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On positive integers n dividing the nth
term of an elliptic divisibility sequence

Avram Gottschlich

Abstract. Elliptic divisibility sequences are integer sequences related
to the denominator of the first coordinate of the n-fold sum of a nontor-
sion rational point on an elliptic curve. Silverman and Stange recently
studied those integers n dividing Dn, where {Dn} is an elliptic divisi-
bility sequence. Here we discuss the distribution of these numbers n.
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1. Introduction

In this paper we investigate the distribution of indices of an elliptic divis-
ibility sequence that divide the corresponding term. This type of problem
has been studied before in the cases of the Fibonacci sequence, the more
general Lucas sequences, and the even more general case of linear recur-
rence relations of arbitrary size. See [1], [8], [15], [16] for results on these
topics.

The following definitions all come from Silverman and Stange ([14]). Let
E/Q be an elliptic curve given by a Weierstrass equation, with P a non-
torsion rational point on E. We can iteratively add P to itself, produc-
ing points P , [2]P , [3]P , etc., with corresponding (rational) coordinates
(x1, y1), (x2, y2), (x3, y3), etc. If we write xn = An

D2
n

in lowest terms with

Dn > 0, this sequence {Dn}, dependent only on E and P , is called an ellip-
tic divisibility sequence. As the name suggests, this is a divisibility sequence,
i.e., m | n⇒ Dm | Dn (shown in [14]).

Silverman and Stange described how to use values of n for which n | Dn

to generate larger values of such n, either by using the prime factors of
the original n or by using what they call aliquot numbers, the product of
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the members of an aliquot cycle of primes of good reduction for E. An
aliquot cycle of primes for an elliptic curve E is a list of primes of good
reduction (p1, . . . , pl) with pi+1 = min{r ≥ 1 : pi | Dr} for all 1 ≤ i ≤ l,
where pl+1 = p1 to complete the cycle. Elliptic divisibility sequences are
examples of nontrivial nonlinear recursions with enough additional structure
to make them amenable to Diophantine analysis. There exist applications
to Hilbert’s 10th problem and to cryptography (see [6], [7], [12], [17]).

Our goal is to bound the number of n ∈ [1, x] for which n | Dn.

Theorem 1.1. For x ≥ 20, let N(x) = NE,P (x) be the set of integers n ≤ x
with n | Dn. Then the estimate

#N(x) ≤ OE,P

(
x(log log x)5/3(log log log x)1/3

(log x)4/3

)
holds.

We do not have an asymptotic at this time for N(x).
Ward defines another divisibility sequence (see [18], [19]) via a nonlinear

recurrence relation. A sequence of integers {Wn} is defined via four initial
terms (W1,W2,W3,W4) and the relation

Wn+mWn−mW
2
r = Wn+rWn−rW

2
m −Wm+rWm−rW

2
n for all n > m > r.

Ward first determined the arithmetic properties of these sequences; assuming
some nondegeneracy conditions he showed that there is some elliptic curve
E/Q and a point P ∈ E(Q) with

Wn = ψn(P ),

where ψ is the nth division polynomial for E. These polynomials are defined
via a recurrence relation; if E : y2 = x3 +Ax+B, then the ψn are found in
Z[A,B, x, y] and are defined in [9]:

ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1 (m ≥ 2),

2yψ2m = ψm(ψm+1ψ
2
m−1 − ψm−2ψ2

m+1) (m ≥ 2).

The paper [18] contains explicit formulas for E and P in terms of the ini-
tial terms of Ward’s divisibility sequence. If Dn is the elliptic divisibility
sequence associated to (E,P ), then Dn | Wn for all n ≥ 1, so the two defi-
nitions are closely related. We focus on the first definition given, although
we use the sequence {Wn} to help with a lemma.

