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Jordan type of a k[Cp×Cp]-module

Semra Öztürk Kaptanoğlu

Abstract. Let E be the elementary abelian group Cp×Cp, k a field of
characteristic p, M a finite dimensional module over the group algebra
k[E] and J the Jacobson radical J of k[E]. We prove that the decom-
position of M when considered as a k[〈1 + x〉]-module for a p-point x in
J is well defined modulo Jp.
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1. Introduction

Throughout this note k denotes a field of characteristic p > 0, unless
it is stated otherwise, E denotes the elementary abelian p-group of rank
2, generated by a and b, i.e., E = Cp×Cp = 〈a, b〉, and M denotes a finite
dimensional k[E]-module, M↓H denotes M as a k[H]-module for a subgroup
H of units of k[E].

The set of indecomposable k[Cpt ]-modules (up to isomorphism) consists
of the ideals of k[Cpt ], namely,

(1) k[Cpt ], J, J2, . . . , Jpt−1

where J is the Jacobson radical of k[Cpt ]. However, when a finite group G
contains E as a subgroup by Higman’s theorem there are infinitely many
indecomposable k[G]-modules (up to isomorphism) [Hi]. When p = 2, the
infinite set of indecomposable k[E]-modules is determined in [Ba], and a co-
homological characterization is given in [Ca]. However, when p ≥ 3, there is
no classification for indecomposable k[E]-modules. Thus, alternative means
are used in the study of k[E]-modules so that new subcategories of modules
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are defined and characterized. For instance, information, namely the num-
ber of i-dimensional indecomposable k[E]-modules, for i = 1, . . . , p, in the
restriction of a k[E]-module at p-points led to the definition of the subcate-
gory of modules of constant Jordan type [CFP].

The p-points of k[E] are elements x = α(a− 1) + β(b− 1) + w of J with
α, β in k, not both zero, and w ∈ J2 so that 〈1 + x〉 is cyclic group of
order p. For such an x, k[〈1 + x〉] ∼= k[Cp] ∼= k[x]/(xp) is a subalgebra of
k[E] for which k[E]↓〈1+x〉 is free. This property distinguishes p-points form
arbitrary points of JE . For a p-point x, the subgroup 〈1 + x〉 of the group
of units of k[E] is called a shifted cyclic subgroup (following [Ca]). For a
k[E]-module M and a p-point x, by (1) the decomposition of M↓〈1+x〉 into
indecomposable k[〈1 + x〉]-modules is as follows;

M↓〈1+x〉∼= (k[〈1 + x〉])ap ⊕ (J)ap−1 ⊕ (J2)ap−2 ⊕ · · · ⊕ (Jp−1)a1 .

Thus M ↓〈1+x〉 is determined by the p-tuple a(x) = (a1, . . . , ap) where ai

denotes the number of the i-dimensional indecomposable k[〈1 + x〉]-module
Jp−i for J = rad(k[〈1 + x〉]). Hence a k[E]-module M can be studied through
such p-tuples a(x) where x is a p-point.

Dade’s [Da] criterion was the first significant result which used p-points,
namely, for an arbitrary elementary abelian p-group E, a k[E]-module M is
free if and only if M↓〈1+x〉 is free for all shifted cyclic subgroups of k[E]. In
[CFS] modules for Cp×Cp, especially modules of constant Jordan type, i.e.,
modules having the same a(x) for all p-points x, are studied thoroughly.

In fact, p-points are defined and studied in the much more general context
of finite group schemes in [FP]. Later, in [FPS] generic and maximal Jordan
types for modules are introduced and studied; this is followed by [CFP]
where modules of constant Jordan type are introduced. Recently, in [Ka]
this type of study has been generalized to include the restrictions of modules
to subalgebras of k[G] that are of the form k[〈1 + x〉] ∼= k[Cpt ], for t ≥ 1,
and x ∈ J is a pt-point. A pt-point of k[G] is an element of J defined
analogous to a p-point, yet they are much more intricate to characterize.
The pt-points led to the definition of modules of constant pt-Jordan type
and modules of constant pt-power Jordan type for an abelian p-group G.
Also, a filtration of modules of constant Jordan type by modules of constant
pt-power Jordan type is obtained. Studying modules by means of p-points
is an active research area, see also [Fr], [BP], et al. The main result of this
article is a variation on that theme for k[E]-modules:

Theorem 1. If M is a finite dimensional k[E]-module, and x, y are elements
of J − J2 with x ≡ y (mod Jp), then the kernels of xi and yi on M are the
same for all i ≥ 1. In particular, M ↓〈1+x〉 and M ↓〈1+y〉 have the same
decomposition.

