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Variations on a theme of Beurling

Ronald G. Douglas

Abstract. Interpretations of the Beurling–Lax–Halmos Theorem on
invariant subspaces of the unilateral shift are explored using the lan-
guage of Hilbert modules. Extensions and consequences are considered
in both the one and multivariate cases with an emphasis on the classical
Hardy, Bergman and Drury–Arveson spaces.
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0. Introduction

In a classic paper [4], Beurling posed and answered two fundamental ques-
tions for the unilateral shift operator on Hilbert space and its adjoint. The
first problem was the characterization of the cyclic vectors for the forward
shift operator, while the second one concerned the spanning of an invariant
subspace for the backward shift by its eigenvectors or, more generally, its
generalized eigenvectors. To obtain these solutions, he recast the questions
into the language of function theory and then recalled results of Nevanlinna
and Riesz on the inner-outer factorization of functions in the Hardy space
on the unit disk and the structure of inner functions. In particular, a vector
is cyclic for the unilateral shift if and only if it is outer or its inner factor
is a scalar and spectral synthesis holds for an invariant subspace for the
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2 RONALD G. DOUGLAS

backward shift if and only if the inner function, representing its orthogo-
nal complement, has no singular inner factor and the zeros of the Blaschke
product have multiplicity one. For higher multiplicity zeros one must also
include generalized eigenvectors. Thus Beurling’s solutions rested on the
results in function theory obtained a decade or two earlier.

The result from his paper, which is the best remembered, is the represen-
tation of invariant subspaces of the unilateral shift in terms of inner functions
or, what is usually called Beurling’s Theorem. Perhaps what is somewhat
surprising is that this result is really a statement about the structure of
isometries and could have been obtained as a corollary to von Neumann’s
result [16] two decades earlier, what is now usually called the Wold decom-
position [20]. This fact becomes transparent if one adopts a Hilbert module
point of view. In this note we will do that examining various interpretations
and generalizations of Beurling’s results in the context of Hilbert modules
of holomorphic functions on domains in Cm such as the unit ball Bm and
the polydisk Dm in Cm for m ≥ 1. Many of these ideas occurred and were
developed by the author in collaboration with Jaydeb Sarkar.

1. Preliminaries

We will restrict definitions to the context needed in this note. For a more
detailed presentation of Hilbert modules see [7], [8].

A Hilbert module H over C[zzz], zzz = (z1, . . . , zm) with m ≥ 1, is a Hilbert
space H and a unital module action

C[zzz]×H → H

such that each operator Mp for p in C[zzz] defined Mpf = p · f for f in H is
bounded.

Examples of Hilbert modules are the Hardy space H2(Bm) on the unit
ball Bm in Cm for m ≥ 1, the Hardy space H2(Dm) on the polydisk Dm in
Cm for m ≥ 1, the Bergman space L2

a(Bm) on Bm and also the Bergman
space L2

a(Dm) on Dm for m ≥ 1 and many more.
Not all Hilbert modules can be represented in a natural way as Hilbert

spaces of holomorphic functions in which module multiplication agrees with
the pointwise multiplication of functions, but we will focus in this note on
those that can.

Recall that H2(Bm) can be identified as the closure of C[zzz] in L2(∂Bm)
for Lebesgue measure on ∂Bm. Moreover, H2(Dm) is the closure of C[zzz] in
L2((∂D)m) for the product measure on (∂D)m. Finally, the Bergman spaces
are the closures of C[zzz] in L2(Bm) and L2(Dm), respectively, for Lebesgue
measure on Bm and Dm, respectively. Module multiplication in all of these
cases is defined by the pointwise multiplication of functions.

If H is a Hilbert module over C[zzz], then there is a natural way to make
the Hilbert space tensor product, H⊗E , into a Hilbert module over C[zzz] for
each coefficient Hilbert space E . One defines p ·(f⊗x) = (Mp⊗IE)(f⊗x) =
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(p · f) ⊗ x for f in H, x in E and p in C[zzz]. This construction enables one
to increase the multiplicity of a Hilbert module. In particular, H2(D)⊗E is
the Hardy space on D with multiplicity equal to dim E .

The result of Beurling was generalized by Lax [13] and Halmos [11] to
obtain the following theorem here stated in the language of submodules of
Hilbert modules.

Theorem 1.1 (Beurling–Lax–Halmos). Let S be a non-zero submodule of
H2(D) ⊗ E for some Hilbert space E. Then there exists a subspace E∗ of E
such that S and H2(D)⊗ E∗ are unitarily equivalent Hilbert modules.

