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On the topological structure of complex
tangencies to embeddings of S3 into C3

Ali M. Elgindi

Abstract. In the mid-1980’s, M. Gromov used his machinery of the h-
principle to prove that there exists totally real embeddings of S3 into C3.
Subsequently, Patrick Ahern and Walter Rudin explicitly demonstrated
such a totally real embedding. In this paper, we consider the generic
situation for such embeddings, namely where complex tangents arise
as codimension-2 subspaces. We first consider the Heisenberg group
H and generate some interesting results therein. Then, by using the
biholomorphism of H with the 3-sphere minus a point, we demonstrate
that every homeomorphism-type of knot in S3 may arise precisely as
the set of complex tangents to an embedding S3 ↪→ C3. We also make
note of the (nongeneric) situation where complex tangents arise along
surfaces.
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0. Introduction

In this paper, we will be considering the situation where a 3-manifold is
embedded into C3 in such a way that it assumes its complex tangents along
a curve. This is the generic situation for complex tangents to arise in this
dimension in a sense that will be described explicitly in the next section. A
main result in this subject was proved by Gromov in [4], where he uses the
h-principle to show that the 3-sphere is the only sphere of dimension bigger
than one that admits a totally real embedding into its natural ambient
complex space (Sn ↪→ Cn). Ahern and Rudin subsequently demonstrated
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an explicit totally real embedding S3 ↪→ C3 using a harmonic polynomial in
two complex variables (see [1]).

We use the methods of Ahern and Rudin to consider the generic case
where complex tangents arise along knots (and links), and we prove that
every topological type of knot may arise as the set of complex tangents to
some embedding S3 ↪→ C3 (and give notes about possible generalizations to
all link types). To arrive at our desired result, however, we will first need to
derive analogous results for the Heisenberg group

H = {(z, w) | Im(w) = |z|2} ⊂ C2,

which is naturally biholomorphic to S3 with the north pole removed.
The first two sections will focus on preliminaries of complex tangents and

knot theory, which then leads to our work on H in Section 3, which we then
use to achieve our main result for S3 in Section 4.

1. Preliminaries on complex tangents

Let M be a real manifold of dimension k and suppose we embed M ⊂ Cn
in a smooth manner (in fact, we need only a C1-embedding). We say a point
x ∈M is complex tangent if the tangent space to M at x contains a complex
linear subspace. At such a point x, we will have Tx(M) ∩ J(Tx(M)) 6= {0},
where J : T∗(Cn)→ T∗(Cn) is the isomorphism given by multiplication with
i (on each tangent space).

Let ℵM be the set of complex tangents to M ⊂ Cn. Note that at each com-
plex tangent point x ∈ ℵM , the tangent space Tx(M) contains a (nontrivial)
linear complex subspace, and as such has a “maximal” complex subspace,
namely: Tx(M) ∩ J(Tx(M)). The (complex) dimension of this subspace is
called the degree of the complex tangent x.

The topological structure of ℵM in general dimensions can be immensely
complicated, with degrees varying amongst the tangents; the global struc-
ture can be very singular and stratified.

Of much interest is the question of existence of totally real embeddings
into Cn, i.e., the situation where ℵM = ∅. By mere dimensionality obser-
vations, we see this situation is possible only when k ≤ n, i.e., the real
dimension of the manifold is less than or equal the complex dimension of
the ambient space. Note that k = n is the topologically natural situation,
as every real n-manifold may be embedded in R2n (=Cn) by the Whitney
embedding theorem. It is this situation that is of interest to us.

We note that not every manifold may be embedded in a totally real man-
ner, in particular no sphere of any dimension except one or three may be
embedded totally real. This was proved by M. Gromov (see [4]). In dimen-
sion one this result is trivial, while in dimension three Ahern and Rudin in
[1] demonstrate for us an explicit totally real embedding of S3.

In this paper we focus on the case where n = 3, i.e., M3 ↪→ C3. Note
that here we consider embeddings as maps of an intrinsic manifold. In this
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situation, there is only one class of complex tangents, that is, they must
all have degree 1. This is clear as Tx(M) is a real 3-dimensional vector
space, and hence can contain at most a complex line. Now, consider the set
G6,3 = {3-planes P ⊂ R6}. Note R6 ∼= C3, so we have the isomorphism J
on the vector space.

We also consider the subset consisting of “partially complex” 3-planes,
which we call:

W = {P ∈ G6,3 | P ∩ J(P ) 6= {0}} ⊂ G6,3.

Lemma 1. W ⊂ G6,3 is a smooth submanifold of codimension 2.

Proof. Let’s demonstrate the dimensionality relation in general dimension
n. Let W1 = {P ∈ G2n,n | P ∩ J(P ) ∼= C} be the set of all n-planes
in Cn containing exactly a complex line as its maximal complex subspace.
Choose a specific complex line L ∈ CGn,1, or equivalently, L ∈ G2n,2 so

that L ∩ J(L) = L. Note that a generic (n− 2)-plane Q ⊂ L⊥ ∼= R2n−2 will
be totally real. As a result, for almost any such (n−2)-plane Q, the n-plane
Q⊕ L ∈ G2n,2 will satisfy that (Q⊕ L) ∩ J(Q⊕ L) = L.

Recall that CGn,1 = CPn−1, which is a complex manifold of complex
dimension n− 1. By our note above, the dimension of all (n− 2)-planes Q
which are totally real is dim(G2n−2,n−2) = (n−2)(2n−2−(n−2)) = n(n−2).
As every element of W1 may be uniquely expressed as Q⊕ L for a complex
line L and such a totally real (n− 2)-plane Q, we find that dimension of W1

must be
dimR(W1) = n(n− 2) + 2n− 2 = n2 − 2.

As dim(G2n,n) = n2, we get the desired result that W1 ⊂ G2n,n is of
codimension 2.

