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Boundary-twisted normal form and the
number of elementary moves to unknot

Chan-Ho Suh

Abstract. Suppose K is an unknot lying in the 1-skeleton of a trian-
gulated 3-manifold with t tetrahedra. Hass and Lagarias showed there
is an upper bound, depending only on t, for the minimal number of
elementary moves to untangle K. We give a simpler proof, utilizing a
normal form for surfaces whose boundary is contained in the 1-skeleton
of a triangulated 3-manifold. We also obtain a significantly better upper
bound of 2120t+14 and improve the Hass–Lagarias upper bound on the

number of Reidemeister moves needed to unknot to 2105n, where n is
the crossing number.
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1. Introduction

Suppose M is a triangulated, compact 3-manifold with t tetrahedra; K
is a simple, closed curve in the 1-skeleton of the triangulation; and K is
an unknot, i.e., bounds a disc in M . Recall that K can be isotoped in M
using polygonal moves across triangles called elementary moves. J. Hass and

J. Lagarias obtained an upper bound of 210
7t on the minimum number of

elementary moves to take K to a triangle contained within one tetrahedron
[3].

The central idea of their proof is to use normal surface theory. Take a
double barycentric subdivision of the triangulation, and let N(K) denote
the simplicial neighborhood of K. Since K is an unknot, a homotopically
nontrivial curve l on ∂N(K) bounds a normal disc D in M − int(N(K)).
Normal surface theory gives an exponential upper bound in t on the number
of triangles in a minimal such D [4]. Naively we might think to move K
across D and obtain the bound on elementary moves that way, but this
overlooks that K must first be moved from the interior of N(K) to l which
lies on ∂N(K). Thus Hass and Lagarias break up the complete isotopy of
K to a triangle into three parts. First isotope K to ∂N(K), isotope across
∂N(K) to l, and finally isotope across D. The bound on D gives a similar
bound for the number of elementary moves to isotope across D. The bounds
for the number of elementary moves realizing the other isotopies are obtained
from an involved analysis, which takes up a good part of [3]. Independently,
but also using normal surface theory, S. Galatolo worked out a bigger bound
for the specialized case of a polyhedral M in R3 [2].

By considering a normal form for surfaces whose boundary is contained in
the 1-skeleton of a triangulated 3-manifold, we avoid the retriangulation and
subsequent isotopies related to N(K). This not only substantially simplifies
the proof but improves the upper bound on the number of moves to 2120t+14.

A corollary of bounding the number of elementary moves is a bound on the
number of Reidemeister moves to unknot an unknot diagram with crossing
number n. Our result lets us improve the bound given by Hass and Lagarias

from 210
11n to 210

5n.
In Section 2 we define the normal form and relate it to a restricted version

of normal surface theory in truncated tetrahedra. Section 3 explains how to
enumerate the normal discs, which is a key technical detail for this paper. In
Section 4 we explain how an essential surface spanning a link in the 1-skeleton
can be isotoped into boundary-twisted normal form. Section 5 proves the
existence of a fundamental spanning disc for the unknot. In Section 6, using
the previous results, we obtain an improved upper bound on the number
of triangles needed in a spanning disc for an unknot. From this bound, we
obtain bounds which improve the main results of [3].
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2. Boundary-twisted and boundary-restricted normal forms

2.1. Marked triangulations. Given a pair (M,L) consisting of a compact
3–manifold M and link L in M , we say T is a marked triangulation for (M,L)
if T is a triangulation of M with L contained in the 1–skeleton. The vertices
and edges of T which belong to L are called marked vertices and edges.

If two edges of the same face of a tetrahedron are marked and not part of a
triangle component of L, there is an isotopy of these edges to the third edge
of the face reducing the number of marked edges. It will suffice to consider
that L has no triangle component and the number of edges is minimal.

Convention 2.1. No component of L is a triangle, and in any tetrahedron
of a marked triangulation, every face has at most one marked edge.

2.2. Boundary-twisted normal form. A tetrahedron, T , of a marked
triangulation is of 9 possible types and is called a marked tetrahedron. Normal
disc types in a marked tetrahedron are more complicated than the usual
triangles and quads.

