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The space of bi-invariant orders on a
nilpotent group

Dave Witte Morris

ABSTRACT. We prove a few basic facts about the space of bi-invariant
(or left-invariant) total order relations on a torsion-free, nonabelian,
nilpotent group G. For instance, we show that the space of bi-invariant
orders has no isolated points (so it is a Cantor set if G is countable),
and give examples to show that the outer automorphism group of G
does not always act faithfully on this space. Also, it is not difficult to
see that the abstract commensurator group of G has a natural action
on the space of left-invariant orders, and we show that this action is
faithful. These results are related to recent work of T.Koberda that
shows the automorphism group of G acts faithfully on this space.
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1. Introduction

Definition 1.1. Let G be an abstract group.

e A total order < on the elements of G is:
o left-invariant if x < y = gx < gy, for all z,y,g € G, and
o bi-invariant if it is both left-invariant and right-invariant (which
means r <y = xg < yg, for all z,y,g € G).
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e The set of all left-invariant orders on G is denoted LO(G). It has
a natural topology that makes it into a compact, Hausdorff space:
for any z,y € G, we have the basic open set { < € LO(G) |z <y}
(see [8]).

e The set of all bi-invariant orders on G is denoted BiO(G). It is a
closed subset of LO(G).

e Any group isomorphism G 5 G, induces a bijection LO(G1)
LO(G32). Therefore, the automorphism group Aut(G) acts on LO(G).
(Furthermore, the subset BiO(G) is invariant.)

It is known [6, Thm. B, p. 1688] that if G is a locally nilpotent group, and
G is not an abelian group of rank < 1, then the space of left-invariant orders
on G has no isolated points. We prove the same for the space of bi-invariant
orders:

Proposition 1.2. If G is a locally nilpotent group, and G is not an abelian
group of rank < 1, then the space of bi-invariant orders on G has no isolated
points.

We also prove some variants of the following recent result.

Theorem 1.3 (T.Koberda [3]). If G is a finitely generated group that
is residually torsion-free nilpotent, then the natural action of Aut(G) on
LO(G) is faithful.

Our modifications of Koberda’s theorem replace the automorphism group
of G with the larger group of abstract commensurators. Before stating these
results, we present some background material.

Definition 1.4. Let G be a group.

e A commensuration of G is an isomorphism ¢: Gy — G5, where Gy
and Gy are finite-index subgroups of G.

e Two commensurations ¢: G1 — G2 and ¢': G| — G, are equivalent
if there exists a finite-index subgroup H of Gy N G, such that ¢
and ¢’ have the same restriction to H.

e The equivalence classes of the commensurations of G form a group
that is denoted Comm(G). It is called the abstract commensurator

of G.

In general, there is no natural action of Comm(G) on LO(G), but the
following observation provides a special case in which we do have such an
action:

Lemma 1.5. Let G be a torsion-free, locally nilpotent group.

(1) If H is any finite-index subgroup of G, then the natural restriction
map LO(G) — LO(H) is a bijection.
(2) Therefore, there is a natural action of Comm(G) on LO(G).
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This action allows us to state the following variant of Koberda’s theorem
that replaces Aut(G) with Comm(G), but, unfortunately, requires G to be
locally nilpotent, not just residually nilpotent.

Proposition 1.6. If G is a nonabelian, torsion-free, locally nilpotent group,
then the action of Comm(G) on LO(G) is faithful.

Remark 1.7. Proposition 1.6 assumes that G is nonabelian. When G is
abelian, Corollary 4.4 shows that the action of Comm(G) is faithful iff the
subgroup G™ of n*® powers has infinite index in G, for all n > 2.

For nonnilpotent groups, Comm(G) may not act on LO(G), but it does
act on a certain space VLO(G) that contains LO(G) (see Section 5). (It is
a space of left-invariant orders on finite-index subgroups of G.) This action
allows us to state the following generalization of Koberda’s Theorem:

Corollary 1.8. If G is a nonabelian group that is residually locally torsion-
free nilpotent, and « is any nonidentity element of Comm(G), then there
exists < € LO(G), such that <* # <.

The following is an immediate consequence:

Corollary 1.9. If G is a nonabelian group that is residually locally torsion-
free nilpotent, then the action of Comm(G) on VLO(G) is faithful.