Furthermore, for n = 3, we see that W = W1 ⊂ G6,3 is a smooth sub-
manifold as it arises precisely as an orbit to the natural group action of the
compact group U(3) on G6,3. �

For manifolds of general dimension, the space W may be very singular,
and we will not investigate this general case.

In the following theorem, we will demonstrate by using the Trasversality
Theorem that any (smooth) embedding of a given 3-manifold M ⊂ C3 may
be perturbed an arbitrarily small amount so that it will have its set of
complex tangents (if any), ℵM ⊂M arising as a submanifold of codimension
2; in other words, along a curve. This result is in fact a special case of a
theorem of Webster, which is stated for general dimensions in his paper [10].

We will denote by G : M → G6,3 the Gauss map of an embedding M ⊂
C3 ∼= R6, given by: G(x) = Tx(M) ⊂ R6, for any x ∈M . Then by definition,
a point x ∈ M is complex tangent if and only if its image under the Gauss
map is contained in W.

Lemma 2. For any embedded M ⊂ C3, there exists an arbitrarily small
perturbation of the embedding whose Gauss map is transverse to W.
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Proof. Consider the map F : M × SO(6)→ G6,3 which is defined by:

F (x, l) = Fl(l · x),

where {Fl : l ·M → G6,3} is the collection of Gauss maps for the embeddings
given by the rotations of M ⊂ C3 by elements l ∈ SO(6). By linearity, it is
easy to see that F (x, l) = l ·Tx(M), for x ∈M and l ∈ SO(6). We note that
for any given plane F (x), by rotating the plane by the elements of SO(6)
we can obtain any element of the Grassmannian G6,3.

Now consider the differential of F :

dF : Tx(M)× Tl(SO(6))→ Tl·Tx(M)(G6,3).

Since every element of the Grassmannian is assumed by rotating F (x) by the
elements l ∈ SO(6) (for any x ∈M), we see that every tangential direction
in the Grassmannian (at any given point) can be taken as the derivative of
some path in M × SO(6), in particular every element of Tl·Tx(M)(G6,3) is
assumed by dF . From this, we see that dF must be onto.

As a result, the map F is transverse to the subset W ⊂ C3; this is trivial
as Image(dF ) = T (G6,3) at every point. Now, by applying the Parametric
Transversality Theorem (see [5]), we see that for any embedded 3-manifold
M , the embedding l ·M given by rotating the given embedding by a matrix
l ∈ SO(6) will be transverse to W, for almost any element l ∈ SO(6). In
particular, given any embedding there exists an arbitrarily small perturba-
tion, given by rotating with a matrix arbitrary close to the identity, so that
the perturbed embedding is transverse to W. �

Using the normal version of the Transversality Theorem (see [5]) and with
the above lemma, we arrive at the following result:

Proposition 3. For any embedded M ⊂ C3, there exists an arbitrarily small
perturbation of the embedding so that the embedding is either totally real or
takes its complex tangents along a smooth curve (or curves).

Proof. We proved earlier in the section that W ⊂ G6,3 is codimension
two. Furthermore, by the above lemma there exists an arbitrarily small
perturbation so that the Gauss map of the embedding is transverse to W.
Hence, we may conclude by the Transversality Theorem that if the image
of the Gauss map intersects W, the inverse image of W must also be of
codimension 2 in M . As ℵM = G−1(W) is the set of complex tangents and
M is 3-dimensional, the proposition follows. �

We can now consider embeddings of 3-manifolds whose complex tangents
arise along curves to be generic. In particular, if M is closed, a generic
embedding of M will assume its complex tangents along knots, or more
generally along links of knots. This terminology of being generic is used, for
example, by Webster in [10].

We will now restrict our consideration to the subcollection of 3-manifolds
that arise as smooth submanifolds of C2, i.e., M = {ρ(z, w) = 0}, where
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ρ : C2 → R is a smooth map whose differential is never zero on M . For
such manifolds, embeddings into C3 arise very naturally as graphs of maps
f : C2 → C, which are sufficiently smooth on a neighborhood of M .

In particular, let f : C2 → C be such a map and let F : M ↪→ C3 be its
graph, F = graph(f |M ). By definition, F (z, w) = (z, w, f(z, w)) and is an
embedding by virtue of construction (as a graph).

On such a manifold M = ρ−1(0), there exists a operator which we call
the CR-operator, and is given by:

LM =
∂ρ

∂w̄

∂

∂z̄
− ∂ρ

∂z̄

∂

∂w̄
,

acting on complex-valued functions defined in a neighborhood of M .
We will now outline the work of Ahern and Rudin which they published

in [1]. They use the following proposition:

Proposition 4. Let M = ρ−1(0) ⊂ C2 be a real hypersurface as above.
Given a graphical embedding F (z, w) = (z, w, f(z, w)) : M ↪→ C3, the em-
bedding will have its set of complex tangents precisely where the tangential
Cauchy–Riemann operator applied to f is zero (on M).

The statement in the above proposition may be written more precisely:

ℵf = ℵF (M) =
{

(z, w) ∈ C2 | LM (f)(z, w) = 0 and ρ(z, w) = 0
}
⊂M.

In the case of M = S3, we have ρ(z, w) = |z|2 + |w|2 − 1 and so

LS3 = L = w
∂

∂z̄
− z ∂

∂w̄
.

In general, this operator (over S3) is very difficult to analyze, and has
been the subject of research for many years by many great mathematicians.
The operator on the Heisenberg group turns out to be a little simpler and
much more manageable.

Note that the potential configurations for ℵf are numerous, in particular
ℵf could be empty, discrete points, curves, surfaces, or unions of such. Note
also if f is holomorphic, ℵf = M (every point is complex tangent).

As we saw above, the generic situation will be that ℵf is some curve, or
union of curves. As we will demonstrate, all different kinds of topological
configurations are possible, both in the generic situation and the nongeneric
situation. In particular we show this for the Heisenberg group H and the
three-sphere S3 (both submanifolds of C2).

