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Optimality for totally real immersions
and independent mappings of manifolds

into CN

Pak Tung Ho, Howard Jacobowitz
and Peter Landweber

Abstract. The optimal target dimensions are determined for totally
real immersions and for independent mappings into complex affine spaces.
Our arguments are similar to those given by Forster, but we use ori-
entable manifolds as far as possible and so are able to obtain improved
results for orientable manifolds of even dimension. This leads to new ex-
amples showing that the known immersion and submersion dimensions
for holomorphic mappings from Stein manifolds to affine spaces are best
possible.
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1. Introduction

The following two theorems are easily proved by counting dimensions and
applying the Thom Transversality Theorem. See [10] for a full discussion,
and the appendix for a brief account.
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Definition. A smooth immersion f : M → CN is called totally real if
f∗(TM) does not contain any complex line. (All manifolds considered are
assumed to be smooth and second countable.) This is equivalent to requiring
that

f∗(TM) ∩ i(f∗(TM)) = {0}.

Theorem 1.1. There exists a totally real immersion of each n-dimensional
manifold M into CN , provided N ≥ [3n2 ].

Remark 1.2. It follows that there also exists a totally real embedding into
CN , since, on the one hand, the inequality implies that every mapping of
M into R2N may be approximated by an embedding [17, page 654] while,
on the other hand, the totally real immersions are open in the Whitney
topology on functions.

Definition. A smooth mapping F : M → CN is called independent if its
component functions F1, . . . , FN satisfy dF1 ∧ · · · ∧ dFN 6= 0 at all points of
M, in which case the component functions are also called independent.

Theorem 1.3. For every manifold M of dimension n there is a smooth
map F : M → CN whose component functions are independent, provided
N ≤ [n+1

2 ].

Theorems obtained using transversality, such as these, are often, but not
always, optimal in the sense that the target dimension cannot be decreased
(in a case such as Theorem 1.1) or increased (in a case such as Theorem 1.3).
Recall that a transversality argument implies that every n-dimensional man-
ifold M has an immersion into R2n, but a more delicate argument due to
Whitney decreases 2n to 2n− 1 for n > 1.

The aim of this paper is to prove the optimality of the theorems stated
above, by constructing and examining suitable simple examples (of closed
manifolds) in all positive dimensions. The arguments, which are very sim-
ilar to those due to Forster [3], are presented in the next two sections. In
addition, in §4 we prove slightly stronger (optimal) results for orientable
manifolds having dimension of the form 4k+ 2, and also for orientable man-
ifolds of dimension 4k under the assumption that the top Pontryagin class
(or top dual Pontryagin class) vanishes.

In the final section we compare our results to those for holomorphic im-
mersions and submersions of Stein manifolds proved by Forster [3] and
Forstnerič [4]. See Chapter 8 of the recent book by Franc Forstnerič [5]
for a full account of these results.

The appendix outlines how to prove Theorems 1.1 and 1.3 using simple
transversality arguments.
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2. Optimality for totally real immersions

We shall show that the target dimensions in Theorem 1.1 cannot be de-
creased. This will be accomplished by finding manifolds M2n and M2n+1 in
all positive dimensions so that:

• M2n does not admit a totally real immersion into CN for N = 3n−1.
• M2n+1 does not admit a totally real immersion into CN for N = 3n.

We provide four families of examples according to the residue of the di-
mension of M modulo 4. Let

M4k = CP2 × · · · ×CP2 = (CP2)×k

be the product of k copies of the complex projective plane.

Theorem 2.1.

• M4k does not admit a totally real immersion into CN for N = 6k−1.
• M4k+1 = M4k×S1 does not admit a totally real immersion into CN

for N = 6k.
• M4k+2 = M4k ×RP2 does not admit a totally real immersion into

CN for N = 6k + 2.
• M4k+3 = M4k × RP2 × S1 does not admit a totally real immer-

sion into CN for N = 6k + 3.