(a) edge-edge arc (b) vertex-edge arc (c) vertex-vertex arc

Figure 1. Normal arcs in a face

Definition 2.2. We define a normal arc in a face of T to be a properly
embedded arc such that one of the following holds:

• It starts in the interior of an edge and ends in the interior of another
edge (Figure 1(a)).
• It starts at a marked vertex and ends in the interior of the opposite

edge (Figure 1(b)).
• It starts at a marked vertex and ends at a different marked vertex

(Figure 1(c)).

Definition 2.3. We define a twisted normal disc D in a marked tetrahedron
T to be a properly embedded disc such that its boundary ∂D satisfies the
following conditions (e is an edge and ∆ is a face):
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(1) ∂D ∩ int(∆) consists of normal arcs for every face ∆.
(2) ∂D ∩ e is one of the following:

(a) empty,
(b) one endpoint of e,
(c) an arc and e is marked,
(d) an interior point of e and e is unmarked,
(e) both endpoints of e and e is unmarked.

(3) A pair of normal arcs of ∂D abutting the same point or arc of ∂D∩ e
must be in different faces.

(4) ∂D ∩∆ does not have two normal arcs with endpoints at the same
marked vertex.

Definition 2.4 (Boundary-twisted normal form). Let (M,L) be a 3-manifold
with link L and marked triangulation T . Suppose also S is a surface with
boundary contained in L. We say S is in boundary-twisted normal form if
its intersection with every tetrahedron consists of twisted normal discs.

In attempting normal surface theory with boundary-twisted normal sur-
faces, a technical obstacle arises: it is necessary to consider an additional
kind of surface punctured by marked edges. Rather than work with that
setup, we have chosen to work in a more familiar setting. We will trun-
cate each marked tetrahedron at its marked vertices and edges. Then we
do normal surface theory with respect to these truncated tetrahedra while
imposing some additional conditions on the surface’s boundary behavior in
the truncated regions.

Definition 2.5. Let T be a marked tetrahedron. Then the truncation
of T , denoted Ttr, is a polyhedron obtained by the process indicated in
Figure 2. Given a marked triangulation T , the truncated triangulation Ttr is
the polyhedral decomposition given by truncating every marked tetrahedron
of T .

Definition 2.6. A properly-embedded disc D in a truncated tetrahedron Ttr
is normal if it is the restriction to Ttr of a twisted normal disc in T . A surface
in a truncated triangulation is normal if it intersects each triangulation in
normal discs.

Remark 2.7. This is not the same as the usual generalization of the concept
of normal disc from a tetrahedron to a polyhedron, e.g., [1] or [6]. Our
definition follows naturally from the view of boundary-twisted normal surfaces
and has the advantage of reducing the number of disc types.

Since the truncation Ttr can be considered a subset of T , a normal disc in
Ttr naturally sits inside T . It can be extended to a twisted normal disc of
T in a natural way. In general, this extension is far from unique, since one
can choose different directions to twist and in some cases twist either in the
interior of an edge or at an end (see Figure 3).
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(a) Start by truncating (cut off) marked
edges

(b) Then trun-
cate marked
vertices

Figure 2. Obtaining truncated tetrahedra from marked tetrahedra

(a) In the interior of a marked edge (b) At an end of a marked edge

Figure 3. Discs differing by an opposite twist along a marked edge

2.3. Boundary-restricted normal form. A boundary-twisted normal
surface is a normal surface in the truncated triangulation Ttr, whose bound-
ary has been extended through the truncated region to L. In order for
this extension to happen in a simple way, the normal surface must satisfy
additional conditions on its boundary. We call this type of normal surface in
Ttr a boundary-restricted normal surface.

There are two kinds of boundary regions given by the truncation, triangles
and rectangles. Rectangles should be visualized as “long” with the long sides
corresponding to the longitudal direction and the short sides corresponding
to the meridional direction.