Before we can proceed further, we will need to address some relevant
questions regarding the topology of knots in R3 and S3.

2. Relevant notes on knot topology

A knot is a smooth (at least continuous) simple embedding of the circle
S1 (no double points). In R2 they are closed Jordan curves. Note that
the figure 8 curve (in R2) is not a knot as it has a double point. Of great
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interest is the structure of such curves in R3. However, both practically and
traditionally, the natural ambient space to consider knots is S3. We note
that embedding a closed curve in a higher dimensional space (such as R4) is
trivial as there is enough dimensions to “unravel any knot”, and so all such
embeddings are topologically circles.

A link is defined as a disjoint union of knots — note there are further
invariants for links given by linking numbers.

For a complete exposition of the theory of knots, we refer the reader to
Lickorish ([6]).

In S3, we may classify knots up to diffeomorphism (homeomorphism):

Definition 5. We say two smooth (continuous) knots K1,K2 ⊂ S3 are
topologically equivalent, or of the same topological type, if there exists a dif-
feomorphism (homeomorphism) h : S3 → S3 so that h(K1) = K2.

This gives us an equivalence relation on the set of knots, and note that
the pair: (S3, S3\K) is now a topological invariant on knots (links) K ⊂ S3.
Let λ be an arbitrary equivalence class of knots (in S3) under this relation.
We say a knot K ⊂ S3 is of topological type λ if K is an element of the
equivalence class λ.

Note we may extend this definition of topological type to general links,
although we will have to keep track of the linking numbers of the individual
knot components.

We can classify (most) knots in R3 directly from the classification of knots
in S3; in particular let σ : S3 \ {pt} → R3 be a stereographic projection
through a given point in S3, and let κ be its inverse. There are two inherent
types of knots in R3: first, we say a knot in R3 is bounded if it is a simple
closed curve. We say a knot in R3 is unbounded if it is a curve that does
geometrically knot, but has “two rays to infinity”; one could see Shastri’s
work in [9] for further description of such knots.

We may then classify bounded knots in R3 in the following manner:

Definition 6. A bounded knot K ⊂ R3 is said to be of bounded type λ if
its image: κ(K) ⊂ S3 is of topological type λ as a knot in S3.

Hence, bounded knots in R3 are classified precisely by the classification
of their image under stereographic projection diffeomorphism; its type ex-
actly corresponds to the topological type of the corresponding knot in S3.
One easily sees that this extends to an equivalence relation and topological
invariant of bounded knots in R3.

We may classify (certain) unbounded knots in R3 in a similar way:

Definition 7. Let K ⊂ R3 be an unbounded knot. We say K is of
unbounded type λ if the image of K under the stereographic projection, κ(K)
forms a continuous (in particular, well-defined) knot if we were to add the
“point at infinity”, and this union assumes the topological type λ as a knot
in S3.
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We see again that these unbounded knots in R3 are classified precisely by
the topological type of their images in S3.

Note that only certain unbounded knots K ⊂ R3 can arise in this fashion,
i.e., as the image of a knot in S3 under the projection σ. We define such
knots to be unbounded knots of finite count. More precisely, we say an
unbounded knot in R3 is of finite count if there exists a positive number
R > 0 so that outside the ball of radius R about the origin the knot consist
precisely of two “unknotted” rays going to infinity. More precisely, if the

complement K ∩ (R3 \BR(
−→
0 )) is topologically equivalent to the set

{(0, 0, t) | t ≥ 1} ∪ {(0, 0, t) | t ≤ −1}.

Equivalently, we can define an unbounded knot as being of finite count if its
projections onto the coordinate planes has finitely many double points.

If the unbounded knot is not of finite count (i.e., there exists no such num-
ber R, or equivalently its projections admit infinitely many crossings), we
say the knot is of infinite count. Note that the image of such an unbounded
knot K of infinite count under stereographic projection, κ(K), cannot con-
verge at the point (0, 1), and that the image of any knot on S3 under the
inverse stereographic projection must be of finite count (by properties of
knots as submanifolds). Hence, for our purposes we will only interested in
the unbounded knots that are of finite count. Therefore, we will essentially
ignore unbounded knots of infinite count for the remainder of this paper,
and make no claims therein regarding such knots.

We may further generalize the above notions to general links. The topo-
logical type (or classification) of a link will depend only on the topological
type of its knot components and the linking numbers between the knots
therein. In most of what follows, we will limit our consideration to only
single knots, however we may be able to directly generalize some results to
simple links, that is links whose knot components have linking numbers at
most one with each other.

Although the construction above suits well enough for an investigation
into the topological classification of knots (on S3 and so by extension on
R3), there are many perspectives and tools for investigating knots. One
such perspective is old and direct, where we classify knots by their projec-
tions onto the coordinate planes. While this perspective is interesting and
intuitive, it serves to be tedious and unhelpful for our purposes. There are
also numerous topological invariants, such as the Jones and Alexander poly-
nomials, which are helpful in understanding knots, but are also immensely
complicated and not directly applicable in our case (as far we know).

We will not be making use of heavy machinery or such perspectives in this
paper, and in fact wish to simplify our computations as much as possible.
As we mentioned before, we wish to show that every topological type of
knot may occur precisely as the set of complex tangents to an embedding,
and we will do so through the means of complex polynomials and algebraic
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sets. The result of S. Akbulut and King (see [2]) gives us that “all knots are
algebraic” in S3, or more precisely:

Theorem 8 (Akbulut–King). Let K ⊂ S3 ⊂ R4 be a knot. Then there
exists an algebraic set P ⊂ R4 (in two real equations) passing through the

origin and only singular at the origin, so that the knot K̃ = P∩S3 is of the

same topological type as K, i.e., (S3, S3 \K) ∼= (S3, S3 \ K̃) (as topological
pairs).

(This is in fact a weaker version of the theorem proved by Akbulut and
King — please see [2] for the more general results.)