Definition 1.2. If some member of the elliptic divisibility sequence Dn is
divisible by m, then the rank of appearance of m, denoted rm = rm(D), is
the minimal integer r ≥ 1 with m | Dr.
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For primes p of good reduction, rp is also the smallest integer r ≥ 1 such
that [r]P ≡ O (mod p), so this number does exist for all such primes,
since E(Fp) is a finite group for such primes. Define vp(n) = k, where

pk ‖ n. While we will only use the rank of appearance of primes, it can
be generalized to all odd positive integers n using Lemma 5 of [14], which
says that vp(Dmn) ≥ vp(mDn), with equality holding unless p = 2, 2 | m,
v2(Dn) = 1, and E has either ordinary or multiplicative reduction at 2.
Hence we can sometimes use this to derive rpa for p odd, and use the lcm of
the various pa ‖ n to derive rn for n odd.

Definition 1.3. An anomalous prime for an elliptic curve E is a prime p
of good reduction such that #E(Fp) = p.

The term anomalous prime comes from a work of Mazur [10] in which he
studied rational points of elliptic curves in towers of number fields.

It is well known that due to a result of Hasse, the size of the group E(Fp)
is p + 1 − ap, where |ap| ≤ 2

√
p. Assuming rp > 1, an equivalent definition

for an anomalous prime p > 5 for an elliptic curve E is a prime for which
rp = p, since rp | #E(Fp), and #E(Fp) < 2p for p > 5. For the general
case, numbers n whose large prime factors are anomalous primes prove to
potentially be the largest subset of n | Dn. There are certain properties of
elliptic curves which lead to a smaller number of anomalous primes; these
properties allow us to find a better bound.

Definition 1.4. An elliptic curve E is c-nomalous if

S(x) = #{p ≤ x : p is anomalous}
can be bounded by OE(x1−c).

The Lang–Trotter conjecture says that for an elliptic curve E with no
CM and nonzero trace, the number of primes p ≤ x with ap = k should

be asymptotic to
cE,k
√
x

log x for each possible k in the Hasse bound. If the

conjecture is correct, this would be true for ap = 1 in particular, so all
elliptic curves are 1

2 -nomalous. Assuming the GRH for the Dedekind zeta
functions of the division fields of E, a result of Serre ([13]) gives us

#{p ≤ x : p - N, ap = 1} �N
x5/6

(log x)1/3
,

where N is the conductor of E. A more recent paper of Murty, Murty, and
Saradha that also assumes the GRH gives a better bound in [11], namely

#{p ≤ x : p - N, ap = 1} �N
x4/5

(log x)1/5
,

Under this assumption, all elliptic curves are 1
5 -nomalous.

If E has nontrivial torsion over Q, the torsion subgroup over Q can be
injected into E(Fp) for primes of good reduction. Hence such an E can have
at most one anomalous prime, so such a curve is 1-nomalous. The same is
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true of any elliptic curve E which is Q-isogenous to an elliptic curve E′ which
has nontrivial torsion or to an elliptic curve E′′ for which E′′(Q(

√
∆E′′)) has

nontrivial torsion, by remarks A9, A11 of Nathan Jones’ appendix to [2].
Here, ∆E′′ is the discriminant of E′′.

If E is a CM elliptic curve, it has been shown [5] that the Lang–Trotter
bound holds in this case, that is:

#{p < x : p - N, ap = 1} �N

√
x/ log x

where N is the conductor of E (only a finite number of primes divide N).
Hence such a curve is 1

2 -nomalous.

Theorem 1.5. Let E be a c-nomalous elliptic curve, 0 < c ≤ 1, P a
nontorsion rational point on E. Then as x→∞,

#N(x) ≤ x

L(x)1/
√
8+oP (1)

,

where L(x) = exp(
√

log x log log x).

2. Counting N(x)

Throughout we let the variable p denote a prime number.

Lemma 2.1. For y ≥ 2, 0 < γ ≤ 1, the estimates

#{p : rp exists and rp ≤ y} � y3, #{p < x : rp exists and rp ≤ pγ} � x3γ

hold, where the implied constants depend only on the elliptic curve E and
the point P.