Recall that Hilbert modules H1 and H2 over C[zzz] are said to be unitarily
equivalent if there exists a unitary module map U : H1 → H2; that is, a
unitary map U such that p · Uf = U(p · f) for f in H and p in C[zzz].

The BLH result follows directly from von Neumann’s result in [16].

Theorem 1.2 (von Neumann). Every isometry on Hilbert space is unitarily
equivalent to an operator of the form (Mz ⊗ ID)⊕ V for some Hilbert space
D and unitary operator V .

Moreover, the proof of the BLH Theorem follows from that of von Neu-
mann by proving that dimD ≤ dim E for S ⊆ H2(D) ⊗ E and that there is
no unitary V in the representation. Further, one obtains the usual repre-
sentation for S by using the fact that the module map U : H2(D) ⊗ E∗ →
S ⊆ H2(D) ⊗ E , has the form (Uf)(z) = Θ(z)f(z) for some holomorphic
map Θ: D → L(E∗, E). Since Θ is a contraction, we have ‖Θ(z)‖ ≤ 1 for z
in D, which implies that Θ has radial limits Θ(eit) on T = ∂D a.e., which
are isometric a.e.

Hence the Hardy module on D has the property that all non-zero sub-
modules of the higher multiplicity version have the same form. If we take
the Hardy space on a domain Ω ⊂ C with ∂Ω a simple closed curve, it will
have the same property regarding submodules of its higher multiplicity ver-
sions (see [1]). One can ask if there are any other Hilbert modules with this
property?

If the Hilbert module H has no proper submodule, then H would sat-
isfy this criterion for trivial reasons. However, here we eliminate such a
possibility by focusing on the case of quasi-free Hilbert modules [7] which
consist of holomorphic functions on some domain in Cm for m ≥ 1; that
is, H ⊆ hol(Ω, E) for a bounded domain such as Ω = Bm or Dm and a
Hilbert space E . We assume H is the closure of the algebraic tensor product
C[zzz] ⊗ E . Such a space is a reproducing kernel Hilbert space, where the
kernel K(zzz,www) : Ω×Ω → L(E) is defined such that K(zzz,www) = EzzzE

∗
www, where

Ezzz : Ω → E is evaluation at zzz in Ω, which is bounded. One says that dim E
is the multiplicity of H.
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2. Quasi-free Hilbert modules of multiplicity one

For the class of quasi-free Hilbert modules of multiplicity one, one can
decide for which modulesR all submodules ofR are isometrically isomorphic
to R.

Theorem 2.1. Suppose R is a quasi-free Hilbert module over Bm of multi-
plicity one such that each submodule S of R is isometrically isomorphic to
R. Then m = 1 and R is isometrically isomorphic to H2(D) and Mz on R
is the Toeplitz operator Tϕ, where ϕ is a conformal self map of D onto itself.

Proof. Suppose R is a quasi-free Hilbert module of multiplicity one over
C[zzz] such that every proper submodule is isometrically isomorphic to R.
Then note that S = {f ∈ R : f(000) = 0} is a proper submodule of R of
codimension one. By hypothesis, the results of [9] apply. Hence m = 1 and
the module isometry between R and S yields the identification of R and
H2(D), and Mz must be a Toeplitz operator on D. Moreover, identification
of the point spectrum of T ∗ϕ on D and the index completes the proof. �

The same result holds if one replaces Bm by (∂D)m. An earlier result of
Richter [17] showed that no proper submodule S of the Bergman module
L2

a(D) is isometrically isomorphic to L2
a(D) revealing that this module has

the opposite property for submodules. Actually, one can show, as was estab-
lished in [9], that this statement holds for most subnormal Hilbert modules.
The proof there depends on the maximum principle.

However, the following result, based on an operator theoretic approach,
covers most cases of interest. Recall that a multivariate weighted shift is
defined on the Hilbert space `2(Zm

+ ) by a multi-sequence of weights Λ =
{λααα}ααα∈A, where M ≥ λα > 0 for some positive M and A = (Zm

+ ), such
that the coordinate operators are defined Mieααα = λαααeααα+δi

for eααα in `2(Zm
+ )

and ααα + δi = (α1, . . . , αi + 1, . . . , αm) for ααα in A and i = 1, 2, . . . ,m. The
multi-shift will be said to be strictly hyponormal if λααα+δi

− λααα > 0 for ααα in
A and i = 1, . . . ,m.

