring homomorphism

Z[i]→ Z[i]/ 〈(1− i)〉 = Z /2Z .

Then Fnil
∆ (n) � 2n.

Proof. Before starting the proof, we construct a filtration for the kernel
which will help us find small nilpotent quotients. Set G0 = ∆ and

Gk = ker[PSL2(Z[i])→ SL2((Z /2k Z)[i])/{±1}] for k ≥ 1.

Then, because 2 = (1− i)(1 + i), we have the following filtration of normal
subgroups for G0:

G0 ≥ G1 ≥ G2 ≥ G3 ≥ · · ·
We first claim that each quotient G0/Gk is a 2-group of order less than 28k.
We write [A] for the equivalence class in PSL2(Z[i]) containing an element
A ∈ SL2(Z[i]). The first quotient G0/G1 is

{[A] ∈ PSL2(Z[i]) : A ≡ 1 mod (1− i)Z[i]}/ ∼,
where [A] ∼ [B] if A ≡ ±B ≡ B mod 2Z[i]. Denote by M2(Z /2Z[i])
the set of all 2× 2 matrices with coefficients in Z /2Z[i]. Let h : G0/G1 →
(M2(Z /2Z[i]),+) be given by [A]G1 7→ (A − 1). The map is well-defined:
indeed if [A] ∼ [B] then [A] = [B + 2N ] for some N in M2(Z[i]). So setting
MA = A− 1 gives

[B] = [A+ 2N ] = [1 +MA + 2N ].

Hence, h([A]G1) = MA and h([B]G1) = MA + 2N which is equal to MA

in M2(Z[i]/2Z[i]). Further, the map is a homomorphism: indeed, if [A] =
[1 + (1− i)M ] and [B] = [1 + (1− i)N ], then

[A][B] = [1 + (1− i)(M +N)− 2iMN ] ∼ [1 + (1− i)(M +N)].

Finally, the map h is injective since matrices that get mapped to 1 under h
must satisfy A ≡ 1 mod 2Z[i]. It follows that G0/G1 is a 2-group of order
at most |M2(Z /2Z[i])| = 28.

For k > 1 we write

Gk/Gk+1 = {[A] ∈ PSL2(Z[i]) : A ≡ 1 mod 2k Z[i]}/ ∼,
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where [A] ∼ [B] if A ≡ ±B mod 2k+1 Z[i]. Define a map

g : Gk/Gk+1 → (M2(Z /2Z[i]),+)

by [A] 7→ (A − 1)2−k. It is well-defined: indeed if [A] ∼ [B] then A =
±(B − 2k+1N) for some N in M2(Z[i]). So setting MA = (A− 1)2−k gives

±B = A± 2k+1N = 2kMA + 1± 2k+1N = 1 + 2k(MA ± 2N).

Hence, h([A]Gk+1) = MA and h([B]Gk+1) = MA + 2N which is equal to
MA in M2(Z[i]/2Z[i]).

Further, g is a homomorphism: Indeed, if [A] = [1 + 2kM ] and [B] =
[1 + 2kN ], then [A][B] = [AB] becomes

[(1 + 2kM)(1 + 2kN)] = [1 + 2kM + 2kN + 22kMN ] ∼ [1 + 2k(M +N)],

which maps to M + N. Finally, the map is injective, as g([A]Gk+1) = 0
implies that [A] = [1+2k+1N ] ∼ [1]. It follows that Gk/Gk+1 is a two group
with order bounded above by 28. This gives that G0/Gk is a 2-group of
order bounded above by 28k, as claimed.

Let X be a finite set of generators for ∆ as a semigroup and set S = {1, i}.
We claim that there exists λ > 0 such that for any [A] ∈ ∆ with ‖[A]‖X ≤ n
and any non-zero entry a ∈ Z[i] of A± 1 we have

‖a‖S ≤ λn.

To prove the claim, let a′ be the entry of A in the same spot as a in A±1.
We have, by the triangle inequality,

‖a‖S ≤ ‖a′‖S + ‖1‖S .

This reduces the above claim to the following. There exists µ > 0 such that
for any A ∈ G0 with ‖A‖X ≤ n and any non-zero entry a ∈ Z[i] of A we
have

‖a‖S ≤ µn.
We claim that if β denotes the maximum of ‖x‖S , where x ranges over all
entries of all elements of X, then µ := mβ satisfies the last statement. To
see this, consider first the case A = XY with X,Y ∈ X. The entries of A
are scalar products of the rows of X and the columns of Y . Thus we are led
to study ‖x · y‖S for x, y ∈ Z[i]m, where · denotes scalar product. Clearly
we have ‖x · y‖S ≤ mmax{‖xjyj‖S : 1 ≤ i ≤ m}. In terms of the basis S we
can write

xj = ax + bxi and yj = ay + byi

where each ax, bx, ay, by belongs to Z. One computes

‖xjyj‖S ≤ ‖xj‖S‖yj‖S .