Proof. The first inequality implies the second, so we will only show the
first. We will use Ward’s definition of a divisibility sequence here. From
Remark 28 of [14], our sequence {Dn} is related to some {Wn}, which can
be determined using the division polynomials of E. In particular, Dn |Wn.

It is known that Wn grows like ecn
2

(see, e.g., Lemma 2 of [9]), where c

depends on the point P used. It is easy to show that a number of size ecn
2

has at most OP (n2) prime factors by comparing it to 2n
2
. Thus, each Wn

has at most OP (n2) prime factors. Summing, we see that at most O(y3)
primes divide the first y terms of the division sequence, so only that many
primes can have rp ≤ y. Since Dn |Wn, this bound holds for Dn as well. �

Lemma 2.2. For a given choice of E and P , with p a prime, for any real
x ≥ 1, if R(x, p) is the number of solutions of the congruence

Dn ≡ 0 (mod p) with 1 ≤ n ≤ x,

then

R(x, p) ≤ x

rp
.
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Proof. Lemma 4 in [14] states that p | Dn if and only if rp | n, which follows
from the definitions of rp. There are at most x

rp
such integers n that are at

most x. �

Lemma 2.3. Let S be a set of primes with

B(x) :=
∑
p∈S
p≤x
j≥1

1

pj
.

Let S1(x) be the set of powers of primes in S (including the primes them-

selves) that are at most x, and assume #S1(x) ≤ xf(x)
(log x)c , where c ≥ 1 and

f(x) > 0 is a nondecreasing function. For all x > 2, let S∞(x) be the set of
n ≤ x where all prime factors of n are elements of S. Then

#S∞(x) ≤ e2cB(x) xf(x)

(log x)c
.

Proof. Let ω(n) count the number of prime factors of n without repetition;
define Sk = {n ∈ Z+ : ω(n) = k, p | n ⇒ p ∈ S}; define Sk(x) = {n ≤
x : n ∈ Sk}. We will prove that #Sk(x) ≤ (2cB(x))k−1xf(x)

(k−1)!(log x)c ; this holds for

k = 1. Assume it holds at k. Let n ∈ Sk+1(x). Then n has k + 1 prime
powers as factors, at most one of which can be greater than

√
x. We will

count #Sk+1(x) by counting these smaller factors. We have:

#Sk+1(x) ≤ 1

k

∑
q∈S1(

√
x)

#Sk(
x

q
)

≤ 1

k

∑
q∈S1(

√
x)

(2cB(x))k−1

(k − 1)!

(x/q)f(x/q)

(log(x/q))c

≤ 1

k

(2cB(x))k−1

(k − 1)!

2cxf(x)

(log x)c

∑
q∈S1(

√
x)

1

q

≤ (2cB(x))k

k!

xf(x)

(log x)c
,

using the fact that f is an increasing function and the definition of B(x).

Summing over k, we get that #S∞(x) ≤ e2cB(x) xf(x)
(log x)c . �

Theorem 2.4. For x ≥ 20, let N(x) = NE,P (x) be the set of integers n ≤ x
with n | Dn. Then the estimate

#N(x) ≤ OE,P

(
x(log log x)5/3(log log log x)1/3

(log x)4/3

)
holds.
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Proof. We assume x is large. We will divide the set N(x) into four subsets.
Let P (n) be the largest prime factor of n, and let y = (log x)6. Let

N1(x) :={n ≤ x : P (n) ≤ y}
N2(x) :=

{
n ≤ x : n /∈ N1(x), there exists a prime p > y dividing n

such that rp < p
1
4
}

N3(x) :={n ≤ x : n /∈ N1(x), p | n⇒ p ≤ y or p is anomalous}

N4(x) :=N(x) \
3⋃
i=1

Ni.