We define a boundary-restricted normal surface to be a normal surface S
in Ttr such that for any rectangle R we require ∂S∩R look as in Figure 4. We
either have one longitudal normal arc, n meridional arcs, or n meridional arcs
with one or two corner-cutting arcs (n ≥ 0). If there are two corner-cutting
arcs, they must be at opposite corners.
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(a) One longitudal
arc

(b) n meridional
arc(s)

(c) n meridional
arc(s) and one
corner-cutting arc

(d) n meridional
arc(s) and two
corner-cutting arcs

Figure 4. Pictures of the restrictions on the boundary of a
boundary-restricted normal surface

Figure 5. Discs that differ from flipping a vertex-vertex arc
to an adjacent face

3. Enumeration of twisted normal discs

Figures 6–10 show pictures of some twisted normal discs in the different
marked tetrahedra. To obtain further disc types from a particular figure,
apply a symmetry of the tetrahedron (preserving markings), change the
direction of twisting along a marked edge (Figure 3), and/or flip a vertex-
vertex arc to an adjacent face (Figure 5). Each figure’s caption includes a
number denoting the total number of disc types obtainable from a figure
in this manner. Also note that some of the discs in one kind of marked
tetrahedron also show up in other kinds, but the figures illustrate only the
nonredundant ones. For example, all of the disc types for a tetrahedron with
one marked vertex and one marked edge show up in the tetrahedron with
two marked vertices and one marked edge.

Except for these operations and the nonillustration of redundant disc
types, these figures are complete. The organization of the figures is meant
to suggest the method of enumeration. We now explain the enumeration in
further detail.

3.1. Marked tetrahedron with only marked vertices. For an unmark-
ed tetrahedron, the only twisted normal discs are the standard normal discs:
triangles and quads (Figure 6(a)). This gives the usual 7 disc types.
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For a marked tetrahedron with one or more marked vertices but no marked
edges, in addition to the previous triangles and quads, we have vertex
touching triangles (Figure 6(b)) and possibilities utilizing vertex-vertex arcs
(Figures 6(c), 6(d), 6(e), and 6(f)).

For a tetrahedron with one marked vertex, we have 7 discs from the
unmarked case and the three vertex touching triangles, making 10 disc types.

For a tetrahedron with two marked vertices, we have 4 quads, 3 triangles,
6 vertex touching triangles, 2 triangles with a vertex-vertex arc, and 1 bigon.
This gives 16 total.

For a tetrahedron with three marked vertices, 4 quads, 3 triangles, 9 vertex
touching triangles, 6 triangles with one vertex-vertex arc, 4 triangles with all
vertex-vertex arcs, and 3 bigons. This gives 29 total.

For a tetrahedron with four marked vertices, we have 4 triangles, 3 quads,
6 quads with all vertex-vertex arcs, 12 vertex-touching triangles, 12 triangles
with one vertex-vertex edge, 16 triangles with all vertex-vertex arcs, 6 bigons,
giving 59 total.

3.2. Tetrahedron with one marked edge. For the one marked edge
case, we have 30 total disc types.

There are two triangles and one quad that don’t use the marked edge at
all. Moving on to discs that utilize an endpoint of the marked edge, there
are 6 vertex-touching triangles, as in a previous case.

The remaining discs utilize the entire marked edge or a subarc of it (see
Figure 7). The first row illustrates those using the entire marked edge, while
the last two rows show disc types using an interior or exterior subarc, resp.

3.3. Tetrahedron with one marked edge and one marked vertex.
There are 47 total disc types, with 30 types from the 1 marked edge case, and
17 new types, which we will enumerate and illustrate. The 17 new disc types
must utilize the marked vertex (see Figure 8). The first row of the figure are
2 discs not utilizing a subarc of the marked edge: a vertex-touching triangle
and a bigon. Each subsequent row of the figure, as before, illustrates the
disc types utilizing a particular kind of subarc of the marked edge.

3.4. Tetrahedron with one marked edge and two marked vertices.
There are a total of 93 disc types. From the 1 marked edge case, we have
30. From the 1 marked edge and 1 marked vertex case, we get double
contributions (since we now have two marked vertices), giving 2*17 = 34.
We enumerate the 29 new disc types below. Note that they must utilize both
of the marked vertices.

There are 9 disc types not using any arc of the marked edge: 1 bigon
(Figure 9(a)) and 8 triangles with all vertex-vertex arcs (Figure 9(b)).