In particular, this theorem shows us that every topological type (or class)
of knots in S3 has an algebraic representative. In other words, given any
knot K, we may assume (up to topological type):

K = {p = 0, q = 0} ∩ S3,

where p, q : R4 → R are real polynomials. In particular, we may take:
f = p+ iq : C2 → C and have

K = {p = 0, q = 0} ∩ S3 = {f = 0} ∩ S3 ⊂ C2 = R4.

Hence, we may rephrase the above theorem as follows: for any knot K ⊂
S3, there exists a complex polynomial (in z, w, z̄, w̄ coordinates), call it f ,

so that: K ∼= K̃ = {f = 0} ∩ S3. Further, K̃ ⊂ S3 will be nonsingular as a
real algebraic variety.

Remark. In fact, as any link may also arise as the boundary of a Seifert
surface, the proof of Akbulut–King in their paper seems to generalize to any
equivalence class of a general link. See the reference [2].

We will generalize (or rather, restrict) the result of Akbulut–King (The-
orem 8) to R3. However, we will first investigate the Heisenberg group H
(which is diffeomorphic to R3) to avoid confusing notation and allow for a
more natural construction. We shall in fact consider H and R3 as inter-
changeable via the standard diffeomorphism (see the next section).

We will also note, by [8], that we can similarly give every topological type
of surface in R3 (or S3) a polynomial representative.

3. Analysis on the Heisenberg group

In this section, we will define the Heisenberg group and consider knots in
this space. The analysis of complex tangents to embeddings of this space
will be easier to study and we will be able to obtain some interesting results
therein.

Consider the complex space C2 with holomorphic coordinates z, w. The
Heisenberg group is a (real) hypersurface of C2 given by:

H = {(z, w) | Im(w) = |z|2}.
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Note that H ∼= R3 ∼= C × R are differomorphic via: (z, w) → (z, u), where
u = Re(w).

In complex coordinates, one easily finds that the tangential Cauchy–
Riemann operator to H is given by

LH =
∂ρ

∂w̄

∂

∂z̄
− ∂ρ

∂z̄

∂

∂w̄
= 2z

∂

∂w̄
+ i

∂

∂z̄
,

as here ρ(z, w) = i(w̄ − w)− 2zz̄
By our earlier discussion, for any (sufficiently) smooth map f : C2 → C,

the zeros of the function: LH(f)|H give precisely the set of complex tangents
to the embedding: F : H ↪→ C3, where F = graph(f |H).

We immediately find many (even linear) totally real embeddings of H, in
particular the graph of f(z, w) = z̄ would be totally real, with LH(f) = i, a
(nonzero) complex constant.

The question of the solvability of this differential equation, i.e., LH(f) =
h, for a given h : C2 → C, is generally very difficult even in the local sense.
In fact, Hans Lewy demonstrated a complex function for which there exists
no solution.

We find however, to our pleasant surprise, that this question is readily
solvable for polynomials (in the global sense), as exhibited in the following
lemma:

Lemma 9. As a linear operator on infinite dimensional space of all complex
polynomials, P, LH is onto; i.e.: LH : P → P is a surjective linear map.

Proof. We first note that by the structure of LH as a linear differential
operator with polynomial (linear and constant) coefficients, that LH indeed
maps polynomials to polynomials. In fact, LH will map polynomials of
(homogeneous) weight s to polynomials of weight (s − 1), where z, z̄ have
weight 1, and w (or u) has weight 2.

Our goal is to show that every polynomial may arise in the image of
the operator. As LH is linear, it will suffice to show all monomials are in
the range. Let f(z, w) = zj z̄kwmw̄l be such a monomial — note that as
LH(wmg(z, w)) = wmLH(g(z, w)), we need only verify the identity for all
monomials of the form: f(z, w) = zj z̄kw̄l ∈ LH(P).

We proceed by induction on l ∈ N. Note if l = 0, then f(z, w) = zj z̄k =
LH
(

1
i(k+1)z

j z̄k+1
)
, for any j, k ∈ N.

Now, let l ∈ N be fixed and suppose: zj z̄kw̄r ∈ LH(P), for all j, k ∈ N,
and r ≤ l.

We wish to show f(z, w) = zj z̄kw̄l+1 ∈ LH(P). We have that

LH
(

1

i(k + 1)
zj z̄k+1w̄l+1

)
= zj z̄kw̄l+1 +

2(l + 1)

i(k + 1)
zj+1z̄k+1w̄l.

Note that the second term on the right-hand side is in the range of LH by
the induction hypothesis and linearity — let g : C2 → C be a polynomial
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such that LH(g) = 2(l+1)
i(k+1)z

j+1z̄k+1w̄l. The term on the left hand side is in

the range by construction. Hence, we find that

f(z, w) = zj z̄kw̄l+1 = LH
(

1

i(k + 1)
zj z̄k+1w̄l+1

)
− LH(g) ∈ LH(P)

by the linearity of the operator.
Therefore, by the principle of induction and our preliminary arguments,

we have shown that LH(P) = P, and our lemma is proven. �

We have shown that every polynomial is in the range of the CR-operator
(over H). In particular, given any algebraic set in H which is the zero set of
two real polynomial equations, there exists an embedding of H ↪→ C3 whose
complex tangents are precisely that algebraic set.

We deduce this more formally: given any such algebraic set on H, we can
write it as the intersection of the zero set of a complex polynomial p with
H. Here p = f + ig and f = 0, g = 0 define the algebraic set.

As p ∈ P = LH(P), there exists a complex polynomial q so that LH(q) =
p. Then the set of complex tangencies to the map F : H ↪→ C3, given by
F = graph(q|H), is precisely

ℵq = {LH(q)(z, w) = 0} ∩H = {p(z, w) = 0} ∩H.