This formula and induction on n complete the proof of the claim.
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We now finish the proof. Let [A] be an element in ∆ of word length at
most n in terms of X. Then, by the above, there exists a C > 0 such that
any nonzero entry a of A− 1 or A+ 1 satisfies

‖a‖S ≤ 2Cn.

However, by the definition of Gk: if A is nontrivial and in Gk, then any
nonzero entry a of A−1 and A+1 has ‖a‖S ≥ 2k. It follows that [A] /∈ GCn,
hence, as G0/GCn is a 2-group of order at most 28Cn, we have

Dnil([A]) ≤ 28Cn,

giving

Fnil
G0

(n) � 2n. �

Claim 3. Let ∆ be the kernel of the group homomorphism

φ : PSL2(Z[i])→ SL2(Z /2Z)

induced by the ring homomorphism

Z[i]→ Z[i]/ 〈(1− i)〉 = Z /2Z .

Then ∆ contains the fundamental group of a genus 2 surface.

Proof. Let d be a square-free postive integer, Od the ring of integers of
the quadratic imaginary number field Q(

√
−d) and Γd the Bianchi group

PSL2(Od). It was shown by Maclachlan (see Chapter 9.6 of [MR03]) that
for any circle C with equation:

a|z|2 +Bz +Bz + c = 0, with a, c ∈ Z, B ∈ Od

the group

Stab(C,Γd) = {γ ∈ Γd : γ(C) = C and γ preserves components of C \ C}

is an arithmetic Fuchsian subgroup of Γd. Moreover, all such arithmetic
Fuchsian subgroups occur like this.

We now fix attention on the case of d = 1 and the circle C with equation

2|z|2 + (1 + i)z + (1− i)z − 2 = 0.

Denote the group Stab(C) by F . It is shown in [MR91] Theorem 8 that this
is an arithmetic Fuchsian group of signature (0; 2, 2, 3, 3; 0). With a bit of
effort, explicit generators for F can be computed, namely:

x1 =

(
i 1 + i
0 −i

)
, x2 =

(
−1 + 2i 3 + i

1 + i 1− 2i

)
,

x3 =

(
2i 3 + 2i
1 1− 2i

)
, x4 =

(
1 + 2i 2 + 3i
−i −2i

)
.

Now let Γ denote the principal congruence subgroup of Γ1 of level 〈(1 + i)〉.
To determine the group F ∩ Γ we consider the reduction of the generators
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of F modulo 〈(1 + i)〉. It is easily seen that (projectively) x1 and x2 map
trivially with x3 and x4 mapping to the elements(

0 1
1 1

)
and

(
1 1
1 0

)
,

respectively. We deduce from this that the image of F under the reduction
homomorphism is cyclic of order 3, and so it follows that since each of x1 and
x2 is killed, they determine 3 conjugacy classes of cyclic groups of order 2 in
F ∩Γ. Given that the index [F : F ∩Γ] = 3, we deduce that the signature of
the Fuchsian group F ∩Γ is (0; 2, 2, 2, 2, 2, 2; 0). Any such group has a genus
2 surface group. In summary we have shown that the level 〈(1 + i)〉 principal
congruence subgroup of PSL2(O1) contains a genus 2 surface group. �

We now prove the upper bound in Theorem 3:

Corollary 10. Let Γ be the fundamental group of an oriented surface. Then
Fnil

Γ (n) � 2n.

Proof. By Claim 3, the kernel in Claim 2 contains Γ. Hence the corollary
follows from Lemma 6. �

Corollary 11. Let Γ be the fundamental group of an oriented surface with
generating set X. Then there exists a constant C > 0 such that any γ ∈ Γ
satisfies γ /∈ ΓC‖γ‖X.

Proof. By the previous corollary, we have that there exists C > 0 such that
Fnil

Γ,X(n) < 2Cn for all n. Hence, for any γ ∈ Γ − {1}, we have Dnil
Γ (γ) ≤

2C‖γ‖X . But any finite group of nilpotent class no less than C‖γ‖X, must

have order no less than 2C‖γ‖X , hence γ /∈ ΓC‖γ‖X+1, which is sufficient. �

4. Some examples

In this section we show that better lower bounds can be found for some
groups Γ where [Γ,Γ] is not finitely generated.