We first reduce the proof to a statement about bundles.

Lemma 2.2. If a manifold M has a totally real immersion into CN , then
there exists a complex vector bundle Q over M such that

(C⊗ TM)⊕Q
is trivial of rank N .

Remark 2.3. This condition in fact characterizes manifolds with totally real
immersions into CN (see [10]) and includes Theorem 1.1 (see the appendix).

Proof. Let f : M → CN be a totally real immersion and define a map

ψ : C⊗ TM → T 1,0(CN )

by ψ(v) = f∗v − iJf∗v. It suffices to show that ψ is injective on each fiber.
So let p ∈M , ξ and η ∈ TMp and assume that ψ(ξ + iη) = 0. This implies
that

f∗(ξ) + Jf∗(η) = 0.

If η 6= 0, then f∗(TM) would contain the complex line spanned by f∗(η) and
Jf∗(η). Since f is a totally real immersion, we conclude instead that η, and
hence also ξ, is zero. �

We now use Chern classes to rewrite the triviality condition of Lemma 2.2
in terms of cohomology classes. Denote the total Chern class of a complex
vector bundle B over M by

c(B) = 1 + c1(B) + · · ·+ ck(B)
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where cj(B) ∈ H2j(M ; Z) and k = min(rankB, [dimM
2 ]). We use the follow-

ing properties of Chern classes. An excellent reference is [12].

(1) (Whitney formula) c(B1⊕B2) = c(B1) ` c(B2) where the right hand
side denotes the cup product of cohomology classes.

(2) If M has a complex structure and dim M = 2n, then we write

c(M) = c(T 1,0(M)) = 1 + c1(M) + · · ·+ cn(M).

So for such an M

C⊗ TM = c(T 1,0(M)⊕ T 0,1(M))

= c(T 1,0(M)) ` c(T 0,1(M)

= (1 + c1(M) + · · ·+ cn(M))

` (1− c1(M) + · · ·+ (−1)ncn(M)).

(3) If B is trivial then c(B) = 1.

Thus if M admits a totally real immersion into CN then there exists some
complex vector bundle Q having rank equal to N − dimM such that

(2.1) c(C⊗ TM) ` c(Q) = 1.

So the proof of Theorem 2.1 has been reduced to the verification that in
the first two cases there is no bundle Q of rank 2k − 1 and in the last two
cases no bundle Q of rank 2k satisfying (2.1). We present a brief proof of the
following well-known result for the sake of completeness (cf. [12, Section 14],
where a different terminology is used for the complex line bundle appearing
in the following lemma).

Lemma 2.4. Let a denote the first Chern class of the hyperplane line bundle
O(1) on CP2. Then

c(C⊗ TCP2) = 1− 3a2.

Proof. The total Chern class of the complex projective plane is given by

c(CP2) = c(T 1,0(CP2)) = (1 + a)3.

It follows that

c(T 0,1(CP2)) = (1− a)3

and so

c(C⊗ TCP2) = (1− a2)3.
The desired result follows since a3 = 0 for dimensional reasons. �

It is known that the Chern class a introduced above generatesH2(CP2; Z).
Similarly the first Chern class of the complexification of the tautological line
bundle ξ of RP2, call it b, generates H2(RP2; Z) (this cohomology group is
isomorphic to Z2, a cyclic group of order 2). Indeed, the mod 2 reduction
of b is the second Stiefel–Whitney class w2(2ξ) of twice the tautological line
bundle, so is equal to the square of w1(ξ), which is nonzero.
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Let M be one of the manifolds in Theorem 2.1. Let a1, . . . , ak be the
pull-backs of a to M under the corresponding projections to CP2, so that
a3i = 0 for all i. Let b1 be the pull-back of b to M for each of the two cases
in which M contains a factor RP2. The following result is now clear.

Lemma 2.5.

c(C⊗ TM4k) = c(C⊗ TM4k+1) = (1− 3a21) · · · (1− 3a2k)

c(C⊗ TM4k+2) = c(C⊗ TM4k+3) = (1− 3a21) · · · (1− 3a2k)(1 + b1).