The set ℵq is precisely our given algebraic set!
Now, we wish to demonstrate that (almost) every topological class of

knots in H ∼= R3 admits an algebraic representative. We will prove this
by “restricting” the (known) corresponding result for S3 given by Akbulut–
King. Note we will need to show this for both unbounded and bounded knot
types.

Recall that in the previous section we classified all knots in R3 which are
either bounded or unbounded of finite count using the classification of knots
on S3. As we noted before, R3 ∼= H are naturally diffeomorphic, and hence
we may classify all such knots in H in an analogous manner.

In particular, let ϕ : H → S3 \ {(0, 1)} be the standard biholomorphism;
namely

ϕ(z, w) =

(
2z

w + i
,
w − i
w + i

)
,

which is smooth when restricted to H.
Let ψ : S3 \ {(0, 1)} → H be its inverse, in particular:

ψ(z, w) =

(
iz

1− w
, i

1 + w

1− w

)
.

Note that ψ can be considered as a natural stereographic projection (again
considering H and R3 as interchangeable spaces), and we will use this ψ to
formulate the classification of knots (and links) on H ∼= R3 in the manner
we demonstrated in the previous section. We will continue this particular
formulation (in terms of ψ,ϕ) for the rest of the paper.
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In other words, for a bounded knot in H its topological type is determined
completely by its image under ϕ and similarly we may classify unbounded
knots of finite count, which are now defined analogously to our definition
before (on R3). We will now use this formulation and make it more precise
in the proof of the following theorem:

Theorem 10 (All knots are algebraic in H). Let K ⊂ H be a knot of
bounded type or unbounded of finite count. Then there exists a real algebraic

set P ⊂ R4 ∼= C2 (in two real equations) so that the knot K̃ = P ∩ H is of
the same topological type as K.

Proof. Let K ⊂ H be a knot of bounded type, that is K is a simple closed
curve. Then ϕ(K) ⊂ S3 is also a knot (of corresponding smoothness) and
hence has a topological type, call it λ. Then we can say K ⊂ H is of bounded
topological type λ. Now, by the theorem of Akbulut–King (Theorem 8),

there exists a knot K̃ ⊂ S3 that is algebraic, say K̃ = {p = 0} ∩ S3, for

some complex polynomial p, so that K̃ ∼= ϕ(K). That is that K̃ and ϕ(K)
have same topological type (in S3), which was called λ.

We may assume without loss of generality that K̃ ⊂ S3 does not pass
through (0,1), by rotating the sphere (linearly) to ensure this. Consider

then ψ(K̃) ⊂ H. As K̃ misses the point at infinity, ψ(K̃) will be a bounded
knot of type λ (as ψ is a biholomorphism).

Claim. ψ(K̃) ⊂ H is algebraic.

Proof of claim. It is quite clear that birational maps preserve algebraic

sets, but let’s demonstrate this. We know that K̃ = {p = 0}∩(S3\{(0, 1)}),
where p : C2 → C is a complex polynomial. Hence,

ψ(K̃) = ψ({p = 0} ∩ S3 \ {(0, 1)})
= ψ({p = 0}) ∩ ψ(S3 \ {(0, 1)})
= ψ(p−1(0)) ∩H,

as ψ is a biholomorphism.
We claim that ψ(p−1(0)) = q−1(0), where q is the numerator of the (ra-

tional) function: p ◦ ϕ : H→ C. A simple computation gives

p(ϕ(z, w)) =
q(z, w)

(i+ w)M (w̄ − i)N

for some M,N ∈ N and q a complex polynomial. Note that q is unique up
to multiplicative factors of (i + w) and its conjugate, which are never zero
on H. Hence, we have that (p ◦ ϕ)−1(0) = q−1(0).

But then

q−1(0) ∩H = (p ◦ ϕ)−1(0) ∩H = ϕ−1(p−1(0)) ∩H

= ψ(p−1(0)) ∩H = ψ(p−1(0) ∩ S3 \ {(0.1)}) = ψ(K̃),

and thus our claim is proven. �
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Hence, K̂ = ψ(K̃) ⊂ H is an algebraic bounded knot topologically equiva-
lent to the original (arbitrary) knot K ⊂ H (following the biholomorphisms).
Hence, every bounded knot type in H has an algebraic representative. We
also get the analogous result for R3 (as R3 ∼= H is polynomial).

We get the analogous result for unbounded knots of finite count: let
K ⊂ H be any unbounded knot of finite count. Then ϕ(K) ∪ {(0, 1)} ⊂ S3

will be a (well-defined) knot passing through (0, 1); suppose it is of type
λ as a knot in S3. Then, again by Akbulut–King, there exists a algebraic

knot of type λ (i.e., equivalent to ϕ(K)), call it K̃ ⊂ S3. By the use of a

linear rotation, we may assume without loss of generality that K̃ contains

(0, 1). By our above arguments, ψ(K̃ \ {(0, 1)}) ⊂ H will be an algebraic
(unbounded) knot of the same type as K, and as K was chosen arbitrarily,
we again have that every topological type of unbounded knot (of finite count)
in H admits an algebraic representative. We also get the analogous result
for such knots in R3.

Hence, we find that every knot type (which is bounded or unbounded of
finite count) may arise as an algebraic subset of H. In particular, choose
any equivalence class of knots λ (bounded or unbounded). Then there exists
some complex polynomial p so that: K = p−1(0) ∩ H is a knot of the type
λ (bounded or unbounded). Hence, Theorem 10 is proved. �

Now, given any topological knot class λ in H (bounded or unbounded of
finite type), these exists an algebraic knot K = {p = 0}∩H which is of that
given type λ. However, as p ∈ LH(P) (it is onto), there exists some complex
polynomial g so that LH(g) = p. Hence, the set of complex tangents to
G = graph(g|H) is precisely

ℵg = {LH(g) = 0} = p−1(0) ∩H,
the algebraic knot of the arbitrary (bounded/unbounded) type λ. We have
thus proved the following theorem:

Theorem 11. Every topological type of knot which is either bounded or
unbounded of finite count in H (∼= R3) may be assumed precisely as the set
of complex tangents to some embedding of H ↪→ C3; in fact we can take such
as a polynomial embedding and the corresponding knot algebraic.