There is a natural action of the outer automorphism group Out(G) on
BiO(@G), because every inner automorphism acts trivially on this space.
T. Koberda [3, §6] observed that if G is the fundamental group of the Klein
bottle, then this action is not faithful. (Note that this group G is solvable.
In fact, it is polycyclic and metabelian). In Section 6, we improve this ex-
ample by exhibiting finitely generated, nilpotent groups for which the action
is not faithful. (Like Koberda’s, our groups are polycyclic and metabelian.)
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on “Ordered Groups and Topology” (Banff International Research Station,
Alberta, Canada, February 12-17, 2012) for the stimulating lectures and
discussions that instigated this research. I would also like to thank the
mathematics department of the University of Chicago for its hospitality
during the preparation of this manuscript. An anonymous referee also de-
serves thanks for providing an extraordinarily prompt report that included
helpful comments on the exposition.

2. Preliminaries
2A. Preliminaries on nilpotent groups.

Definition 2.1 ([5, p. 85 (1)]). If G is a solvable group, then, by definition,
there is a subnormal series

G=G>Gr_1>--->G1>G = {e},
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such that each quotient G;/G;_1 is abelian. The Hirsch rank of G is sum of
the (torsion-free) ranks of these abelian groups. (This is also known as the
torsion-free rank of G.) More precisely,

,
rank G = Z dimg ((G;/Gi-1) ® Q).
i=1
It is not difficult to see that this is independent of the choice of the subnormal
series.

Notation 2.2. Let S be a subset of a group G.

e As usual, we use (S) to denote the smallest subgroup of G that
contains S.
o We let

(She={zeCG|Imezt,amc(S)}.

When the group G is clear from the context, we usually omit the
subscript, and write merely ((S)).

Lemma 2.3 ([5, 2.3.1(1)]). If G is a locally nilpotent group, then {(S)) is a
subgroup of G, for all S C G.

Remark 2.4. A subgroup H is said to be isolated if H = ((H)), but we do
not need this terminology.

We provide a proof of the following well-known fact, because we do not
have a convenient reference for it.

Lemma 2.5. If G is a finitely generated, nilpotent group, and rank G > 2,
then

rank(G/[G,G]) > 2.
Proof. For every proper subgroup H of G, such that (H)) = H, we have

Na(H) = (Ng(H))) [5,2.3.7] and Ng(H) 2 H [2, Cor. 10.3.1, p. 154]. This
implies rank Ng(H) > rank H, so, for any g € G, there is a subnormal series

(g) =Go<Gr<a---a9Gs1<Gs =G,

with ((G;)) = G; for every i. By refining the series, we may assume 1 +
rank Gs_1 = rankG. Then G/Gs_1 is a torsion-free, nilpotent group of
rank 1, and is therefore abelian (cf. [5, 2.3.9(i)]), so [G,G] C Gs_1. Since
Gs—1 also contains g, we conclude that ((g,[G,G]) # G. This implies
rank(G/[G, G]) > 2, because g is an arbitrary element of G. O

2B. Preliminaries on ordered groups.
Definition 2.6 ([4, pp. 29, 31, and 34]). Let < be a left-invariant order on
a group G.

e A subgroup C of G is convez if, for all ¢, € C, and all g € G, such
that ¢ < g < ¢/, we have g € C.
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e We say that Cy/C} is a convex jump if C; and Cy are convex sub-
groups, and C1 is the maximal convex proper subgroup of Cs.

e A convex jump C3/C; is Archimedean if there is a nontrivial ho-
momorphism ¢: Co — R, such that, for all ¢, € Cy, we have
o(c) < p(d) = ¢ < . (Since Cy is the maximal convex subgroup
of Cy, it is easy to see that this implies ker ¢ = C}.)

Remark 2.7 ([4, Thm. 2.1.1, p. 31]). If < is a left-invariant order on a
group G, then it is easy to see that the set of convex subgroups is totally or-
dered under inclusion, and is closed under arbitrary intersections and unions.
Therefore, each element g of G determines a convex jump Ca(g)/C1(g), de-
fined by letting
e (5(g) be the (unique) smallest convex subgroup of G that contains g,
and
e (1(g) be the (unique) largest convex subgroup of G that does not
contain g.

The following easy observation is well known:

Lemma 2.8 (cf. [4, Lem. 5.2.1, p. 132]). Let
e < be a left-invariant order on a group G,
e (1 and Cy be convex subgroups of G, such that C1 < Cs,
e —: Cy — (Cy/C be the natural homomorphism, and
o < be a left-invariant order on the group Ca/Ch.
Then there is a (unique) left-invariant order < on G, such that, for g € G,
we have
gt e g>e ifgquandg¢01,
g >~ e otherwise.