Theorem 2.2. If Λ is a family of weights defining a strictly hyponormal
multi-shift and S ⊂ `2(Zm

+ ) is a submodule isometrically isomorphic to
`2(Zm

+ ), then S = `2(Zm
+ ).

Proof. Let W be the unitary module map between `2(Zm
+ ) and S ⊆ `2(Zm

+ ).
If f = We000, then an easy argument applied to the expansion, f =

∑
ααα∈A

aαααeααα,

and the actions of the coordinate multipliers Mzi , for i = 1, . . . ,m, shows
that aααα = 0 for ααα 6= 000. �

A careful but straightforward modification of this argument, given in [9],
is shown to apply to the Drury–Arveson space H2

m obtaining the same result
on submodules of H2

m. Recall that H2
m can be identified as the symmetric

Fock space (see [3]).
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3. The question of multiplicity

The Beurling–Lax–Halmos Theorem allows one to say more about mul-
tiplicity in the case of the Hardy module. In particular, suppose f is in
H2(D) ⊗ E and [f ] denotes the submodule of H2(D) ⊗ E generated by f .
Then [f ] ∼= H2(D) or every “multiplicity one” (singly-generated) submod-
ule looks like H2(D). This is not true in general even if one relaxes the
requirement as the following example shows.

Theorem 3.1. Consider the vector 1⊕z in L2
a(D)⊕L2

a(D) ∼= L2
a(D)⊗C2 and

let [1⊕ z] denote the cyclic submodule it generates. Then for no submodule
S ⊆ L2

a(D) is S ∼= [1⊕ z].

Proof. Suppose W is a module isomorphism from [1 ⊕ z] onto S ⊆ L2
a(D)

for some submodule S. If f = W (1⊕z), then the facts that the functions are
continuous and the closed support of Lebesgue measure on D is D implies
that |f(z)|2 = 1 + |z|2 for z in D. Using the Taylor series expansion one can
show this is impossible for any holomorphic function f on D. �

There is considerable literature, going back at least to Polya, on the ques-
tion of when the absolute value of a polynomial can be represented as the
norm of a vector-valued polynomial or vice versa (see [5]). These results are
related to the theorem although the proof of this special case requires only
the uniqueness of Taylor coefficients in expansion of a function in terms of
z and z̄. It seems likely that some interesting results could emerge from
applying this classical theory to the context of Hilbert modules.

The theorem shows we cannot identify cyclic submodules of L2
a(D)⊗E with

submodules of L2
a(D) even given the great variety of the cyclic submodules

of L2
a(D) that are known to exist (see [2]). However, a reinterpretation of a

result of Trent and Wick [19], given in [10], shows that some aspects of this
property persist for the Hardy modules on Bm and Dm.

Let A(Bm) and A(Dm), respectively, denote the closure of C[zzz] in the
supremum norm on Bm or Dm, respectively.

Theorem 3.2. Suppose {ψi}N
i=1 are vectors in A(Bm) or A(Dm), respec-

tively, and [ψ1 ⊕ · · · ⊕ ψN ] is the cyclic submodule in H2(Bm) ⊗ CN or
H2(Dm) ⊗ CN , respectively, that it generates. Then there exists a vector f
in H2(Bm) or an f in H2(Dm), respectively, such that

[ψ1 ⊕ · · · ⊕ ψN ] ∼= [f ].

In particular, [ψ1 ⊕ · · · ⊕ ψn] is isometrically isomorphic to a submodule of
H2(Bm) or H2(Dm), respectively.

Proof. The question comes down to the existence of a holomorphic function

f on Bm or Dm, respectively, such that |f(zzz)|2 =
n∑

i=1
|ψi(zzz)|2 for zzz in ∂Bm a.e.

or in (∂D)m a.e. This is a classical problem in the function theory of several
complex variables with an affirmative answer in this case (see [18]). �
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This result holds more generally for {ψi}N
i=1 ⊂ H2(Bm) or in H2(Dm),

respectively, so long as all of the quotients, ψi(z)/ψj(z), 1 ≤ i, j ≤ N ,
are continuous on ∂Bm or on (∂D)m, respectively. These arguments can
be turned around to show the equivalence of the module isomorphism and
the representation of the absolute value of the functions on the boundary.
However, the results in function theory on which these results are based (see
[19]) are thought to be false for general functions in H2(Bm), or H2(Dm),
respectively (see [18]). The latter, if correct, would seem strange since it
means the answer to this operator theoretic question of “multiplicity” rests
on the relative boundary behavior of the functions.