We will now bound the sizes of each of these sets.
For N1(x), we need the number of y-smooth numbers (n such that P (n) ≤

y) less than x, ψ(x, y). For our value of y, we can use ψ(x, y) = x1−1/k+o(1)

as x → ∞ when y = (log x)k (Theorem 1 from [3]), so ψ(x, y) ≤ x5/6+o(1)

here. Hence N1(x) ≤ x5/6+o(1).
Now let n ∈ N2(x). Then n = pm, where p > y is some prime with

rp < p1/4. Note that any p | D1 would be counted in this way; there are
only finitely many such primes for any P . We know p ≤ x

m , so y ≤ x
m , and

this implies that m ≤ x
y . By Lemma 2.1, the number of such primes p ≤ x/m

with rp < p1/4 is OP ((x/m)3/4), where the implied constant depends on E
and P . Summing over all possible values of m ≤ x/y, we get

#N2(x)�P

∑
1≤m≤x/y

x3/4

m3/4
≤ x3/4

∑
1≤m≤x/y

1

m3/4

� x3/4
x/y∫
1

dt

t3/4
� x

4
√
y

=
x

(log x)3/2
.

Now let n ∈ N4(x). We may write n = pm, where p > y is some

nonanomalous prime dividing n with rp ≥ p1/4 Such a prime exists because
n is not contained in one of the other Ni. Because n ∈ N(x), p | n | Dn, so
by Lemma 4 of [14], rp | n as well. For p not an anomalous prime, p ≥ 7,
gcd(p, rp) = 1 because rp | #E(Fp), as mentioned previously. Therefore
prp | n; there are at most n

prp
such numbers less than n for each p. We can

count #N4(x) by summing over p:

#N4(x) ≤
∑
y≤p≤x

x

prp
≤
∑
y≤p≤x

x

p5/4

� x

x∫
y

dt

t5/4
� x

4
√
y
.
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This is the same magnitude as our bound for #N2(x). In addition, this
bound overestimates the number of n in this set since the integral is over all
integers between y and x, not just the primes in this range.

All that remains to deal with is N3(x), the case involving anomalous
primes. Recall that for this case, for each prime p | n, either p < y or p
is anomalous. A result of Serre’s [13] shows that for E a non-CM curve
(the bound is better if E has CM, addressed in the introduction), N the
conductor of E,

#{p < x : p - N, ap = 1} �N
x(log log x)2/3(log log log x)1/3

(log x)4/3
.

For a number n currently uncounted, let n = m1m2, where m1 is y-smooth
and m2 is composed entirely of anomalous primes. We divide these numbers
into two cases, one where m1 ≤ x9/10, and one where m1 ≥ x9/10. We will
denote these counts by A1(x) and A2(x), respectively. Looking at nontrivial
powers of anomalous primes, there are at most

√
x log x that are less than

x, so the number of anomalous primes and powers of anomalous primes less

than x is bounded by O
(
x(log log x)2/3(log log log x)1/3

(log x)4/3

)
as well. Lemma 2.3 gives

that

#{n ≤ x : n is the product of anomalous primes}

�E
x(log log x)2/3(log log log x)1/3

(log x)4/3

where the implied constant depends on the curve E as in Lemma 2.3 and on
the conductor of E by Serre’s result. Note that Serre’s result implies that
our B(x) is O(1) by partial summation.

Counting the first case, we have

A1(x) ≤
∑

m1≤x9/10

∑
m2≤ x

m1

1

�E

∑
m1≤x9/10

x
m1

(log log(x/m1))
2/3(log log log(x/m1))

1/3

(log(x/m1))4/3

�
∑

m1≤x9/10

x(log log x)2/3(log log log x)1/3

m1(log x)4/3

=
x(log log x)2/3(log log log x)1/3

(log x)4/3

∑
m1≤x9/10

1

m1

≤ x(log log x)2/3(log log log x)1/3

(log x)4/3

∑
P (m)≤y

1

m
.
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Dealing with the latter sum separately, we see that∑
P (m)≤y

1

m
=
∏
p<y

(
1 +

1

p
+

1

p2
+ · · ·

)
=
∏
p<y

(
1− 1

p

)−1
∼ eγ log y

by Mertens’ Theorem. So

A1(x)�E
x(log log x)2/3(log log log x)1/3 log y

(log x)4/3

� x(log log x)5/3(log log log x)1/3

(log x)4/3
.