We note that our above arguments could not possibly generalize to those
unbounded knots of infinite count.

Remark 12. If we were to extend the theorem of Akbulut–King to gen-
eral links on S3 as we indicated in the previous section, our result could be
extended directly to show that (almost) any class of link in H also admits
an algebraic representative. In particular, any link class consisting of all
bounded knots except possibly one unbounded knot of finite count. Hence,
we would arrive at the fact that every topological type of link in H satisfy-
ing the above condition may arise as the set of complex tangents to some
(smooth) embedding H ↪→ C3.
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Further, given any (real) algebraic surface in A ⊂ H given by a real poly-
nomial equation {q = 0}, we change coordinates to {z, w, z̄, w̄} coordinates
and apply Lemma 9 to follow an argument analogous to that in the proof of
Theorem 11, with which we show that there exists a (polynomial) embed-
ding H ↪→ C3 whose complex tangents arise exactly along A ⊂ H. Now, with
the fact that every topological type of surface, bounded and unbounded, in
R3 (and hence in H) assumes an algebraic representative (see Narasimhan
in [8]), we can follow the analogous argument as above for knots to find
that every topological type of surface may be assumed as the set of complex
tangents to some (polynomial) embedding of H ↪→ C3 (note such a situation
is degenerate or rather, not generic).

4. Extension of results to the 3-sphere

The tangent CR-operator of S3 is (spanned by)

LS3 = L = w
∂

∂z̄
− z ∂

∂w̄
.

It operates on functions which are smooth on C2.
Following the same methodology as before, any such map f gives an

embedding S3 ↪→ C3 via F = graph(f |S3) so that the set of complex tangents
of F (S3) is precisely ℵf = {L(f)(z, w) = 0} ∩ S3.

One may be persuaded to investigate the operator L and try to directly
demonstrate that every topological type of knot may arise as the zero set of
some function in the range of L. We do not know how to solve the problem
in such generality.

Here we will attempt to get some results for the 3-sphere by using our
above results for the Heisenberg group. Although we do not quite get the
strength of a result as we may have hoped when initially considering the
problem, we will show that every topological knot type in S3 may arise as
precisely the set of complex tangents to an embedding into C3. Unfortu-
nately, we cannot (as of yet) show that we can construct all topological types
of knots may arise as complex tangents via means of a polynomial embed-
ding, i.e., an embedding given as the graph of a complex polynomial (in two
variables), nor are we yet able to show that every knot may arise consisting
of totally “nondegenerate” complex tangents.

Note that some knots, in particular all torus knots, may arise as complex
tangents in such a manner. Let p, q ∈ N be relatively prime positive integers.
Then the embedding given by the graph of the function

f(z, w) = wq−1z̄ − zp−1w̄

will have its complex tangents precisely when L(f) = 0. But L(f) = zp+wq,
and so ℵf = {zp + wq = 0} ∩ S3, which is well known to be the standard
torus knot of type (p, q); see Milnor ([7]). Hence, the set of complex tangents
to S3 ↪→ C3 given by F = graph(f |S3) is precisely a torus knot of type (p, q)
in S3.
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One can also similarly show that any knot that can be given as the inter-
section of S3 with a complex algebraic (holomorphic) hypersurface passing
through the origin may arise as the set of complex tangents to an embed-
ding of S3; this follows as it is easy to see that all holomorphic functions
(with zero constant term) are in the range of L. To demonstrate this, take
any such holomorphic function h(z, w) which we can write as: h(z, w) =
zh1(z, w)+wh2(z, w), for some holomorphic functions h1, h2 (since h has no
constant term). Now consider the function f(z, w) = z̄h2(z, w)− w̄h1(z, w).
One readily sees that L(f) = h, and as such the complex tangents to the
embedding F = graph(f |S3) will be precisely the zero set of the arbitrary
(holomorphic) function h intersected with S3.

In the following theorem we demonstrate that there exist embeddings
which are complex tangent precisely along a knot of any given type in S3.

Theorem 13. For every knot K ⊂ S3 and integer n ∈ N there exists an
embedding Q : S3 ↪→ C3 of class Cn, so that the set of complex tangents
to Q(S3) is precisely a knot which is equivalent (up to homeomorphism) to
K; i.e., every topological knot type in S3 may arise precisely as the set of
complex tangents to some embedding into C3. Furthermore, the embedding
can be taken to be C∞ away from a certain (degenerate) point.

Proof. Let K ⊂ S3 be a general knot, and let λ be it’s topological type.
Assume without loss of generality that K passes through the point (0, 1) ∈
S3 (we may ensure this through a linear rotation). Consider then the knot
ψ(K\{(0, 1)}) ⊂ H, where ψ : S3\{(0, 1)} → H is the given biholomorphism.
Note by our previous arguments and construction before the statement of
Theorem 10 in Section 3 that ψ(K \ {(0, 1)}) will be a knot of unbounded
type λ in H.

Furthermore, by Theorem 11 there exists a knot K̃ ⊂ H so that K̃ is
algebraic and of unbounded knot type λ (i.e., topologically equivalent to
ψ(K \ {(0, 1)})). In particular, let g : C2 → C be the complex polynomial

so that K̃ = {g = 0} ∩H. Then, as LH is an onto operator on polynomials
(by Lemma 9), there exists a polynomial f : C2 → C so that: LH(f) = g.