We formalize these ideas as follows.

Question 1. For {ψi}N
i=1 in H2(Bm) or H2(Dm), respectively, does there

exist f inH2(Bm) orH2(Dm), respectively, such that |f(z)|2 =
N∑

i=1
|ψi(z)| for

z in ∂Bm a.e. or z in (∂D)m a.e. Equivalently, does there exist a submodule
L of H2

a(Bm) or of H2(Dm), respectively, such that L ∼= [ψ1 ⊕ · · · ⊕ ψN ]?

For the Bergman spaces, we formulate a somewhat related question.

Question 2. For {ψi}N
i=1 in L2

a(Bm) or L2
a(Dm), respectively, what is the

smallest k ≥ 1 such that the Hilbert module [ψ1⊕ · · · ⊕ψN ] is isometrically
isomorphic to a submodule of L2

a(Bm)⊗ Ck or L2
a(Dm)⊗ Ck, respectively?

Although both questions are framed in the language of Hilbert modules,
they are equivalent to questions concerning the absolute values of holomor-
phic functions in several complex variables.

4. Cyclic submodules

Note that the earlier theorem shows that the cyclic submodules ofH2(Bm)
or H2(Dm), respectively, are not all isomorphic. More is true for cyclic
submodules of L2

a(Bm) and L2
a(Dm).

Theorem 4.1. Let f1 and f2 be vectors in L2
a(Bm) or L2

a(Dm), respectively,
for m ≥ 1 such that [f1] ∼= [f2]. Then Z(f1) = Z(f2), where Z(fi) = {zzz ∈
Bm : fi(zzz) = 0} or {zzz ∈ Dm : fi(zzz) = 0}, respectively.

Proof. Using the fact that the polynomials spanned by the monomials zαz̄β

for ααα,βββ in A are dense in C(clos Bm), one can show that |f1|2dV = |f2|2dV
a.e., where V is volume measure on Bm or Dm, respectively (see [9]). Thus,
one has Z(f1) = Z(f2) since f1 and f2 are continuous on Bm or Dm, respec-
tively, and the closed support of the volume measure is the closed domain.
This completes the proof. �

This result provides an uncountable family of nonisometrically isomorphic
cyclic submodules of L2

a(Bm) or L2
a(Dm), respectively, for m > 1 by choosing

a family of functions with different zero sets. For example, consider the
family faaa(zzz) = aaa =

∑m
i=1 aizi for aaa in Cm and ‖aaa‖ = 1.
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One can say more about the zero varieties Z(f1) and Z(f2) but we won’t
pursue that here. The question of a converse concerns the nature of the
quotients of f1 and f2 when the zero varieties are equal, which as one knows,
can be quite complicated.

The above result extends to other subnormal modules on Bm, so long
as the closed support of the measure equals clos(Bm). (Actually one can
do with much less such as the space defined as the closure of C[zzz] in the
L2-space for volume measure on {zzz ∈ Bm : ‖zzz‖ > ε} for 0 < ε < 1.)

Analogous questions to those discussed above but for the Hardy space
H2(Bm) have very different answers. For example, if f is an inner function
on D = B1, then [f ] ∼= [1] = H2(D). But Z(f) is nonempty unless f is a
singular inner function and Z(1) = ∅. Similarly, because nontrivial inner
functions exist on Bm, we have the same phenomenon there.

5. Similarity of cyclic submodules

The Rigidity Theorem in [8] shows for ideals I in C[zzz] satisfying certain
properties, the closure of two ideals I1 and I2 in a quasi-free Hilbert module
are similar if and only if the ideals coincide. Unless m = 1, principal ideals
do not satisfy the additional assumptions and hence there is no general
similarity result in this case.

Let us raise a question about similarity in the simplest possible case.

Question 3. For vectors f1 and f2 in L2
a(Bm), m > 1, does [f1] ' [f2] imply

anything about the relation of |f1| and |f2|?

One possible approach would be to try to associate a holomorphic mul-
tiplier ϕ with the similarity X : [f1] → [f2] analogous to the construc-
tion in [7]. That is possible because one can use localization to show that
dim[fi]/Iω · [fi] = 1 for i = 1, 2, where Iω is the maximal ideal of polynomials
in C[zzz] that vanish at ω in Bm\(Z(f1)∪Z(f2)). One might be able to show
that ϕ is the quotient of two bounded holomorphic functions on Bm using the
removeable singularities principle to extend them from Bm\(Z(f1)∪Z(f2))
to Bm. However, it is not clear how to connect such a function to f1 and f2.