In the second case, we use the previously cited bound for the number of
y-smooth numbers less than x, ψ(x, y), here. We have

A2(x) ≤
∑

m1≥x9/10

∑
m2≤ x

m1

1 ≤
∑

m2≤x1/10

∑
m1≤ x

m2

1

≤
∑

m2≤x1/10
ψ(

x

m2
, y) ≤

∑
m2≤x1/10

ψ(x, y)

≤
∑

m2≤x1/10
x5/6+o(1) ≤ x1/10x5/6+o(1) = x14/15+o(1)

as x→∞.
Hence N3(x) is the dominant case, with size bounded above by

x(log log x)5/3(log log log x)1/3

(log x)4/3
.

This is our unconditional bound. �

3. Elliptic curves that are c-nomalous

In this section we prove Theorem 1.5. Recall Definition 1.4 of a c-
nomalous elliptic curve.

Proof. We will use the same notation for the Ni(x) as before, although now

we will let y = exp(
√

2 log x log log x) = L(x)
√
2, to minimize N(x).

We will need a new bound for ψ(x, y), namely x exp((−1 + o(1))v log v),

which holds as long as we have v = log x
log y going to infinity, with y > (log x)2

(see [4], for example). These bounds hold for our new choice of y, so we get
as x→∞,

v log v =
log x√

2 log x log log x
log

log x√
2 log x log log x

=

√
log x

2 log log x
log

√
log x

2 log log x
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=
1

2

√
log x

2 log log x
(log log x− log(2 log log x))

=

(
1√
8

+ o(1)

)√
log x

log log x
(log log x)

=

(
1√
8

+ o(1)

)√
log x log log x.

Plugging this in to our bound for ψ(x, y), we get

#N1(x) ≤ x exp((−1 + o(1))v log v)

≤ x exp

((
−1√

8
+ o(1)

)√
log x log log x

)
=

x

L(x)1/
√
8+o(1)

.

Using the derivation of our bound for #N2(x) in Theorem 2.4 with our
new value of y, we see that

#N2(x)�P
x
4
√
y

=
x

L(x)1/
√
8
.

Similarly, #N4(x) is also bounded above by O
(
x
4
√
y

)
using its previous deriva-

tion in Theorem 2.4, so it too does not significantly contribute to the size of
N(x).

We will now show that under the c-nomalous condition, the contribution
from N3(x) is within our bound for the size of N(x). For each n ∈ N3(x),
as in the proof of Theorem 2.4 let n = m1m2, where m1 is y-smooth and
m2 is composed entirely of anomalous primes p with p > y. We will divide

these n into three subcases: one where m2 ≤ y1/c
2
, one where m2 is divisible

by a prime of size at least y1/c, and one where m2 > y1/c
2

and is composed
entirely of primes of size at most y1/c. Call the counts in these cases A1(x),
A2(x), and A3(x), respectively. We will use the S∞ notation from Lem-
ma 2.3 to denote the set {n ≤ x : p | n⇒ p > y, p is anomalous}.