This theorem is a generalization of Lemma 6.4 in [Ca] which states that
M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free which makes the rank variety,
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V r
E(M), of M well defined. The rank variety is defined as points x̄ in J/J2 at

which M↓〈1+x〉 is not free. Likewise, Theorem 1 makes the following subset
of J/Jp×(N ∪ {0})p, denoted by JtE(M), called the Jordan set of M , well
defined.

JtE(M) = {(x̄, a(x)) | x̄ ∈ J/Jp}.

The Jordan set of M is an invariant of the module finer than its rank variety.
Although it is possible for two nonisomorphic k[E]-modules to have the same
Jordan set, the Jordan set may distinguish two nonisomorphic modules. The
Jordan set of M was first defined in [Öz] and used in [Ka1], under the name
multiplicities set of M , to distinguish some types of k[C2×C4]-modules.

The significance of J/J2 in the modular representation theory of elemen-
tary abelian p-groups, especially when the freeness of a module is concerned,
is manifested in Dade’s Theorem, in the definition of the rank variety, etc.
By our theorem it becomes clear that J/Jp has a significance as well for the
Jordan decompostion of a module at a p-point x in J , for instance in the
study of modules of constant Jordan type. At this point there is a need for
a “geometric” interpretation for J/Jp similar to that of J/J2.

When stated in terms of matrices our theorem takes the following form.

Corollary 2. Let A,B be commuting nilpotent nonzero matrices over k
with Ap = 0, Bp = 0. If X = f(A,B), Y = g(A,B) for polynomials
f, g ∈ k[z1, z2] with no constant term, having at least one linear term and
f − g in the ideal (z1, z2)p, then null(Xi) = null(Y i) for all i. In particular,
A and B have the same Jordan canonical form.

2. A lemma

The formula in Lemma 3(i) below for counting the Jordan blocks of a
given size in the Jordan canonical form of a nilpotent matrix is used in the
proof of Theorem 1.

Lemma 3. Let X be a d×d matrix over a field F and at denote the number
of t×t Jordan blocks in the Jordan form of X. Suppose that Xs = 0. Then

at = rank(Xt−1)− 2 rank(Xt) + rank(Xt+1) for 1 ≤ t ≤ s,(i)
s∑

i=1

ai = #{Jordan blocks in X} = rank(X0)− rank(X) = null(X),(ii)

rank(Xr) =
∑

r+1≤t≤s

(t− r) at.(iii)

Proof. In the course of the proof of this lemma we will use the notation
a(i) to denote ai in order not to use too small indices. Note also that (ii)
follows from (i). To prove (i) and (iii), without loss of generality, assume
that X is in Jordan canonical form. Since Xs = 0, X consists of Jordan
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blocks of sizes less than or equal to s. Thus

X =

 [js]⊕a(s)

. . .
[j1]⊕a(1)


where [jt] denotes the t×t upper triangular Jordan block with zero eigenvalue,
and ⊕ a(t) in the exponent denotes the multiplicity of [jt] in X. Hence
d =

∑s
t=1 t a(t) and rank(X) =

∑
1≤t≤s rank([jt]) a(t). Note that

rank([jt]r) =

{
t− r, if r < t;
0, if r ≥ t.

Thus rank([jt]r) 6= 0 if and only if t ≥ r + 1 and

rank([jr+1]r) = 1,

rank([jr+2]r) = 2,

...

rank([js]r) = s− r.

Therefore

rank(Xr) =
∑

1≤t≤s

a(t)(rank([jt]r))

= 0 + · · ·+ 0 + a(r + 1) + 2 a(r + 2) + . . . + (s− r) a(s)

=
∑

r+1≤t≤s

(t− r) a(t).

In particular, for r = s− 1, when computing rank(Xs−1) the only possibly
nonzero rank in the summation is rank([js]s−1) = 1. Hence one obtains

rank(Xs−1) = a(s).

For r = s−2, (since rank([js]s−2) = 2) there are only two possibly nonzero
terms in the summation, hence

rank(Xs−2) = a(s− 1) + 2a(s),

By substituting the resulting formulas for a(s− 1) and a(s) in the formula
for rank(Xs−3), one obtains

a(s− 2) = rank(Xs−3)− 2a(s− 1)− 3a(s)

= rank(Xs−3)− 2 rank(Xs−2) + rank(Xs−1).