The remaining disc types are all quads. There are 4 quads with three
vertex-vertex arcs which utilize the full marked edge (Figure 9(c)). There are
12 quads utilizing an exterior subarc of the marked edge (Figure 9(d)). There
are 4 quads utilizing an interior subarc of the marked edge (Figure 9(e)).
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(a) The usual suspects: triangle (4) and quad
(3)

(b) A vertex-touching
triangle (3)

(c) A bigon (1) (d) Triangle with one
vertex-vertex arc (2)

(e) Triangle with all
vertex-vertex arcs (4)

(f) Quad with all
vertex-vertex arcs (6)

Figure 6. Twisted normal discs in a tetrahedron with n
marked vertices (n ≥ 0)

3.5. Tetrahedron with two marked edges. There are a total of 148
disc types. There are 66 new disc types, which are illustrated in Figure 10.

As before, the discs from the previous cases should be counted, but not
all of them are compatible with this type of marked tetrahedron. From the
1 marked edge case, we have 1 normal quad, 4 vertex-touching triangles, 8
quads with an interior subarc, and 8 quads with an exterior subarc. The
total is 21.

From the 1 marked edge and 1 marked vertex case, we have 2 bigons,
and a quadruple contribution of the rest of the disc types, except for the
vertex-touching triangles which are considered in the previous paragraph.
This gives 2 + 4*15 = 62 total.
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(a) 1

(b) 4 (c) 4

(d) 4 (e) 4 (f) 4

Figure 7. Twisted normal discs in a tetrahedron with one
marked edge

The nonredundant discs from the 1 marked edge and 2 marked vertex case
are not allowable here.

3.6. Obtaining normal discs from twisted normal discs by truncat-
ing. For normal surface theory, we need to know the maximal number of
normal discs in any truncated tetrahedron. Table 2 shows the total number
of normal discs in a truncated tetrahedron. These are obtained by truncating
the tetrahedron and observing carefully how different twisted normal disc
types become the same normal disc type. For example, after truncation of
the edges, the two discs illustrated in Figure 10(d) are amongst the discs
obtained from Figure 10(a). The last column of the table will be used later
in Section 6. It is the maximum number of disc types whose boundary has a
common normal arc in a face.
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(a) 1 (b) 1

(c) 3 (d) 2 (e) 4 (f) 2

(g) 4

Figure 8. Twisted normal discs in a tetrahedron with one
marked edge and one marked vertex

4. Isotoping to boundary-twisted normal form

Theorem 4.1. Let M be a compact irreducible 3-manifold with triangulation
T and L be a polygonal link contained in the 1-skeleton of T . Suppose L has
at most one edge in each triangle of T and bounds an incompressible surface
S. Then S can be isotoped (rel ∂) into boundary-twisted normal form.

Proof. Isotope S to be in general position with respect to the 2-skeleton
of T . Then Int(S) ∩ ∂∆3 for any tetrahedron ∆3 consists of simple closed
curves and/or embedded (open) arcs with endpoints on marked edges or
vertices.

Consider the portions of the marked edges of ∆3 which abut pieces of S
inside of ∆3. By a small isotopy of S, we can assume that they are arcs or
endpoints.
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(a) 1 (b) 8 (c) 4

(d) 12 (e) 4

Figure 9. Twisted normal discs in a tetrahedron with
marked edge and two marked vertices

Tetrahedron type Total

No marked vertices or edges 7
one marked vertex 10
two marked vertices 16
three marked vertices 29
four marked vertices 59
1 marked edge 30
1 marked edge, 1 marked vertex 47
1 marked edge, 2 marked vertices 93
2 marked edges 148

Table 1. Number of twisted normal disc types in each type
of marked tetrahedron

We call a simple closed curve in S ∩ ∂∆3 which is a boundary component
of an annulus contained in S ∩ ∆3 a circle of intersection of S and ∂∆3.
Note that strictly speaking, this is an abuse of terminology as a circle of
intersection should refer to a component of the intersection which is a circle.