For the first case, we can bound the number of such n by looking at the
y-smooth portions. Note that m2 can have at most 1

c2
prime factors, since

each anomalous prime is at least y. We have, as x→∞,

A1(x) ≤
∑

k≤y1/c2
k∈S∞

ψ
(x
k
, y
)
≤

∑
k≤y1/c2
k∈S∞

x/k

L(x/k)1/
√
8+o(1)

≤
∑

k≤y1/c2
k∈S∞

x

kL(x)1/
√
8+o(1)

=
x

L(x)1/
√
8+o(1)

∑
k≤y1/c2
k∈S∞

1

k
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≤ x

L(x)1/
√
8+o(1)

∑
j≤1/c2

1

j!

1 +
∑

p≤y1/c2
p anomalous

1

p− 1


j

≤ x

L(x)1/
√
8+o(1)

1 +
∑

p≤y1/c2
p anomalous

1

p− 1


1/c2

.

We use a multinomial identity to change from a sum over k to one over j
and p. This expression involving a sum on anomalous p is Oc(1) since we
sum only over anomalous primes, so A1(x) is at most the same size as our
bound for #N2(x).

We now find the size of A2(x) using partial summation:

A2(x) ≤
∑

y1/c≤p≤x
p anomalous

x

p
� x

1

x
(x1−c) +

x∫
y1/c

1

t2
t1−c dt


= x1−c + x

x∫
y1/c

1

t1+c
dt ≤ x

cy
� x

L(x)
√
2
.

Thus the contribution of A2(x) is negligible.
We will now find the size of A3(x). Note that since each factor of m2

is at most y1/c, m2 has at least k =
⌊
1
c

⌋
prime factors (with multiplicity).

Suppose m is composed of k anomalous primes in (y, y1/c]. Then

A3(x) ≤ x
∑
m≤x

1

m
≤ x

 ∑
y<p≤y1/c
p anomalous

1

p


k

.

Dealing with the reciprocal sum of these anomalous primes separately,

∑
y≤p≤y1/c
p anomalous

1

p
≤

∑
p≥y

p anomalous

1

p
�

∞∫
y

1

t2
t1−c dt =

∞∫
y

1

t1+c
dt� 1

yc
.

Raising this to the kth power, we see that our reciprocal sum of large anoma-
lous primes to the kth power is O

(
1
y

)
. Thus, A3(x) = O

(
x
y

)
= O

(
x

L(x)
√
2

)
,

which is negligible compared to the other cases.
Hence for c-nomalous curves, #N(x) ≤ x

L(x)1/
√
8+oP (1)

, as x→∞. �



THE nTH TERM OF AN ELLIPTIC DIVISIBILITY SEQUENCE 419

Acknowledgements. We thank Carl Pomerance for his help with various
calculations, as well as an anonymous referee for their helpful comments.

References
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[8] González, J. J. Alba; Luca, Florian; Pomerance, Carl; Shparlinski, Igor
E. On numbers n dividing the nth term of a linear recurrence. Proc. Edinburgh Math.
Soc. (Series 2) 55 (2012), 271–289. doi: 10.1017/S0013091510001355.

[9] Gordon, Daniel; Pomerance, Carl . The distribution of Lucas and elliptic pseu-
doprimes. Math. Comp. 57 (1991), no. 196, 825–838. MR1094951 (92h:11081), Zbl
0744.11066.

[10] Mazur, Barry. Rational points of abelian varieties with values in towers of number
fields. Invent. Math. 18 (1972), 183–266. MR0444670 (56 #3020), Zbl 0245.14015.

[11] Murty, M. Ram; Murty, V. Kumar; Saradha, N. Modular forms and the Cheb-
otarev density theorem. Amer. J. Math. 110 (1988), no. 2, 253–281. MR0935007
(89d:11036), Zbl 0644.10018.

[12] Poonen, Bjorn. Hilbert’s tenth problem and Mazur’s conjecture for large sub-
rings of Q. J. Amer. Math. Soc. 16 (2003), no. 4, 981–990 (electronic). MR1992832
(2004f:11145), Zbl 1028.11077, arXiv:math/0306277v1.

[13] Serre, Jean-Pierre. Quelques applications du théorème de densité de Chebotarev.
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