This suggests the formula

a(s− i) = rank(Xs−(i+1))− 2 rank(Xs−i) + rank(Xs−(i−1)), for 0 ≤ i ≤ s.
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The proof is by induction on i in the above formula. Having seen that it is
true for i = 1, 2 and 3, suppose the above equality holds for all 1 ≤ i ≤ r.
To prove it for r + 1, recall that

rank(Xs−(r+1)−1) = rank(Xs−r−2) =
∑

s−(r+1)≤t≤s

rank([jt]s−(r+1)−1) a(t)

=
∑

s−(r+1)≤t≤s

(t− (s− (r + 1)− 1)) a(t)

= a(s− (r + 1)) + 2a(s− r) + 3a(s− (r − 1))

+ · · ·+ (s− (s− (r + 1)− 1)) a(s).

Therefore

a(s− (r + 1)) = rank(Xs−(r+1)−1)− 2 a(s− r)− 3 a(s− (r − 1))

− 4 a(s− (r − 2))− · · · − (r + 2) a(s).

By the induction hypothesis, one obtains

a(s− (r + 1))

= rank(Xs−(r+1)−1)

− 2
 rank(Xs−(r+1))− 2 rank(Xs−r) + rank(Xs−(r−1))


− 3

 rank(Xs−r)− 2 rank(Xs−(r−1)) + rank(Xs−(r−2))


− 4
 rank(Xs−(r−1))− 2 rank(Xs−(r−2)) + rank(Xs−(r−3))


...

− r
 rank(Xs−(r−(r−3)))− 2 rank(Xs−(r−(r−2)))

+ rank(Xs−(r−(r−1)))


− (r + 1)
 rank(Xs−(r−(r−2)))− 2 rank(Xs−(r−(r−1)))


− (r + 2) rank(Xs−(r−(r−1))).

Thus one obtains

a(s− (r + 1))

= rank(Xs−(r+1)−1)− 2 rank(Xs−(r+1)) + (4− 3) rank(Xs−r)

+
− 2 + (−3)(−2)− 4

 rank(Xs−(r−1)) + · · ·+

+
− r + (−(r + 1))(−2)− (r + 2)

 rank(Xs−1)

= rank(Xs−(r+2))− 2 rank(Xs−(r+1)) + rank(Xs−r). �
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3. Proof of Theorem 1

In the following discussion to simplify the notation we use J for rad(k[E]).
Note that J2p−1 = 0.

Let X, Y be the matrices which represent the action of x, y, and also
let A, B denote the matrices repesenting the actions of a − 1 and b − 1,
on M respectively. Note that J = 〈A,B〉 and J2p−1 = 0. Since X and Y
commute, if null(X) = null(Y ), then null(Xi) = null(Xi) for every i ≥ 1.

Claim. null(X) = null(Y ).

Proof. Since the situation is symmetric with respect to X and Y , it is
sufficient to show that null(X) ⊆ null(Y ). By the hypothesis on x and y we
can write Y = X +w(A,B) with X = αA+βB+c(A,B) for some γ ∈ k, for
α, β in k not both 0, c(A,B) in J2 but not containing any terms with more
than p−1 factors, i.e., can only contain γAiBj with i+j in {2, . . . , p−1} as
a term, and w(A,B) containing only terms with at least p factors. Since the
situation is symmetric with respect to A and B, without loss of generality
assume that α 6= 0.

Suppose Xm = 0 for some nonzero m in M . Then

−(αA + βB)m = c(A,B)m,(2)

Y m = w(A,B)m.(3)

Multiplying (2) with Ap−2Bp−1 we get

−Ap−2Bp−1(αA + βB)m = Ap−2Bp−1c(A,B)m ∈ J2p−1m = 0.

Since α 6= 0, we have Ap−1Bp−1m = 0, and hence, J2p−2m = 0. Multiplying
(2) with Ap−3Bp−1 gives

−Ap−3Bp−1(αA + βB)m = Ap−3Bp−1c(A,B)m ∈ J2p−2m = 0.

Hence Ap−2Bp−1m = 0 as α 6= 0. Similarly, multiplying (2) with Ap−2Bp−2

gives that Ap−1Bp−2m = 0. Thus J2p−3m = 0. Using J2p−3m = 0, and
multiplying (2) with the terms Ap−2Bp−3, Ap−3Bp−2, Ap−4Bp−1 we obtain
that J2p−4m = 0. Then by induction on l in J2p−l, for 2 ≤ l ≤ p, we obtain
that Jpm = 0. Hence by (3) Y m ∈ Jpm = 0 proving the claim. �

Thus by the above remarks we have null(Xi) = null(Y i).
The second statement of the theorem follows from the formula

ai = rank(Xi−1)− 2 rank(Xi) + rank(Xi+1)
given in Lemma 3(i). Since null(Xi) = null(Y i), we have rank(Xi) =
rank(Y i) for all i. Hence each Jordan block occurs with the same multi-
plicity in the Jordan form of X and Y . That is, M↓〈1+x〉 and M↓〈1+y〉 have
the same decomposition. �
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