Define the weight of S to be the sum of the number of components of
S ∩ int(∆) over all faces ∆ of T . We will now perform a series of weight-
reducing isotopies until S is in boundary-twisted normal form. Each type
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(a) 8 (b) 16 (c) 4

(d) 2 (e) 4 (f) 8

(g) 16 (h) 4 (i) 4

Figure 10. Twisted normal discs in a tetrahedron with two
marked edges

Tetrahedron type Total Max arc #

No truncation 7 2
One truncated vertex 10 3
Two truncated vertices 16 3
Three truncated vertices 29 3
Four truncated vertices 59 3
One truncated edge 15 3
Two truncated edges 17 6
One truncated edge, one truncated vertex 22 3
One truncated edge, two truncated vertices 40 6

Table 2. Number of normal disc types in each type of trun-
cated tetrahedron
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(a) monogon (b) D-curve

Figure 11. Some nonnormal curves

of isotopy will eliminate an unwanted situation and bring S closer to being
in boundary-twisted normal form. After an isotopy, we may have disturbed
our work in previous stages, but we can repeat the entire simplification
procedure up to that point, which drives down the weight, to ensure all the
previous conditions still hold. We will assume this is done in the following
descriptions.

Consider a particular ∆3. For each circle of intersection, starting with
innermost ones, we can take the disc bound by it in ∂∆3 and push it in slightly.
By doing so we obtain a compression disc for S. Since S is incompressible
and M is irreducible, we can isotope S until its intersection with ∆3 coincides
with these compression discs. Therefore we can arrange that each circle of
intersection on ∂∆3 bounds a disc inside it.

Consider a circle of intersection which is in the interior of a face. We can
isotope the disc of S bound by the circle through the face, removing one or
more circles of intersection. We repeat this to remove any further circles of
intersection inside a face.

Now consider any circle of intersection whose restriction to a face has a
nonnormal curve. The arc either has both its endpoints on a marked vertex,
a monogon (Figure 11(a)), or at least one endpoint is in the interior of an
edge, a D-curve (Figure 11(b)). A monogon can be eliminated by pushing
the disc it bounds into the next tetrahedron.

In the D-curve case, we can suppose it is innermost. Such an innermost
curve and a segment of the marked edge bounds a disc in the face. This is a
compression disc, so we can isotope S to the disc and then push through the
face. This isotopy must reduce the weight.

Because we are decreasing the weight, by repeating this procedure, we can
ensure that the surface S in ∆3 satisfies:

• Its intersection with each tetrahedron consists of discs.
• The boundary of each disc consists of normal arcs and arcs of marked

edges (Definition 2.3 (1) and (2c)).
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We can eliminate a disc with two normal arcs in a face touching the same
vertex by pushing the disc through the face near the vertex (Definition 2.3
(4)). This reduces the weight by combining the two arcs into one.

It may be the case that the boundary of a disc D intersects an edge e
more than once, including at least once in its interior. We can suppose D is
innermost. We now have two cases: 1) e is not marked. 2) e is marked.

Case 1): There is a disc E, whose interior is disjoint from S, such that
∂E = α∪β, where α is an arc on S connecting two points of ∂D∩e and β is a
subarc of e. We can push S across E so that α is taken to β. A further small
isotopy of S through e will split D into two discs in the tetrahedron. If the
two points of ∂D ∩ e were in the interior of e, these two discs have combined
weight less than that of D. Otherwise, one point was at an endpoint of e and
it is possible the two discs have the same weight as that of D. Nonetheless,
the intersection of S with the 1-skeleton is simplified. Since none of our
weight-reducing isotopies increase intersection with the 1-skeleton, we can
eliminate this situation also.

Case 2): If D intersects e only at its endpoints, we need to avoid violating
Definition 2.3 (2e). In this case, there must be an arc α on D joining the
endpoints of e. Then α and e bound a compression disc which gives a
weight-reducing compression. Otherwise D intersects e in its interior in
at least one arc. By taking an arc α of the marked edge adjacent to two
innermost components of ∂D∩ e and an arc β in the interior of S connecting
the endpoints of α, we obtain a simple closed curve γ = α ∪ β. γ bounds a
compression disc in ∆3 for S. Thus we can isotope S to the disc, reducing
the weight.