We show first that (2.1) does not have a solution Q of rank less than 2k
for M = M4k. Suppose a complex vector bundle Q satisfies

(1− 3a21) · · · (1− 3a2k)c(Q) = 1.

This implies that c(Q) = (1 + 3a21) · · · (1 + 3a2k) which, in turn, implies that

the rank of Q is at least 2k since c2k(Q) = 3ka21 · · · a2k 6= 0, in view of the
Künneth formula. The same argument applies in case dimM ≡ 1 mod 4.

We next suppose that M = M4k+2. Suppose a complex vector bundle Q
satisfies

(1− 3a21) · · · (1− 3a2k)(1 + b1)c(Q) = 1.

This implies that c(Q) = (1+3a21) · · · (1+3a2k)(1+b1) which, in turn, implies

that the rank of Q is at least 2k + 1 since c2k+1(Q) = 3ka21 · · · a2kb1 6= 0 in

H4k+2(M ; Z) ∼= Z2, where we again make use of the Künneth formula and
the fact that the coefficient 3k is odd. The same argument applies in case
dimM ≡ 3 mod 4.

The proof of Theorem 2.1 is now complete.

3. Optimality for independent functions

Our aim is to show that for each n > 0, if N > [n+1
2 ] then some n-manifold

M admits no independent mapping of M into CN . So Theorem 1.3 is also
optimal.

Assuming that F : M → CN is an independent mapping, we extend the
differential to a complex linear surjection dF : C⊗TM

p → CN for each point

p ∈M, and so obtain a surjective bundle mapping dF : C⊗ TM →M×CN .
Then K := ker(dF ) is a subbundle of C⊗ TM, and therefore

C⊗ TM ∼= K ⊕Nε.
where ε denotes a trivial complex line bundle. It follows thatK and C⊗ TM
have the same Chern classes.

It should come as no surprise that we will once again use the manifolds
appearing in Theorem 2.1.

Theorem 3.1.

• M4k does not admit an independent mapping to CN for N > 2k.
• M4k+1 = M4k × S1 does not admit an independent mapping to CN

for N > 2k + 1.
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• M4k+2 = M4k × RP2 does not admit an independent mapping to
CN for N > 2k + 1.
• M4k+3 = M4k ×RP2 × S1 does not admit an independent mapping

to CN for N > 2k + 2.

Proof. For M4k = (CP2)k, we have

c2k(C⊗ TM4k) = (−1)k3ka21 · · · a2k 6= 0

in the notation of Lemma 2.5. Hence for an independent mapping F :
M4k → CN we have c2k(K) 6= 0 which implies rankK ≥ 2k and so N ≤ 2k.

For M4k+1 and an independent mapping F : M4k+1 → CN we again have
rankK ≥ 2k and conclude that N ≤ 2k + 1.

For M4k+2 we have

c2k+1(C⊗ TM4k+2) = (−1)k3ka21 · · · a2kb1 6= 0

in H4k+2(M4k+2; Z) ∼= Z2, using the notation of Lemma 2.5. Hence for
an independent mapping F : M4k+2 → CN we have rankK ≥ 2k + 1 and
conclude that N ≤ 2k + 1.

Finally, for M4k+3 and an independent mapping F : M4k+3 → CN we
again have rankK ≥ 2k + 1 and conclude that N ≤ 2k + 2, as desired. �

Note that if M is a complex manifold and if F : M → CN is required to
be holomorphic, then the independent maps are precisely the holomorphic
submersions of M into CN . Compare the discussion in Remark 5.2.