Hence, the set of complex tangents to F = graph(f |H) : H ↪→ C3 is

precisely K̃.
Let Mf = F (H) = {(x, f(x)) | x ∈ H} ⊂ C3. Further, let Sf◦ψ be the

space given as the graph of: f ◦ ψ : S3 \ {(0, 1)} → C.
Note then: Sf◦ψ = {(s, f(ψ(s)) | s ∈ S3 \ {(0, 1)}} ⊂ C3. But then

clearly Mf and Sf◦ψ are biholomorphic, in particular it will be given by:
ϕ × Id : Mf → Sf◦ψ where ϕ = ψ−1 acts on the manifold coordinates
and identity on the (last) complex coordinate. Clearly this map will be
holomorphic and diffeomorphic (as ϕ and Id are), and so is its inverse.

Therefore, as biholomorphisms preserve complex tangents, Sf◦ψ andMf

will have equivalent sets of complex tangents. In fact, it is clear that the set
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of complex tangents to Sf◦ψ will be precisely ϕ(K̃), since its the biholomor-

phic image of the set of complex tangents to Mf , which form K̃.
Hence, we have an embedding S3 \{(0, 1)} ↪→ C3 whose complex tangents

will form a knot of type λ in S3 if we were to add the point at infinity (0,1).
However, this embedding is given precisely as the graph of the rational
function f ◦ψ over S3\{(0, 1)}. As ψ(z, w) = ( iz

1−w , i
1+w
1−w ) and f is a complex

polynomial, we see that f ◦ ψ is a smooth function away from w = 1, i.e.,
the point (0, 1) ∈ S3. In fact, as we approach (0, 1), the function becomes
unbounded. Hence, we will not be able to directly extend this function to the
entire sphere (so as to garner an embedding of the entire sphere). Suppose
f is a complex polynomial of degree n. Then: (f ◦ψ)(z, w) = f( iz

1−w , i
1+w
1−w ),

which we may then write: (f ◦ψ)(z, w) = 1
(1−w)n(1−w̄)n)p(z, w), where p is a

complex polynomial. This can be done as in each term of (f ◦ ψ)(z, w) the
denomonator will consist precisely of a term: 1

(1−w)k(1−w̄)l
, where k + l ≤ n

as f is a polynomial of degree n. Hence, multiplying f by (1− w)2n+r (for
any r ∈ N) gives us

qf
r = (1− w)2n+rf(z, w) =

(1− w)n+r

(1− w̄)n
p(z, w),

where p again is a complex polynomial.
Now, it is well known (and easy to see using simple calculus) that the

rational function in one complex variable: h(ζ) = ζk

ζ̄l
will be everywhere

smooth except at the point ζ = 0. Furthermore, if k = l+r where k, l, r ∈ N
(positive integers), then f will be of class Cr−1 at ζ = 0, i.e., f will be (r−1)-
times continuously differentiable at 0, and smooth (of class C∞) everywhere
else.

Now in our situation, qf
r = (1−w)n+r

(1−w̄)n p(z, w) and p is a polynomial. By

our above remark, (considering ζ = 1 − w) we see that the rational term
(1−w)n+r

(1−w̄)n will be continuous at (0, 1) if r ≥ 1 and its value there will be 0,

and further for larger r it will be (r−1)-times continuously differentiable at
(0, 1).

Take r ≥ 2 (so that qf
r is continuously differentiable). LetQr = Qr(S

3) ⊂
C3, where Qr = graph(qf

r|S3). Then Qr will be homeomorphic to S3, and
whose tangent spaces are well-defined and vary continuously.

Note that we have a map: Υ : Sf◦ψ → Qr \ {(0, 1, 0)} given by:

(s, f(ψ(s)) 7→ (s, (1 + w)2n+rf(ψ(s)).

This map may be given precisely by: Id×τ , where τ(ζ) = (1+w)2n+rζ. Note
this map is one-to-one (it is identity of first coordinate, and the manifold is
a graph) and onto by construction, and furthermore it is a holomorphism
as it is merely given by multiplication with a holomorphic function in the
second coordinate. It is also easily checked that Υ−1 is a holomorphism, as
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it is given by multiplication by 1
(1+w)2n+r in the second coordinate which is

also holomorphic (away from (0,1)).
Hence, Υ is a biholomorphism and so Qr \ {(0, 1, 0)} will have the same

complex tangents as Sf◦ψ over S3 \ {(0, 1, 0)}. The set ϕ(K̃) constitutes
the complex tangents and forms a “punctured” knot of type λ (that is, it is
missing (0, 1) to be a closed knot).

Now, it remains to resolve the situation at the point (0, 1) ∈ S3, or equiv-
alently at (0, 1, 0) ∈ Qr. Note that when we apply L (the CR-operator of
S3) to qf

r, the term (1− w)n+r factors out:

L(qf
r)(z, w) = L(

(1− w)n+r

(1− w̄)n
p(z, w))

=
(1− w)n+r

(1− w̄)n
L(p)(z, w)− n (1− w)n+r

(1− w̄)n+1
zp(z, w).

As r ≥ 2, both of the terms: (1−w)n+r

(1−w̄)n , (1−w)n+r

(1−w̄)n+1 are continuous at (0, 1)

and take a value of 0 at such points. Hence L(qf
r)(0, 1) = 0 and (0, 1) ∈ S3

is a complex tangent of the embedding Qr. But we know that away from
(0, 1) the complex tangents of Qr form a knot of type λ punctured at (0, 1)

Hence, we immediately find: ℵQr = ϕ(K̃) ∪ {(0, 1)} = Cr, which is pre-
cisely a knot of type λ, smooth everywhere but (0, 1), but for any given
r ≥ 2 the knot will (r − 1)-times differentiable at the point (0, 1). As λ
was an arbitrary equivalence class of knots, we have proved the claim of the
theorem. �

The constructed knots will be C∞ smooth everywhere but at the point
(0, 1), where they can be taken to be continuously differentiable n-times (for
any given n). This point will be degenerate, as all of the derivatives (that are
defined) at the point will be zero. One can also easily check that the Bishop
invariant must also be degenerate by construction; see our forthcoming paper
[3]. As a result, an arbitrary perturbation of the embedding will give rise
to a more complicated set of complex tangents (in general). In particular,
we may expect to get a knot which is equivalent to the knot K away from
(0, 1), but near (0, 1) the topology may be drastically altered and we may
find new knot components in a neighborhood of (0, 1). A potential direction
of future work would be to create a “smoothing” argument that will allow us
to generate a smooth embedding without adding any more knot components
or changing the knot topology of K.