Now consider a circle of intersection which touches a marked edge but
does not pass through from one face to another (this violates Definition 2.3
(3)). Suppose the curve bounds the disc D. We can reduce the weight by
pushing the part of D near the marked edge through a face.

Eventually we arrive at a situation where the pieces of S inside ∆3 are
exactly what we defined previously as twisted normal discs (see Definition 2.3).
In particular, if Definition 2.3 (2) is not satisfied, clearly we can do one of
the above isotopies.

Now we move onto another tetrahedron and repeat the entire process
until S is cleaned up to the requisite form inside the tetrahedron. Note this
may ruin our work in the previous tetrahedron. We move onto yet another
tetrahedron and do the process. By cycling through the tetrahedra and
noting that the weight is strictly decreasing, eventually the weight is at a
minimum and S is in boundary-twisted normal form. �

5. Existence of a fundamental unknotting disc

Normal surface theory in truncated triangulations is analogous to that in
standard triangulations. Each normal disc type in a truncated tetrahedron
is represented by a variable. There are integer linear equations in these
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section of two sum-
mands of a normal sur-
face

������������������������(b) A cut-and-paste
giving normal discs

����������������(c) A cut-and-paste re-
sulting in nonnormal
discs

Figure 12. The Haken sum

variables, matching equations, given by each pair of truncated tetrahedra
sharing a face. A coordinate vector is obtained from a normal surface by
simply counting the number of normal discs of each type it contains. A
normal surface’s vector must be a solution to the equations, but nonnegative
integral solutions are not necessarily normal surfaces. Nonnegative integer
solutions which satisfy a no-intersection condition are uniquely realized as
a normal surface. The condition is that certain pairs of coordinates cannot
both be nonzero; the pairs correspond to normal disc types that cannot be
realized at the same time as disjoint discs.

A normal surface with vector v such that v 6= v1+v2 where each vi 6= 0 is a
nonnegative integer solution to the matching equations is called fundamental.
All such v constitute the minimal Hilbert basis for the system of equations.
This basis is a finite, generating set for all nonnegative integer solutions and
can be found using methods of integer linear programming.

Let S be a normal surface with solution vector v(S) = v1 + v2 and each
vi is a nonnegative integer solution vector. The no-intersection condition
on v(S) passes to each vi so that vi = v(Si) for a normal surface S. There
is a Haken sum, a cut-and-paste addition of normal surfaces, such that the
Haken sum of S1 and S2 is S (Figure 12). Two important properties are
that Euler characteristic is additive under Haken sum, and there is a way
of cutting and pasting the “wrong way”, the so-called irregular switch, that
creates a nonnormal surface.

In our setup, we work with boundary-restricted normal surfaces. In order
that our arguments work, we need only ensure that passing to a summand
lets us continue working with boundary-restricted normal surfaces. That is
the content of the following simple, but crucial, lemma.

Lemma 5.1. Let S be a boundary-restricted normal surface and suppose
v(S) = v1 +v2, where each vi is a nonzero solution to the matching equations.
Then vi = v(Si) for a unique boundary-restricted normal surface Si and S is
the Haken sum S1 + S2.
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Proof. From the remarks about normal surface theory preceding the lemma,
clearly vi = v(Si) for a unique normal surface Si and S = S1 +S2. It remains
only to check that Si is boundary-restricted. But the conditions on the
boundary (Figure 4) are inherited from v by each vi, so this follows. �

Now recall that the weight of a normal surface is the number of points of
intersection with the 1-skeleton.

Theorem 5.2. Let (M,K) have a marked triangulation T with K a knot

in T (1). Suppose Ttr is the truncation of T and D is a a boundary-restricted
normal disc in Ttr. If D is of least weight over all such discs, then it is
fundamental.

Proof. Standard techniques as in [5] are applicable here. So we are brief on
some points and refer the reader to [5] for more details.