Example 1. Let p be a prime number. Let Γ be the group Z /pZ oZ. Set
∆ = ⊕i∈Z Z /pZ to be the base group of Γ so Γ/∆ ∼= Z. We claim that
FΓ(n) �

√
n.

Proof. We begin with a linear algebraic construction of candidates for a
lower bound. Let A be the 2m×m matrix with entries in Z /pZ given by

(4)



1 1 1 1 1 · · ·
1 0 1 0 1 · · ·
0 1 0 1 0 · · ·
1 0 0 1 0 · · ·
0 1 0 0 1 · · ·
0 0 1 0 0 · · ·
1 0 0 0 1 · · ·

...


.



710 KHALID BOU-RABEE

Set m = n(n + 1)/2. This matrix gives a linear transformation from
(Z /pZ)2m to (Z /pZ)m. Since the cardinality of (Z /pZ)2m is greater than
that of (Z /pZ)m, we have that ker(A) is nontrivial. Fix w = (w1, . . . , w2m)
to be a nontrivial element in ker(A). Let δi be the Dirac delta function
giving an element in ∆. Set v to be the element

2m∑
i=1

wiδi.

This element v is our candidate.
Let t be the generator for Z in the wreath product of Z /pZ oZ. It is

straightforward to see that the element v has word length less than 2m(p+2).
Let φ : Γ→ Q be a map onto a finite Q such that v /∈ kerφ. Then, supposing
that φ(tr) = 1 for r < n gives

φ(v) = φ

(
2m∑
i=1

wiδi

)
= φ

(
r−1∑
i=1

(wi + wi+r + wi+2r + · · · )δi

)
= 0.

Hence, r ≥ n, and so |Q| ≥ n, giving FΓ(n2) � n and hence FΓ(n) � n1/2

as desired. �

The above method strengthens Example 2.3 in [BK10].

Example 2. Let Γ be the wreath product Z oZ. Set ∆ = ⊕i∈Z Z to be the
base group of Γ so Γ/∆ ∼= Z. We claim that FΓ(n) � n1/4.

Proof. We begin with a linear algebraic construction of candidates for a
lower bound. As in the above proof, let A be the 2m×m matrix, this time
with entries in Z given by Expression 4. Set m = n(n + 1)/2, for n even.
This matrix gives a map from V := Z2m to W := Zm. Let ‖ · ‖Z` be the

supremum norm on Z`. By the triangle inequality and the definition of A,
one sees that for any v ∈ V , we have

‖Av‖W ≤ m‖v‖V .

Further, if we let BZ`(k) = {v ∈ Z` : ‖v‖Z` ≤ k}, then ABV (k) ⊆ BW (mk)
for all k. Moreover, for all even k ∈ N,

|BW (k/2)| = (k + 1)m, and

|BV (k/2)| = (k + 1)2m.

If k = (m+ 2), then

|BV (k/2)| = (k + 1)2m > ((m+ 3)k)m = (km+ 3k)m

> (mk + 1)m = |BW (mk/2)|.

Hence, as ABV (k/2) ⊆ BW (mk/2), there must exist w ∈ ker(A) ∩ BV (k)
that is nontrivial. Fix such a w, and write w = (w1, . . . , w2m). Let δi be the



APPROXIMATING A GROUP BY ITS SOLVABLE QUOTIENTS 711

Dirac delta function giving an element in ∆. Set v to be the element

2m∑
i=1

wiδi.

This element v is our candidate. It is straightforward to show that the
element v has word length less than 2m(k + 2).

Let t be the canonical generator for the wreath product of Z oZ whose
image generates Γ/∆. Let φ : Γ → Q be a map onto a finite Q such that
v /∈ kerφ. Then, supposing that φ(tr) = 1 for r < n gives

φ(v) = φ

(
2m∑
i=1

wiδi

)
= φ

(
r−1∑
i=1

(wi + wi+r + wi+2r + · · · )δi

)
= 0.

Hence, r ≥ n, and so |Q| ≥ n, giving FΓ(n4) � n and hence FΓ(n) � n1/4

as desired. �
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with groups. Math. Sb. 180 (1989) 207–225 (Russian). Math. USSR Sb. 66 (1990),
211–229 (English). MR0993455 (90j:20063), Zbl 0695.16009.

[LM91] Lubotzky, Alexander; Mann, Avinoam. On groups of polynomial sub-
group growth. Invent. Math. 104 (1991), 521–533. MR1106747 (92d:20038), Zbl
0743.20040.

[LS03] Lubotzky, Alexander; Segal, Dan. Subgroup growth, Progress in Mathe-
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