We note that we can apply the above construction to a knot which doesn’t
pass through the point (0, 1). This will allow us to construct embeddings
of the 3-sphere whose complex tangents will form precisely a smooth (C∞)
knot of the same type as the given knot and will be smooth away from the
point (0, 1). However, in doing so we will generate a single complex tangent
point at (0, 1), which will be again degenerate, and the embedding will be
only of class Cn near the point. If one were to perturb such an embedding
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(by a small perturbation), we would in general get the knot K union some
other knot (or link) in the neighborhood of the point. We are as of yet
unable to “remove” this complex tangent point at infinity to get the desired
result for smooth embeddings.

We will now extend our theorem directly to simple chain links, i.e., links
whose components are knots {K1, . . . ,Kn} ⊂ S3 arranged in such a fashion
that Kj links with Kj−1 and Kj+1 with linking number one for 2 ≤ j ≤ n−1,
and K1 links with K2 and Kn links with Kn−1, both also of linking number
one. We give the proof of our desired result (Theorem 14, below) by the
following construction.

Let {K1, . . . ,Kn} ⊂ S3 be of respective types: {λ1, . . . , λn} (some possi-
bly equal) and assume without loss of generality that K1, . . . ,Kn are disjoint
and that (0, 1) ∈ K1.

Map these knots using ψ to the Heisenberg group, to get n knots

ψ(K1), . . . , ψ(Kn)

of respective types {λ1, . . . , λn}. They are bounded knots except ψ(K1) is
of unbounded type. Again, by our previous results, there exists algebraic

knots K̃i ⊂ H so that K̃1 is of unbounded type λ1 and K̃j is of bounded
type λj , for each 2 ≤ j ≤ n.

Now we will need to “move” these knots in an algebraic way so that they
are simple chain links of the analogous configuration to that described above
in S3. Let c ∈ H and let Π : H → R3 by the diffeomorphism we previously
mentioned, with Π(z, w) = (Re(z), Im(z),Re(w)) = (x, y, z) ∈ R3. Let
τa : R3 → R3 be translation by a vector a, i.e., τa(x) = x+ a. Note that τa
is a diffeomorphism. Now consider the diffeomorphism: τ̃c = Π−1◦τΠ(c)◦Π :
H → H. Note that this is a diffeomorphism with τ̃c(0, 0) = c, and τ̃c will

obviously preserve algebraic sets. Hence, τ̃(K̃) will be algebraic knot of the
same type λ (boundedness also preserved) but translated from 0 to c.

Therefore we may translate our knots without sacrificing their type and
keeping them algebraic. Further, note that given any linking formation of
knots in S3 there is an analogous arrangement in H (by formulation).

Note also that we may rotate knots in H in a linear manner, namely by
multiplying by (3×3)-matrices in R3 and (pre-)composing with Π,Π−1. Note
that such operations must preserve algebraic sets (they are all “polynomial
transformations”).

Now given the implicit simple chain linking arrangement in H, it is clear
with some geometric intuition that we may translate and rotate the knots

K̃j so they link to form the desired chain, as they link in a chain with linking
number one and they are 1-manifolds in 3-space.

Assume then without loss of generality that the K̃j link in the appropriate
(simple chain) manner and that their types are of {λ1, . . . , λn} respectively,

with only K̃1 being unbounded. Let gi be complex polynomials whose zero

sets are precisely K̃i, respectively. Note that as the knots are disjoint, if
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we take g∗ = g1g2 . . . gn, the zero set of g∗ will be our desired link (when
restricted to H).

Let f be a polynomial so that LH(f) = g∗. Then, we can follow our
argument in the proof of Theorem 13 with this new function f to find an
embedding of S3 whose complex tangents are precisely a simple chain link
biholomorphic to the set {g∗ = 0} ⊂ H (union the north pole). By the
tautological relationship (by definition) of types of links in S3 with types of
links in H, we obtain the result below:

Theorem 14. For any simple chain link of knots L ⊂ S3, there exists an
embedding S3 ↪→ C3 whose complex tangents form a link of knots that is
topologically equivalent to L.

Remark 15. Our above construction (via translation and rotation) would
not apply for general links. However if one were to generalize the work of
Akbulut–King to general links on S3 as we indicated in Section 3, we could
then generalize our proof to “all links are algebraic” in H. We would then
immediately obtain the desired result on S3 for links; namely our proof for
Theorem 13 will hold for links and we will arrive at the fact that given any
topological class of link in S3 there is a link of that class that is assumed
exactly as the set of complex tangents to some Ck embedding (with still one
degenerate point).

We also note that we can extend our theorem above to show that any
algebraic surface A ⊂ S3 may arise as the set of complex tangents to some
embedding S3 ↪→ C3, using the corresponding result for the Heisenberg
group (see Remark 12). Assuming any topological type of surface may
also arise in S3 as an algebraic set (and similarly in H), we may follow our
argument above for knots in exact analogy to establish that for every surface
D ⊂ S3, there exists an embedding S3 ↪→ C3 whose complex tangents form
a surface which is topologically equivalent to D.

Furthermore, taking products of polynomials (as above), we may achieve
any simple union of such topological types (surfaces or knots) as the set of
complex tangents to some embedding of S3. We demonstrate some examples
of interesting (and singular) possible scenarios in our paper [3]. We refer the
reader to this paper for the computation of some examples and an analysis
of our degenerate point.

We may also generalize some of our work above and get interesting results
for (higher) odd-dimensional spheres. We will exhibit this in a future paper.
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