Definition 2.9. The construction in Lemma 2.8 is called changing < on

Cy/Ch.

Lemma 2.10 ([4, Thm. 2.4.2, p. 41]). If < is a left-invariant order on a
group G that is locally nilpotent, then every convex jump is Archimedean.

Remark 2.11. A left-invariant order is said to be Conradian if all of its
convex jumps are Archimedean, but we do not need this terminology.

Lemma 2.12 ([1, p. 227]). If < is a bi-invariant order on a group G that
is locally nilpotent, then every convex jump Co/Cy is central. (This means
[G,Cs] C C1.) Therefore, every convex subgroup of G is normal.

Lemma 2.13 (cf. [8, Prop. 1.7]). Let G be a nontrivial, abelian group. If
the space of bi-invariant orders on G has an isolated point, then rank G = 1.

Theorem 2.14 (Rhemtulla [4, Cor. 3.6.2, p. 66]). If G is a torsion-free,
locally nilpotent group, then any left-invariant order on any subgroup of G
extends to a left-invariant order on all of G.



266 DAVE WITTE MORRIS

3. Topology of the space of bi-invariant orders

In this section, we prove Proposition 1.2:

If G is a locally nilpotent group, and G is not an abelian group
of rank < 1, then the space of bi-invariant orders on G has
no isolated points.

Proof of Proposition 1.2. Suppose < is an isolated point in the space
of bi-invariant orders on G. By definition of the topology on BiO(G), this
means there is a finite subset S of GG, for which < is the unique bi-invariant
order on G that satisfies g > e for all g € S.

If we change < on any convex jump C;/C;_1, then the resulting left-
invariant order will actually be bi-invariant (since Lemma 2.12 tells us that
the jump is central). Therefore, the fact that < is isolated implies that it
has only finitely many convex jumps. (Indeed, every convex jump must be
determined by some element of the finite set S.) Thus, we may let

(3.1) G:CTQCT_lg-HQC&QCO:{G}

be the chain of convex subgroups. From Lemma 2.12, we know that this is
a central series (so G is nilpotent, not just locally nilpotent, as originally
assumed). The fact that < is isolated also implies that each convex jump
C;/C;—1 has an isolated left-invariant order. Then, since the jump is a
nontrivial abelian group, Lemma 2.13 tells us that rank(C;/C;—1) = 1. So
rank G = r.

Let

(3.2) G=Z.0Zcq>-->2Z1>7Zy={e}

be the the upper central series of G. (It is defined by letting Z;/Z;_1 be
the center of G/Z;_1.) Then c is the nilpotence class of G. It is well known
that ¢ < rank G (for example, this follows from Lemma 2.5), which means
¢ < r. So there is some k with Cj # Zj, and we may assume k is minimal.
Since {C;} is a central series, and {Z;} is the upper central series, we have
Cyx C Zj, [2, Thm. 10.2.2]. Therefore, there exists some z € Zj, such that

Choose ¢ minimal with z € Cy. (Note that £ < ¢ —1.) Since (3.1) and
(3.2) are central series, we have [G, Cy_1] C Cy_2 and

(G, 2] C |G, Z] C Zk—1 = Ci—1 C Cp_s.

Therefore [G, (Cy—1,2)] € Cy_a. Since rank(Cy/Cy_1) = 1, we know that
Cy¢/{Cy_1,2) is a torsion group, so this implies that [G,Cy] C Cy_o [5,
2.3.9(vi)]. This means that G centralizes Cy/Cy_2, so changing < on Cy/Cy_o
will result in another bi-invariant order. Since Cy/Cy_5 is an abelian group
of rank 2, Lemma 2.13 tells us that it has no isolated order, so we conclude
that < is not isolated. This is a contradiction. O
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Corollary 3.3. Let G be a locally nilpotent group that is not an abelian
group of rank < 1. If G is countable and torsion-free, then the space of
bi-invariant orders on G is homeomorphic to the Cantor set.

4. The action of Comm(G) on LO(G) when G is nilpotent
Combining the two parts of the following observation yields Lemma 1.5(1).

Observation 4.1. Assume H is a subgroup of a torsion-free group G, and
let n: LO(G) — LO(H) be the natural restriction map.