Suppose D is not fundamental. Then D = D1 +D2. By Schubert’s lemma
([5], 1.9, p. 199), we can suppose the Di’s are connected. The condition on ∂D
means that one summand, say D2, is a surface with only meridional boundary
components (if any), while the other spans K. Since Euler characteristic is
additive under Haken sum, we must have two cases: 1) D1 a disc and D2 is
a torus, Klein bottle, annulus, or Möbius band. 2) D1 is a punctured torus
or Klein bottle and D2 is a sphere.

In the first case, D1 is a normal disc spanning K of smaller weight than D.
In the second case, Schubert’s lemma also says we can suppose that no curve
of intersection is separating on both Di’s. Thus since every curve separates
on a sphere, no curve of intersection separates D1. Pick such a innermost
curve on D2 that bounds a disc E of least weight over all innermost curves.
This curve must be 2-sided on D1. By compressing along E, we obtain a disc
D′ with at most weight of D. If the disc is not normal, then normalization
will reduce the weight, contradicting the definition of D.

Suppose D′ is normal. Since D is of minimal weight, D′ must have the
same weight. This implies that that the weight of D2 −E equals the weight
of E. If there is no other curve of intersection, compressing along the disc
D2 − Int(E) will result in a nonnormal disc and we obtain a contradiction
as before. If there is another curve of intersection, examination shows that
there is another innermost curve of intersection on D2 which has less weight
than E, a contradiction. �

6. A bound on the number of elementary moves to unknot

J. Hass and J. Lagarias obtained an upper bound of 210
7t on the minimum

number of elementary moves to take K to a triangle in one tetrahedron [3].
Their key insight was to use normal surface theory to use a normal spanning
disc D for the unknot K, which was of exponential size (in t). But this disc
D was normal with respect to a doubly barycentric subdivision of M with a
simplicial neighborhood of K removed. Before we can move K across the
disc D, K must first be moved to ∂D. Recall that the bulk of their efforts
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was on working out how to do this while bounding the number of elementary
moves.

The Hass–Lagarias bound is obtained by isotoping K by elementary moves
across an annulus connecting K to a curve on the boundary of the removed
neighborhood of K, isotoping across the torus boundary of the regular
neighborhood to the boundary of a normal disc, and finally isotoping across
the normal disc to a single triangle. Since the number of triangles in the
normal disc is at most 28t+6, the chief culprit for their large final bound of

210
7t is because of their large bound for the first two isotopies.
We will now show how to improve the upper bound on the number

of moves to 2120t+14, and subsequently improve the upper bound on the
number of Reidemeister moves to unknot an unknot diagram with crossing

number n from 210
11n to 210

5n. The idea is to use boundary-twisted normal
form to implement normal surface theory in the most direct way possible:
Theorem 5.2 implies there is a boundary-twisted normal disc D of bounded
size. We straighten out the discs to be piecewise-linear, and move the unknot
along D using elementary moves until it becomes a triangle in a tetrahedron.

First, we need to understand how to bound the size of the fundamental
normal disc given by Theorem 5.2. In [4] an upper bound was given for
the maximal coordinate of any fundamental solution. This bound depends
only on two particular features of the system of integer linear equations: the
number of variables, n, and the maximum, m, over the sum of the absolute

values of the coefficients of an equation. The upper bound is n ·m
n−1
2 .

In the last column of Table 2, for each type of truncated tetrahedron,
we give the maximum number of normal disc types that share a particular
normal arc type on a face. Since 6 is the max over all tetrahedra types,
we see that any matching equation will have at most 12 as the sum of the
absolute values of its coefficients.

Thus plugging these numbers into the bound from [4], we obtain 59t·12
59t−1

2 .
We get a slightly nicer form by relaxing the bound to 59t · 2118t−2.

So the total number of discs of a fundamental surface is at most 59t · 59t ·
2118t−2 ≤ 2120t+10.

This bound with the next basic result will give a bound on the number
of elementary moves to deform K to a triangle. Recall that an elementary
move of a polygonal link in a piecewise-linear 3-manifold with specified trian-
gulation consists of two kinds of moves (and their inverses) in a tetrahedron
(Figure 13):

1) A segment of the link is divided into two by inserting a vertex.
2) Two segments which are edges of a triangle otherwise disjoint from

the link are moved to the third edge of the triangle.