4. Orientable manifolds of even dimension

Note that the real projective plane, and the manifolds appearing in The-
orem 2.1 having it as a factor, are not orientable. On the other hand, every
orientable 2-manifold admits a totally real immersion into C2 (e.g., see [10,
pages 75–76] for the case of a compact orientable 2-manifold; the case of a
connected open orientable 2-manifold is simpler, since then the manifold is
parallelizable), which improves on Theorem 1.1. We shall generalize this by
showing that each orientable closed manifold of dimension 4k + 2 admits a
totally real immersion into C6k+2. At the same time, our argument allows
us to obtain an improved result for orientable 4k-manifolds having vanishing
top dual Pontryagin class (dual Pontryagin classes are defined in the final
paragraph of the proof).

Theorem 4.1. Every orientable (4k + 2)-manifold M admits a totally real
immersion into C6k+2. Moreover, this result is optimal. In addition, if an
orientable 4k-manifold has vanishing top dual Pontryagin class then it ad-
mits a totally real immersion into C6k−1.

Proof. Let M be an orientable (4k + 2)-manifold which we assume to be
connected, so that H4k+2(M ; Z) ∼= Z if M is compact, while this cohomology
group vanishes in case M is noncompact (since in the latter case M has the
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homotopy type of a CW-complex of dimension less than 4k + 2, a well-
known result for which a proof is given by Phillips [13, Lemma 1.1]). By
Theorem 1.1 there is a totally real immersion of M into C6k+3, and as a
consequence of Lemma 2.2 we have

(C⊗ TM)⊕Q ∼= (6k + 3)ε

where ε denotes a trivial complex line bundle and Q is a complex vector
bundle of rank 2k + 1. Let’s show that Q ∼= Q′ ⊕ ε for a complex vector
bundle Q′ of rank 2k.

We know ([12, page 158]) that c2k+1(Q) is equal to the Euler class e(QR)
of Q viewed as an oriented real vector bundle. Moreover, this Euler class
is the primary obstruction to the existence of a nowhere zero cross-section
of QR ([12, Theorem 12.5]); in the case we are considering, it is the sole
obstruction due to dimensional considerations. So our aim is to show that
c2k+1(Q) vanishes. Now this Chern class can be expressed as a polynomial
in the Chern classes ci(C⊗TM), and in each monomial which occurs in this
polynomial some index i must be odd, and therefore 2c2k+1(Q) = 0 because
2ci(C ⊗ TM) = 0 when i is odd ([12, page 174]). Hence c2k+1(Q) = 0 in
H4k+2(M ; Z), since this group is either infinite cyclic or zero.

Replacing Q by Q′ ⊕ ε in the formula displayed above, we are in a range
in which the trivial line bundle ε can be cancelled (Husemöller presents the
details at the start of the chapter “Stability properties of vector bundles”
in his book Fibre Bundles [8]; see the Remark following this proof), so we
obtain an isomorphism

(C⊗ TM)⊕Q′ ∼= (6k + 2)ε

which in view of Remark 2.3 implies the existence of a totally real immer-
sion of M into C6k+2.

We next point out that (CP2)k × S2 provides an example of an oriented
manifold having dimension 4k + 2 which does not admit a totally real im-
mersion into C6k+1, as follows immediately from the reasoning in the proof
of Theorem 2.1. We have therefore found optimal totally real immersions of
orientable manifolds having dimensions of the form 4k + 2.

Finally, let M be an orientable 4k-manifold. We know that there is a
totally real immersion of M into C6k, hence there is a complex vector bundle
Q of rank 2k for which

(C⊗ TM)⊕Q ∼= 6kε.