(1) If H has finite index in G, then 7 is injective. (To see this, let
< € LO(G) and note that if z € G, then there is some n € Z*, such
that 2™ € H. We have x = ¢ <= x™ > e, so the positive cone of <
is determined by its restriction to H. Combine this with the fact
that any left-invariant order is determined by its positive cone.)

(2) If G is locally nilpotent, then 7 is surjective (see Theorem 2.14).

In the remainder of this section, we prove Proposition 4.3, which contains
Proposition 1.6:

If G is a nonabelian, torsion-free, locally nilpotent group,
then the action of Comm(G) on LO(G) is faithful.

Notation 4.2. Assume G is a torsion-free, abelian group.
e Forn € Z, welet G" = {¢" | g € G }. This is a subgroup of G (since
G is abelian).
e For p/q € Q, such that GP and G? have finite index in G, we define
7P/1 ¢ Comm(G) by 10/(g?) = g¥ for g € G.

Proposition 4.3. Let G be a torsion-free, locally nilpotent group.
(1) If G is not abelian, then the action of Comm(G) on LO(G) is faith-

ful.
(2) If G is abelian, then the kernel of the action is

oy p,q € ", such that
GP and G? have finite index in G |’

Proof (cf. proof of [3, Thm. 4.1]). For p,q € Z*, g € G, and < € LO(G),
we have g? = ¢ <= ¢9 = e. Therefore, 7P/7 acts trivially on LO(G) if it
exists. To complete the proof, we wish to show that the kernel is trivial if
G is not abelian, and that every element of the kernel is of the form 77/7 if
G is abelian.

Let a be an element of the kernel. We consider three cases.

Case 1. Assume there exists g € domainca, such that g® ¢ ((g)). Let
H = {(g9,9% and H = H/{{[H,H]) 5. There is a left-invariant order < on
the abelian group H, such that ((g)) is a convex subgroup. Then ((g))/{(€))
is a convex jump. Since g ¢ ((g) (see Lemma 2.5), this implies that g
and g determine different convex jumps of <. By applying Theorem 2.14,
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we see that there is a left-invariant order < on G, such that g and g“
determine two different convex jumps. Reversing the order on the convex
jump containing ¢g¢ yields a second left-invariant order, and it is impossible
for « to fix both of these orders. This contradicts the fact that « is in the
kernel of the action.

Case 2. Assume G is abelian, and g“ € ((g)), for all g € domain«. The
assumption means that every element of domain « is an eigenvector for the
action of o on the vector space G ® Q. Since domain « is a subgroup, we
know that it is closed under addition as a subset of G ® Q. This implies
that all of domain« is in a single eigenspace. Then, since domain « has
finite index, we conclude that G ® Q is a single eigenspace, so there is some
p/q € Q, such that we have a(v) = (p/q)v for all v € G®Q. In other words,
alg) = P/4(g) for all g € G.

We must have p/q € QF, since TP/1 = o acts trivially on LO(G), and
g>=e = g~ ' e Also, since 77/9 = o € Comm(G), we know that the
domain G and range GP of 7P/¢ have finite index in G (assuming, without
loss of generality, that p/q is in lowest terms).

Case 3. Assume G is nonabelian, and g* € (g)), for all g € domain «. For
each nontrivial g € domain «, the assumption tells us there exists r(g) € Q,
such that a(g) = "9, The eigenvector argument of the preceding case
shows that r(g) = r(h) whenever g commutes with h. However, for all
g,h € G, there is some nontrivial z € G that commutes with both g and h
(since G is locally nilpotent), so 7(g) = r(z) = r(h). Therefore r(g) = r is
independent of g.

On the other hand, since G is locally nilpotent, but not abelian, we may
choose g, h € domain «, such that (g, h) is nilpotent of class 2. This means
that [g, h] is a nontrivial element of the center of (g, h). Then

2

l9,h]" = [g,h]* = [g°,h%] = [¢",h"] = [g, h]"",
sor=r2 Hencer =1,s0 a(g) =g" =g' =g forall g € G. O

Corollary 4.4. Assume G is a torsion-free, locally nilpotent group. Then
the action of Comm(G) on LO(G) is faithful iff either

(1) G is not abelian, or
(2) G™ has infinite index in G for alln > 2, or
(3) G = {e} is trivial.