Although such an argument might seem to show, among other things,
that Z(f1) = Z(f2), Richter has pointed out that this relation doesn’t hold
in general since the multiplier M(z−λ) has closed range on L2

a(D) for |λ| < 1
which implies that [z − λ1] ' [z − µ] for all |λ| < 1 and |µ| < 1, λ 6= µ. But
Z(z− λ) = {λ} which shows that the zero sets don’t have to be equal. Still
the question seems reasonable where the answer might involve the Laplacian
of log |f1/f2| in the sense of distributions.

6. Complemented submodules

There is another result about the Hardy module on the unit disk whose
generalization one can explore for other Hilbert modules. Suppose S is a
submodule of H2(D) ⊗ C2 that is isomorphic to H2(D); one can ask about
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the quotient module Q = H2(D)⊗ C2/S. In particular, is Q isomorphic to
H2(D)? Simple examples show that it need not be isometrically isomorphic
to H2(D) but it might be similar.

Theorem 6.1. Let (θ1, θ2) be a pair of functions in H∞(D) such that
|θ1(eit)|2 + |θ2(eit)|2 = 1 a.e. Then S = {θ1f ⊕ θ2f ∈ H2(D) ⊗ C2 : f ∈
H2(D)} is a submodule such that:

(1) Q ∼= H2(D) if and only if θ1 and θ2 are constant functions; and
(2) Q = H2(D) ⊗ C2/S is similar to H2(D) if and only if |θ1(z)|2 +

|θ2(z)|2 ≥ ε > 0 for some ε > 0 and all z in D.

Proof. It is easy to see that the operator Mz on Q is an isometry if and
only if S is a reducing subspace of H2(D) ⊗ C2. This happens only when
S = H2(D)⊗D ⊆ H2(D)⊗ C2 for some subspace D of C2. �

The result in (2) is a special case of a result of Sz.-Nagy and Foias [15].
Recently in [6], the authors sought to extend the latter result to the

Drury–Arveson space and other related Hilbert modules. However, a full
generalization eluded us since we were unable to resolve the following ques-
tion.

Question 4. Let S be a submodule of H2
m ⊗ E for some Hilbert space E

such that:
(1) S ∼= H2

m ⊗ E∗ for some Hilbert space E∗.
(2) There exists a submodule S̃ of H2

m ⊗ E such that

H2
m ⊗ E = S+̇S̃, a skew direct.

Does it follow that S̃ is isomorphic to H2
m ⊗D for some Hilbert space D?

Again, it is easy to show that S̃ is orthogonal to S if and only if S =
H2

m⊗E∗ for some subspace E∗ ⊆ E . An affirmative answer to this question is
equivalent to a weakened version of the Beurling–Lax–Halmos Theorem. In
particular, one knows, due to McCullough–Trent [14] and Arveson [3], that
S̃ is the range of a partially isometric multiplier. Unfortunately, it is shown
in [6] that this map must have a nontrivial null space unless S̃ ∼= H2

m ⊗ D
for some Hilbert space D. However, it is possible that S̃ is the range of a
multiplier with closed range and no null space. In that case one can show
that S̃ is similar to H2

m ⊗D∗ for some Hilbert space D∗.
One can ask analogous questions about other quasi-free Hilbert modules

but one of the key results used in [6] is the lifting theorem which is known
to hold only for the Drury–Arveson space [14] and closely related Hilbert
modules.

Let us conclude with a perhaps surprising result for the one variable case
and the related question for the multivariate case.

Theorem 6.2. If L1 and L2 are submodules of L2
a(D)⊗C2 so that L2

a(D)⊗
C2 = L1+̇L2, then L1 and L2 are both isomorphic to L2

a(D).
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Proof. The result follows from Lemma 5.2.1 in [12] since Mz on L2
a(D) is in

B1(D)∩(SI), where the latter is the set of strongly irreducible operators. �

We don’t know if the result holds for the m > 1 case which we formulate
as follows.

Question 5. Suppose L1 and L2 are submodules of L2
a(Dm) ⊗ C2 so that

L2
a(Dm)⊗ C2 = L1+̇L2. Does it follow that L1 and L2 are each isomorphic

to L2
a(Dm)?

The problem here is that a priori L1 and L2 might be very different
from L2

a(Dm) since that is the case for general submodules of L2
a(Dm). The

question asks if that is still the case for complemented submodules. This is,
of course, the simplest example of a whole family of questions.
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