Lemma 6.1 ([3]). Let M be a triangulated 3-manifold with S a normal disc
in M with w triangles. Then ∂S can be isotoped to a triangle by a series of
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Figure 13. Elementary moves taking place in a tetrahedron

at most 2w elementary moves in M , each of which takes place in a triangle
or edge in S.

Theorem 6.2 (Bounding elementary moves to unknot). Let M be a trian-
gulated 3–manifold with t tetrahedra and K is a knot in the 1-skeleton with
at most one edge in each face. Suppose K is an unknot, i.e., bounds a disc
in M . Then there is a series of at most 2120t+14 elementary moves taking K
to a triangle lying in a tetrahedron.

Proof. By Theorem 4.1, K bounds a boundary-twisted normal disc D,
and thus there is a boundary-restricted normal disc D′ in the truncated
triangulation. We will suppose D′ is of least weight so that Theorem 5.2
applies to D′ and obtain a bound of 2120t+10 on the number of normal discs
in D′. After extending each normal disc to a twisted normal disc, the number
of twisted normal discs of D is also bounded by the same number. Before
we can isotope K across D by elementary moves, we need to straighten each
twisted normal disc to a piecewise-linear disc.

Almost every twisted normal disc can be straightened to a piecewise-
linear disc by straightening any vertex-vertex arcs to become an edge of the
tetrahedron. The only exception is a “bigon”, which has boundary composed
of exactly two vertex-vertex normal arcs.

After straightening twisted normal discs and collapsing bigons to edges,
a priori, the result may not be embedded. This can only happen when
two of the tetrahedra around an unmarked edge contain twisted normal
discs which have vertex-vertex arcs with endpoints on that edge. Since
the disc is not embedded, we can pick two such arcs so that they do not
bound a chain of bigons. The arcs bound a compression disc, and after
the compression we have a disc with fewer points of intersection with the
1-skeleton. Normalizing the disc to boundary-twisted normal form and then
truncation will give a boundary-restricted normal disc of lesser weight than
D′, which is a contradiction.

By examining twisted normal discs, we see that there are at most 6
sides. So after straightening, every disc can be divided up into at most
6 piecewise-linear triangles. Using Lemma 6.1 with our bound, we obtain
2(6) · 2120t+10 = 2120t+14 as an upper bound on elementary moves. �

6.1. Bounding the number of Reidemeister moves. We recall some
results from [3]:
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Lemma 6.3 (Triangulating a knot diagram). Given a knot diagram D of
crossing number n, there is a triangulated convex polyhedron P in R3 with
at most 140(n + 1) tetrahedra so that it contains a knot in the 1-skeleton
which orthogonally projects to D on a plane. Furthermore, each face of a
tetrahedron contains at most one edge of the knot.

Remark 6.4. Hass and Lagarias actually get a larger number because they
need to assume the knot is in the interior of P .

Lemma 6.5 (Reidemeister bound for a projected elementary move). Let L
and L′ be polygonal links in R3. Suppose that L (resp. L′) has at most n
edges and has a link diagram D (resp. D′) under orthogonal projection to
the plane z = 0.

If k elementary moves take L to L′, then at most 2k(n+ 1
2k + 1)2 Reide-

meister moves take D to D′.

Now we can prove:

Theorem 6.6. Let D be an unknot diagram with n crossings. Then there

is a sequence of at most 210
5n Reidemeister moves taking D to the standard

unknot.

Proof. We use Lemma 6.3 to obtain a triangulated polyhedron P of at most
140(n+ 1) tetrahedra such that a knot in its 1-skeleton orthogonally projects
to D. Let t be the number of tetrahedra.

By Theorem 6.2 there is a sequence of at most 2120t+14 elementary moves
taking K to a triangle in a tetrahedra. Using the bound on the projection of
an elementary move (Lemma 6.5) and noting K contains at most 2t edges,
we obtain the following bound on Reidemeister moves:

2120t+14(2 · t+
2120t+14

2
+ 1)2

This quantity is less than 2360t+43 ≤ 2360·140(n+1)+43. Except for n = 1,

for which the Reidemeister bound obviously holds, the last is less than 210
5n,

which was the desired bound. �
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