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The matrix Stieltjes moment problem: a
description of all solutions

Sergey M. Zagorodnyuk

Abstract. We describe all solutions of the matrix Stieltjes moment
problem in the general case (no conditions besides solvability are as-
sumed). We use Krein’s formula for the generalized Π-resolvents of pos-
itive Hermitian operators in the form of V. A. Derkach and M. M. Mala-
mud.
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1. Introduction

The matrix Stieltjes moment problem consists of finding a left-continuous
nondecreasing matrix function M(x) = (mk,l(x))N−1

k,l=0 on R+ = [0,+∞),

M(0) = 0, such that

(1)

∫
R+

xndM(x) = Sn, n ∈ Z+,

where {Sn}∞n=0 is a given sequence of Hermitian (N ×N) complex matrices,
N ∈ N. This problem is said to be determinate if there exists a unique
solution and indeterminate in the opposite case.

In the scalar (N = 1) indeterminate case the Stieltjes moment problem
was solved by M. G. Krein (see [8], [9]), while in the scalar degenerate case
the problem was solved by F. R. Gantmacher in [7, Chapter XVI].

The operator (and, in particular, the matrix) Stieltjes moment problem
was introduced by M. G. Krein and M. A. Krasnoselskiy in [10]. They ob-
tained the necessary and sufficient conditions of solvability for this problem.
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Let us introduce the following matrices

(2) Γn = (Si+j)
n
i,j=0 =


S0 S1 . . . Sn
S1 S2 . . . Sn+1
...

...
. . .

...
Sn Sn+1 . . . S2n

 ,

(3) Γ̃n = (Si+j+1)ni,j=0 =


S1 S2 . . . Sn+1

S2 S3 . . . Sn+2
...

...
. . .

...
Sn+1 Sn+2 . . . S2n+1

 , n ∈ Z+.

The moment problem (1) has a solution if and only if

(4) Γn ≥ 0, Γ̃n ≥ 0, n ∈ Z+.

In 2004, Yu. M. Dyukarev performed a deep investigation of the moment
problem (1) in the case when

(5) Γn > 0, Γ̃n > 0, n ∈ Z+,

and some limit matrix intervals (which he called the limit Weyl intervals)
are nondegenerate, see [6]. He obtained a parameterization of all solutions
of the moment problem in this case.

Our aim here is to obtain a description of all solutions of the moment
problem (1) in the general case. No conditions besides the solvability (i.e.,
conditions (4)) will be assumed. We shall apply an operator approach which
was used in [16] and Krein’s formula for the generalized Π-resolvents of
nonnegative Hermitian operators [14], [11]. We shall use Krein’s formula
in the form which was proposed by V. A. Derkach and M. M. Malamud
in [4]. We should also notice that these authors presented a detailed proof
of Krein’s formula.

Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real num-
bers, complex numbers, positive integers, integers and nonnegative integers,
respectively; R+ = [0,+∞), C+ = {z ∈ C : Im z > 0}. The space of n-
dimensional complex vectors a = (a0, a1, . . . , an−1), will be denoted by Cn,
n ∈ N. If a ∈ Cn then a∗ means the complex conjugate vector. By P we
denote the set of all complex polynomials.

Let M(x) be a left-continuous nondecreasing matrix function M(x) =

(mk,l(x))N−1
k,l=0 on R+, M(0) = 0, and τM (x) :=

∑N−1
k=0 mk,k(x); Ψ(x) =

(dmk,l/dτM )N−1
k,l=0 (the Radon–Nikodym derivative). We denote by L2(M)

a set (of classes of equivalence) of vector functions f : R → CN , f =
(f0, f1, . . . , fN−1), such that (see, e.g., [15])

‖f‖2L2(M) :=

∫
R
f(x)Ψ(x)f∗(x)dτM (x) <∞.
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The space L2(M) is a Hilbert space with the scalar product

(f, g)L2(M) :=

∫
R
f(x)Ψ(x)g∗(x)dτM (x), f, g ∈ L2(M).

For a separable Hilbert space H we denote by (·, ·)H and ‖ · ‖H the scalar
product and the norm in H, respectively. The indices may be omitted in
obvious cases. By EH we denote the identity operator in H, i.e., EHx = x,
x ∈ H.