Now let NM denote its normal bundle for an embedding (or immersion) into
a Euclidean space, so that TM⊕NM is trivial. It follows from the Whitney
formula that c(Q) and c(C⊗NM) are both inverses to c(C⊗ TM) and so
are equal to each other. By the dual Pontryagin classes of M we mean the
Pontryagin classes of the normal bundle NM , which are equal up to sign
with the even Chern classes of C⊗NM and so with the Chern classes c2i(Q).
The hypothesis therefore means that the top Chern class c2k(Q) vanishes.
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As in the first part of the proof, this implies that Q ∼= Q′ ⊕ ε for a complex
vector bundle Q′ of rank 2k − 1, which in turn implies the existence of a
totally real immersion of M into C6k−1. �

Remark 4.2. The result proved by Husemöller which was used in the pre-
vious argument is the final assertion below. Let X be an n-dimensional
CW-complex, and let Vectk(X) denote the set of isomorphism classes of k-
dimensional complex vector bundles over X. One defines a map Vectk(X)→
Vectk+1(X) by forming the Whitney sum with the trivial complex line bun-
dle over X. This map is surjective if k ≥ [n2 ], and is bijective if k ≥ [n+1

2 ].
See also [5, Theorem 7.3.7].

We now turn to the analogue of the previous theorem for the case of in-
dependent mappings, and obtain similar improvements to Theorem 1.3 for
orientable closed manifolds of even dimension, as one might be led to antic-
ipate from the comments at the start of this section concerning orientable
2-manifolds. The final assertion below is a partial converse to [9, Theorem
1.2].

Theorem 4.3. Every orientable (4k + 2)-manifold M admits an indepen-
dent mapping to C2k+2. Moreover, this result is optimal. In addition, if an
orientable 4k-manifold has vanishing top Pontryagin class then it admits an
independent mapping to C2k+1.

Proof. Let M be an orientable (4k + 2)-manifold which we assume to be
connected, so that H4k+2(M ; Z) ∼= Z if M is compact, while this cohomology
group vanishes in case M is noncompact. We know there is an independent
mapping of M to C2k+1, and that consequently we have

C⊗ TM ∼= K ⊕ (2k + 1)ε

where K is a complex vector bundle of rank 2k + 1. Let’s show that K ∼=
K ′ ⊕ ε for a complex vector bundle K ′ of rank 2k.

As in the proof of Theorem 4.1, we need only show that c2k+1(K) vanishes.
Now this Chern class coincides with c2k+1(C⊗ TM), which has order 2 ([12,
page 174]) and so vanishes since it lies in an infinite cyclic group.

Replacing K by K ′ ⊕ ε in the formula displayed above, we obtain an
isomorphism

C⊗ TM ∼= K ′ ⊕ (2k + 2)ε

which in view of the analogue of Remark 2.3 for independent mappings (see
[10]) implies the existence of an independent mapping of M into C2k+2.

We next point out that (CP2)k × S2 provides an example of an oriented
manifold having dimension 4k + 2 which does not admit an independent
mapping to C2k+3, as follows immediately from the reasoning in the proof
of Theorem 3.1. We have therefore found optimal totally real immersions of
orientable manifolds having dimensions of the form 4k + 2.
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Finally, let M be an orientable 4k-manifold. We know that there is an
independent mapping of M to C2k, hence there is a complex vector bundle
K of rank 2k for which

C⊗ TM ∼= K ⊕ 2kε.

Since K has the same Chern classes as C⊗ TM and the top Pontryagin
class of M coincides up to sign with c2k(C⊗ TM), the hypothesis therefore
means that the top Chern class c2k(K) vanishes. As in the first part of
the proof, this implies that K ∼= K ′ ⊕ ε for a complex vector bundle K ′ of
rank 2k− 1, which in turn implies the existence of an independent mapping
of M to C2k+1, in view of the analogue of Remark 2.3 for independent
mappings. �

Remark 4.4. One knows that every closed orientable 3-manifold is paral-
lelizable (Stiefel’s theorem, e.g. see [12, Problem 12-B]). It is less well known
that every open connected orientable 3-manifold admits an immersion into
R3 and therefore is parallelizable, which was proved by J. H. C. Whitehead
[16]. Hence every orientable 3-manifold admits a totally real immersion into
C3, which is also an independent mapping.

On the other hand, Theorem 2.1 shows that RP2 × S1 does not admit
a totally real immersion into C3. From Rudin’s result [14] that the Klein
bottle admits a totally real embedding into C2 it follows that the product
of the Klein bottle and S1 is a nonorientable 3-manifold that does admit a
totally real embedding into C3.