Remark 4.5. The proof of [3, Thm. 4.1] assumes that G is finitely gener-
ated, but this was omitted from the statement of the result. (The group Q
has infinitely many automorphisms 77/, but only two left-invariant orders,
so it provides a counterexample to the theorem as stated.)
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5. The space of virtual left-orders

Definition 5.1. Note that if H; is a subgroup of a group Hs, then we have
a natural restriction map LO(Hz) — LO(H;). Therefore, we may define the
direct limit

VLO(G) = 1'£>nLO(H),

where the limit is over all finite-index subgroups H of G. An element of
VLO(G) can be called a virtual left-invariant order on G.

Remarks 5.2.

(1) There is a natural action of Comm(G) on VLO(G).
(2) Observation 4.1(1) tells us that the inclusion LO(G) — VLO(G) is
injective, so we can think of LO(G) as a subset of VLO(G).

We now have the notation to prove Corollary 1.8:

If G is a nonabelian group that is residually locally torsion-
free nilpotent, and « is a nonidentity element of Comm(G),
then < # <, for some < € LO(G).

Proof. Suppose « fixes every element of LO(G). Since reversing a left-
invariant order on any convex jump yields another left-invariant order, it is
clear that o must fix every convex jump of every left-invariant order. More
precisely,

if C' is any convex subgroup of G (with respect to some

(5.3) left-invariant order), then a~!(C) = C N domain a.

Choose g € domain «, such that ¢ # g. Then we may choose a non-
abelian, torsion-free, locally nilpotent quotient G/N of G, such that g ¢
gN. Since G/N is torsion-free and locally nilpotent, we know that it has a
left-invariant order. We can extend this to a left-invariant order on G (by
choosing any left-invariant order on the subgroup N). Then N is a convex
subgroup for this order, so, from (5.3), we know that « induces a well-defined
@ € Comm(G/N). Then Proposition 1.6 tells us there exists < € LO(G/N),
such that < # <. Extend < to a left-invariant order < on G (by choosing
any left-invariant order on the subgroup N). Then < #<. O

6. Nonfaithful actions on the space of bi-invariant orders

In this section, we provide examples of torsion-free, nilpotent groups for
which there is a nontrivial commensuration that acts trivially on the space
of bi-invariant orders.

Example 6.1. For r € Z*, let
Gy =(z,y,z|[x,y] = 2" [x,2] = [y,2z] = ¢).

(Then G is the discrete Heisenberg group, and G, is a finite-index subgroup
of it.) Since (z) = Z(G), it is easy to see that z € ((IV)), for every nontrivial,
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normal subgroup N of G. Hence, if we define an automorphism a: G, — G,
by

alr) =zz, a(y) =y, and «a(z) = z,

then « acts trivially on BiO(G,). However, « is outer if > 1 (since z ¢
(") = [Gy,Gy]). Thus, Out(G,) does not act faithfully on BiO(G,) when
7> 1.

On the other hand, it is easy to see that Out(G;) does act faithfully on
BiO(G1). This means that deciding whether Out(G) acts faithfully is a
rather delicate question — the answer can be different for two groups that
are commensurable to each other.

Here is an example where we get the same answer for all torsion-free,
nilpotent groups that are commensurable:

1 0 0
Example 6.2. Let G = Zx Z3, where Z acts on Z?3 via the matrix {1 1 o] .
0 1 1

In other words,
G = <J;,y,z,w | [z,w] =y, [y, w] =z, other commutators trivial>.

Choose 7 € Z ~ {0}, and define o € Aut(G) by

=z, Y=y, 2°=2z2 w*=w.

We claim « is an outer automorphism of G that acts trivially on BiO(G).

Proof. Note that [z, hw"] = [z,w"] € y"(z) for all h € (z,y,z) and all
n € Z. This implies that if ¢ € G, and [z, g] # e, then [z,g] ¢ (z). Since
x® € x (z), we conclude that « is outer.

Let < € BiO(G), and let C be the minimal nontrivial convex subgroup
of G. From Lemma 2.12, we know C' is a subgroup of Z(G). Since Z(G) =
(z) has rank one, we conclude that C' = (z) is the (unique) minimal nontrivial
convex subgroup. Since « centralizes both (z) and G/(z), this implies that
a centralizes every convex jump C2/C7. Therefore <® = . Since < is an
arbitrary bi-invariant order, we conclude that « acts trivially on BiO(G). O

7. Nilpotent Lie groups and left-invariant orders

It is easy to see that if < is a left-order on the abelian group G = Z", then
there is a nontrivial linear function ¢: R™ — R, such that, for all x,y € Z",
we have

p(r) <ply) = z<y.