For a linear operator A in H we denote by D(A) its domain, by R(A) its
range, and by kerA its kernel. By A∗ we denote its adjoint if it exists. By
ρ(A) we denote the resolvent set of A; Nz = ker(A∗−zEH). If A is bounded,
then ‖A‖ stands for its operator norm. For a set of elements {xn}n∈T in H,
we denote by Lin{xn}n∈T and span{xn}n∈T the linear span and the closed
linear span (in the norm of H), respectively. Here T is an arbitrary set of
indices. For a set M ⊆ H we denote by M̄ the closure of M with respect to
the norm of H.

If H1 is a subspace of H, by PH1 = PHH1
we denote the operator of the

orthogonal projection on H1 in H. If H is another Hilbert space, by [H,H]
we denote the space of all bounded operators from H into H; [H] := [H,H].

C(H) is the set of closed linear operators A such that D(A) = H.

2. The matrix Stieltjes moment problem: solvability

Consider the matrix Stieltjes moment problem (1). Let us check that
conditions (4) are necessary for the solvability of the problem (1). In fact,
suppose that the moment problem has a solution M(x). Choose an arbitrary
function a(x) = (a0(x), a1(x), . . . , aN−1(x)), where

aj(x) =
n∑
k=0

αj,kx
k, αj,k ∈ C, n ∈ Z+.

This function belongs to L2(M) and

0 ≤
∫
R+

a(x)dM(x)a∗(x) =
n∑

k,l=0

∫
R+

(α0,k, α1,k, . . . , αN−1,k)x
k+ldM(x)

∗(α0,l, α1,l, . . . , αN−1,l)
∗ =

n∑
k,l=0

(α0,k, α1,k, . . . , αN−1,k)Sk+l

∗(α0,l, α1,l, . . . , αN−1,l)
∗ = AΓnA

∗,

where

A=(α0,0, α1,0, . . . , αN−1,0, α0,1, α1,1, . . . , αN−1,1, . . . , α0,n, α1,n, . . . , αN−1,n),
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and we have used the rules for the multiplication of block matrices. In a
similar manner we get

0 ≤
∫
R+

a(x)xdM(x)a∗(x) = AΓ̃nA
∗,

and therefore conditions (4) hold.
On the other hand, let the moment problem (1) be given and suppose

that conditions (4) are true. For the prescribed moments

Sj = (sj;k,l)
N−1
k,l=0, sj;k,l ∈ C, j ∈ Z+,

we consider the following block matrices

(6) Γ = (Si+j)
∞
i,j=0 =


S0 S1 S2 . . .
S1 S2 S3 . . .
S2 S3 S4 . . .
...

...
...

. . .

 ,

(7) Γ̃ = (Si+j+1)∞i,j=0 =


S1 S2 S3 . . .
S2 S3 S4 . . .
S3 S4 S5 . . .
...

...
...

. . .

 .

The matrix Γ can be viewed as a scalar semi-infinite matrix

(8) Γ = (γn,m)∞n,m=0, γn,m ∈ C.

Notice that

(9) γrN+j,tN+n = sr+t;j,n, r, t ∈ Z+, 0 ≤ j, n ≤ N − 1.

The matrix Γ̃ can be also viewed as a scalar semi-infinite matrix

(10) Γ̃ = (γ̃n,m)∞n,m=0 = (γn+N,m)∞n,m=0.

The conditions in (4) imply that

(11) (γk,l)
r
k,l=0 ≥ 0, r ∈ Z+;

(12) (γk+N,l)
r
k,l=0 ≥ 0, r ∈ Z+.

We shall use the following important fact (e.g., [2, Supplement 1]):

Theorem 1. Let Γ = (γn,m)∞n,m=0, γn,m ∈ C, be a semi-infinite complex

matrix such that condition (11) holds. Then there exist a separable Hilbert
space H with a scalar product (·, ·)H and a sequence {xn}∞n=0 in H, such
that

(13) γn,m = (xn, xm)H , n,m ∈ Z+,

and span{xn}∞n=0 = H.
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Proof. Consider an arbitrary infinite-dimensional linear vector space V ,
e.g., the space of all complex sequences (un)n∈Z+ , un ∈ C. Let X = {xn}∞n=0

be an arbitrary infinite sequence of linear independent elements in V . Let
L = Lin{xn}n∈Z+ be the linear span of elements of X. Introduce the follow-
ing functional:

(14) [x, y] =
∞∑

n,m=0

γn,manbm,

for x, y ∈ L,

x =

∞∑
n=0

anxn, y =
∞∑
m=0

bmxm, an, bm ∈ C.