The positive results for orientable 3-manifolds suggest that improvements
to the theorems in §1 might be possible for a suitable class of orientable
manifolds of dimension 4k + 3. The best results obtained in this direction
assert that for an open connected orientable (4k+ 3)-manifold whose stable
tangent bundle admits a complex vector bundle structure, a totally real
immersion into C6k+3 and an independent mapping to C2k+3 exist; in fact,
it suffices that all Stiefel–Whitney classes of odd dimension vanish for the
tangent bundle. The key ingredient in the proof of the latter assertion is due
to E. Thomas [15] (see also [12, Problem 15-D]), who showed that for a real
vector bundle E each odd Chern class c2k+1(C⊗ E) of its complexification
is equal to β(w2k(E)w2k+1(E)), where β denotes the Bockstein coboundary
associated to the exact sequence of coefficient groups

0→ Z
2−→ Z→ Z2 → 0 .

5. Holomorphic immersions and submersions of Stein
manifolds

We start by recalling the relation of totally real immersions to holomor-
phic immersions of Stein manifolds. Doing this allows us to give another
proof of Theorem 1.1, as follows. Whitney showed in [17] that any smooth
n-dimensional manifold M has a compatible real analytic structure. In the
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complexification of this structure, there is a Stein neighborhood of M [6].
Eliashberg and Gromov proved that any Stein manifold of dimension n ad-
mits a holomorphic immersion into CN when N ≥ [3n2 ]; see [7, pages 65–75],
[4, page 151], or [5, Section 8.5]. M is totally real in its Stein neighborhood
and so the restriction of a holomorphic immersion of the Stein neighborhood
to M is a totally real immersion M → CN .

We now show that the manifolds in Theorem 2.1 yield new examples
showing that the target dimension [3n2 ] for holomorphic immersions of Stein
manifolds of complex dimension n is optimal. Observe that a real analytic
and totally real immersion extends to a holomorphic immersion of a Stein
neighborhood.

Theorem 5.1. There exists a Stein manifold of each dimension n that can-
not be holomorphically immersed into CN if N < [3n2 ].

Proof. This follows immediately from Theorem 2.1 and the observation that
if M does not have a totally real immersion into CN , then a Stein neigh-
borhood of M in its complexification cannot have a holomorphic immersion
into CN . �

Forster [3] (see also [2]) gave the first examples of Stein manifolds satis-
fying the conclusions of this theorem. His examples are obtained from the
Stein surface

Y = {[x : y : z] ∈ CP2 : x2 + y2 + z2 6= 0},

by putting Xn = Y ×m for even n = 2m, and Xn = Y ×m × C for odd
n = 2m+ 1. Forster showed that Y contains RP2 as a deformation retract
and a totally real submanifold, and went on to show that the Stein manifolds
Xn do not admit holomorphic immersions into CN for N < [3n2 ]. If one uses

the manifolds (RP2)×2k in place of M4k = (CP2)×k in Theorem 2.1, the
proof given there still works (and is essentially the argument due to Forster);
but the results presented in §4 require examples that are orientable manifolds
in dimensions divisible by 4, so we could not use powers of RP2 in these
dimensions.

To immerse all smooth manifolds of a given dimension, one expects the
target space to be approximately twice the dimension of the manifold. So
a smooth immersion of a manifold of complex dimension n into CN should
require that N be roughly 2n. The condition of being Stein imposes topo-
logical restrictions on the manifold which are reflected in lower immersion
dimensions. For example, an easy argument with Stiefel–Whitney classes
shows that the Stein manifolds Xn used by Forster and discussed briefly
above do not even have smooth immersions into the corresponding targets
R2N , when N < [3n2 ]. (This can be viewed as an instance of the Oka princi-
ple; a problem for suitable holomorphic mappings of a Stein manifold has a
solution if and only if the corresponding problem for smooth mappings has
a solution.)
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Remark 5.2. We recall the relation of independent mappings to holomor-
phic submersions of Stein manifolds. Doing this leads to another proof of
Theorem 1.3, as follows. As noted at the start of this section, any smooth
n-dimensional manifold M has a compatible real analytic structure, and
the complexification of this structure contains a Stein neighborhood of M .
Forstnerič has proved in [4, Theorem I] (see also [5, Section 8.12]) that ev-
ery n-dimensional Stein manifold admits [n+1