We will generalize this observation in a natural way to any finitely gener-
ated, nilpotent group G, by choosing an appropriate embedding of G in a
connected Lie group (see Propositions 7.2 and 7.7).
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7A. Preliminaries on discrete subgroups of nilpotent Lie groups.

Definition 7.1. A topological space is 1-connected if it is connected and
simply connected.

Proposition 7.2 ([7, Thm. 2.18, p. 40, and Cor. 2, p. 34]). Every finitely
generated, torsion-free, nilpotent group is isomorphic to a discrete, cocom-
pact subgroup of a 1-connected, nilpotent Lie group G. Furthermore, G is
unique up to isomorphism.

Remark 7.3 ([7, Thm. 2.10, p. 32]). Conversely, every discrete subgroup
of a 1-connected, nilpotent Lie group G is finitely generated.

Proposition 7.4 ([7, Thm. 2.11, p. 33]). Suppose:

e G1 and Gy are 1-connected, nilpotent Lie groups,
e GG is a discrete, cocompact subgroup of G1, and
e p: G — Gy is a homomorphism.

Then p extends (uniquely) to a continuous homomorphism p: G; — Ga.

Definition 7.5 ([9, Defn. 3.1]). Let G be a discrete subgroup of a Lie
group G. A closed, connected subgroup H of G is a syndetic hull of G if
G C H and H/G is compact.

Proposition 7.6 (cf. [7, Prop. 2.5, p. 31]). If G is a 1-connected, nilpotent
Lie group, then every discrete subgroup of G has a unique syndetic hull.

7B. Description of left-invariant orders on nilpotent groups.

Proposition 7.7. Assume:

o G is a 1-connected, nilpotent Lie group,
e GG is a nontrivial, discrete, cocompact subgroup of G, and
o < is a left-invariant order on G.

Then there is a nontrivial, continuous homomorphism ¢: G — R, such that,
for all x,y € G, we have

p(r) <ply) = =<y
Furthermore, o is unique up to multiplication by a positive scalar.

Proof. Since G is finitely generated (see Remark 7.3), it is easy to see
that G has a maximal convex subgroup C (cf. Remark 2.7), so G/C is
a convex jump. Also, since G is nilpotent, we know that every convex
jump is Archimedean (see Lemma 2.10). Therefore, there is a nontrivial
homomorphism ¢p: G — R, such that po(z) < ¢o(y) = = < y. (Fur-
thermore, this homomorphism is unique up to multiplication by a positive
scalar [4, Prop. 2.2.1, p. 34].) From Proposition 7.4, we know that ¢y extends
(uniquely) to a continuous homomorphism ¢: G — R. O

The results in previous sections were originally obtained by using the
following structural description of each left-invariant order on any finitely
generated, nilpotent group.
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Corollary 7.8. Assume:

e G is a 1-connected, nilpotent Lie group,
e (G is a discrete, cocompact subgroup of G, and
e < is a left-invariant order on G.

Then there exist:
e o subnormal series G = C,>C,_1>--->Cy>Co = {e} of closed,
connected subgroups of G, and
e for each i € {1,...,7}, a nontrivial, continuous homomorphism
[VoF (Cz — R,
such that, for 1 <i<r:
(1) for all xz,y € GNC;, we have pi(z) < i(y) = = <y,
(2) GNC; is a cocompact subgroup of C;, and
(3) Gnkerp;, =GNC;_;.
Furthermore, the subgroups Cy,...,C, are unique, and each homomorphism
;i 1s unique up to multiplication by a positive scalar.

Proof. Let ¢: G — R be the homomorphism provided by Proposition 7.7,
and let C be the syndetic hull of G Nker ¢. By induction on dim G, we can
apply the Corollary to C, obtaining:
e achain C=C,_1>Crop>--->Cy>Cy = {e} of closed, connected
subgroups of C, and

e for each i € {1,...,r — 1}, a nontrivial, continuous homomorphism
[OoF (Cz — R.
To complete the construction, let C, = G and ¢, = . U

Remarks 7.9.

(1) It is not difficult to show that each quotient C;/C;_; is abelian.

(2) In the setting of Corollary 7.8, the order < is bi-invariant iff C;
and ker ¢; are normal subgroups of G, for 1 <17 < r.

(3) The converse of Corollary 7.8 is true: if subgroups C; and homomor-
phisms ¢; are provided that satisfy (2) and (3), then the positive
cone of a left-invariant order < can be defined by prescribing;:

T -e <= @i(x) >0,

where 7 is chosen so that z € C; ~ C;_1.
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