2 ] holomorphic functions with
pointwise independent differentials, and that this number is maximal for
every n. Theorem 1.3 follows at once, since holomorphic functions with
pointwise independent differentials coincide with independent functions as
defined in §1. In addition, the simple reasoning in the proof of Theorem 5.1
immediately yields the maximality asserted in Forstnerič’s theorem as a con-
sequence of Theorem 3.1. To round out this brief discussion, observe that a
holomorphic mapping f : X → CN with component functions f1, . . . , fN is
a holomorphic submersion if and only if its component functions are inde-
pendent.

6. Appendix

We present three simple applications of transversality arguments.

6.1. Totally real immersions. We identify CN with the pair (R2N , J)
where J : R2N → R2N is a linear isomorphism with J2 = −Identity. Then
an immersion f : M → CN is totally real if for the underlying real map

fR : M → R2N

we have

(6.1) fR∗(TM) ∩ JfR∗(TM) = {0}.

Let J1(M,R2N ) be the one-jet bundle over M . If U ⊂ M is a coordinate
patch then the restriction of J1(M,R2N ) to U can be coordinatized by

(p, q, a1, . . . , an)

where p ∈ U , q ∈ R2N , aj ∈ R2N , and n = dimM . Note that we think of
q as a point in R2N and each aj as a column vector. Denote the 2N × n
matrix (a1 · · · an) by A. If we write, at some point p ∈ M and using local
coordinates

j1(f) = (p, q, a1, . . . , an)

with aj = ∂f
∂xj

, then the condition that f is an immersion is that rankA = n

and the condition that f is a totally real immersion is that rank (A, JA) = 2n
where (A, JA) is the 2N × 2n matrix (a1 · · · an Ja1 · · · Jan).

We describe a subset Σ ⊂ J1(M,R2N ) by giving its intersection with
J1(M,R2N )|U for each U in a coordinate covering of M . Namely

Σ = {(p, q, a1, . . . , an) : p ∈ U, q ∈ R2N , rank (A, JA) < 2n}.
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Σ is a stratified subset of J1(M,R2N ) in the sense of [1]. We note for later
use that rank (A, JA) is even and that when rank (A, JA) = 2n− 2 we may
relabel a1, . . . , an to obtain that

{a1, . . . , an−1, Ja1, . . . , Jan−1}
is an independent set.

The first partial derivatives of any smooth map f : Mn → R2N determine
a section j1(f) : M → J1(M,R2N ) and the image j1(f)(M) is a submanifold
of dimension n. Clearly, f is a totally real immersion if and only if

j1(f)(M) ∩ Σ = ∅.
By the simplest case of the Thom Transversality Theorem (see, for example,
[1, page 17]) any f : Mn → R2N (even the constant map) may be perturbed
to yield a totally real immersion provided that at a generic point of Σ we
have

(6.2) codim Σ > n.

Note that at a generic point rank (A, JA) = n− 2. So we may assume that
the vectors

a1, . . . , an−1, Ja1, . . . , Jan−1

are independent. A nearby point (p′, q′, b1, . . . , bn) is thus in Σ exactly when

(6.3) bn ∈ linear span {b1, . . . , bn−1, Jb1, . . . , Jbn−1}.
We complete this latter set to a basis for R2N and write

b =
n−1∑
1

(αjb
j + βjJb

j) +

2N−2(n−1)∑
1

γke
k.

We now see that (6.3) gives rise to the independent conditions

γ1 = 0, . . . , γ2N−2(n−1) = 0.

So the codimension of Σ is 2N −2(n−1) and (6.2) holds provided N ≥ [3n2 ].
This proves Theorem 1.1.

6.2. Independent maps. To study independent maps Mn → Cr we write
the fibers of J1(M,Cr) in local coordinates as

J1(M,Cr) = {(p, q, α1, . . . , αn)}
where p ∈M , q ∈ Cr (thought of as a point), and αj ∈ Cr (thought of as a
column vector). For F : M → Cr we write

j1(F ) =

(
p, F (p),

∂F

∂x1
, . . . ,

∂F

∂xn

)
.

Previously, we wrote the conditions for F1, . . . , Fn to be independent as
dF1 ∧ · · · ∧ dFr 6= 0. This is the same as requiring that the r × n matrix(

∂F

∂x1
· · · ∂F

∂xn

)
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has rank r.
So now we define Σ by

(6.4) Σ = {(p, q, α1, . . . , αn) : rankA < r}

where A is the complex r × n matrix (α1 · · ·αn). More precisely, Σ is the
subset of J1(M,C) which has (6.4) as its local expression.

We seek to compute the codimension of Σ. Working at a generic point
and relabeling the coordinates of Cr if necessary we assume

α1, α2, . . . , αr−1

are linearly independent and extend to a basis

α1, α2, . . . , αr−1, e1, e2, . . . , en−(r−1).

For a nearby point (p′, q′, β1, β2, . . . , βr) to be in Σ we need that in the
complex linear combination

βr =

r−1∑
1

σjβ
j +

n−(r−1)∑
1

γke
k

each γk is zero. This gives us 2(n− r + 1) independent real conditions and
so this number is the codimension of Σ. The condition that codim Σ > n
becomes

r ≤
[
n+ 1

2

]
.

This proves Theorem 1.3.

6.3. About Lemma 2.2. As a third example of a transversality calcula-
tion we show that if B is a complex vector bundle over a real manifold of
dimension n then there is a complex vector bundle Q of rank [n2 ] such that
B⊕Q is trivial. We will then use this to relate Lemma 2.2 to Theorem 1.1.

Lemma 6.1. Let B be a complex vector bundle of rank r over a manifold
M of dimension n. There exists a set of [n/2] + r global sections of B which
span the fiber of B at each point of M .

Proof. Let rankB = r, choose a positive integer k, and let

B = B ⊕B ⊕ · · · ⊕B = B⊕k

be the direct sum of B with itself k times. Let

ζ = (ζ1, . . . , ζk)

denote a point in the fiber of B and let Σ be the subset of B whose fiber
over a point p ∈M is given by

Σ|p = {ζ : {ζ1, . . . , ζk} does not span B|p}.
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At a generic point of Σ, and after relabeling, ζ1, ζ2, . . . , ζr−1 and some other
section e may be taken to be a basis for the fibers over a neighborhood of
p. For any nearby point ζ ′ we have the linear combinations

ζ ′j =

r−1∑
k=1

Cjkζk + γje for j = r, . . . , k.

So Σ is locally defined by the independent complex equations γj = 0 and
therefore the codimension of Σ is 2(k−r+1) and our global spanning sections
exist provided k ≥ [n2 ] + r. �

Now set a = [n2 ] + r and let ζ1, . . . , ζa be global sections of B that span
the fiber at each point of M . The map M ×Ca → B given by

Λ(λ1, . . . , λa) =
∑

λjζj

is surjective. So we have an isomorphism of bundles

B ⊕Q = M ×Cn+r

where Q is the kernel of Λ. In particular, there exists Q of rank [n2 ] so that

(C⊗ TM)⊕Q
is the trivial bundle of rank [3n2 ]. Thus by the first part of Remark 2.3, M

has a totally real immersion into CN , N = [3n2 ]. Theorem 1.1 then follows.
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