Here and in what follows we assume that for elements of linear spans all
but a finite number of coefficients are zero. The space V with [·, ·] will be a
quasi-Hilbert space. Factorizing and making the completion we obtain the
required space H (see [3]). �

From (9) it follows that

(15) γa+N,b = γa,b+N , a, b ∈ Z+.

In fact, if a = rN + j, b = tN + n, 0 ≤ j, n ≤ N − 1, r, t ∈ Z+, we can write

γa+N,b = γ(r+1)N+j,tN+n = sr+t+1;j,n = γrN+j,(t+1)N+n = γa,b+N .

By Theorem 1 there exist a Hilbert space H and a sequence {xn}∞n=0 in H,
such that span{xn}∞n=0 = H, and

(16) (xn, xm)H = γn,m, n,m ∈ Z+.

Set L := Lin{xn}∞n=0. Notice that elements {xn} are not necessarily lin-
early independent. Thus, for an arbitrary x ∈ L there can exist different
representations:

(17) x =

∞∑
k=0

αkxk, αk ∈ C,

(18) x =
∞∑
k=0

βkxk, βk ∈ C.
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(Here all but a finite number of coefficients αk, βk are zero). Using (15),
(16) we can write( ∞∑

k=0

αkxk+N , xl

)
=

∞∑
k=0

αk(xk+N , xl) =

∞∑
k=0

αkγk+N,l =

∞∑
k=0

αkγk,l+N

=
∞∑
k=0

αk(xk, xl+N ) =

( ∞∑
k=0

αkxk, xl+N

)
= (x, xl+N ), l ∈ Z+.

In a similar manner we obtain that( ∞∑
k=0

βkxk+N , xl

)
= (x, xl+N ), l ∈ Z+,

and therefore( ∞∑
k=0

αkxk+N , xl

)
=

( ∞∑
k=0

βkxk+N , xl

)
, l ∈ Z+.

Since L̄ = H, we obtain that

(19)

∞∑
k=0

αkxk+N =

∞∑
k=0

βkxk+N .

Let us introduce the following operator:

(20) Ax =
∞∑
k=0

αkxk+N , x ∈ L, x =
∞∑
k=0

αkxk.

Relations (17), (18) and (19) show that this definition does not depend on
the choice of a representation for x ∈ L. Thus, this definition is correct. In
particular, we have

(21) Axk = xk+N , k ∈ Z+.

Choose arbitrary x, y ∈ L, x =
∑∞

k=0 αkxk, y =
∑∞

n=0 γnxn, and write

(Ax, y) =

( ∞∑
k=0

αkxk+N ,
∞∑
n=0

γnxn

)
=

∞∑
k,n=0

αkγn(xk+N , xn)

=

∞∑
k,n=0

αkγn(xk, xn+N ) =

( ∞∑
k=0

αkxk,
∞∑
n=0

γnxn+N

)
= (x,Ay).
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By relation (12) we get

(Ax, x) =

( ∞∑
k=0

αkxk+N ,
∞∑
n=0

αnxn

)
=

∞∑
k,n=0

αkαn(xk+N , xn)

=

∞∑
k,n=0

αkαnγk+N,n ≥ 0.

Thus, the operator A is a linear nonnegative Hermitian operator in H with
the domain D(A) = L. Such an operator has a nonnegative self-adjoint

extension [13, Theorem 7, p.450]. Let Ã ⊇ A be an arbitrary nonnegative

self-adjoint extension of A in a Hilbert space H̃ ⊇ H, and {Ẽλ}λ∈R+ be its
left-continuous orthogonal resolution of unity. Choose an arbitrary a ∈ Z+,
a = rN + j, r ∈ Z+, 0 ≤ j ≤ N − 1. Notice that

xa = xrN+j = Ax(r−1)N+j = · · · = Arxj .

Using (9), (16) we can write

sr+t;j,n = γrN+j,tN+n = (xrN+j , xtN+n)H = (Arxj , A
txn)H

= (Ãrxj , Ã
txn)

H̃
=

(∫
R+

λrdẼλxj ,

∫
R+

λtdẼλxn

)
H̃

=

∫
R+

λr+td(Ẽλxj , xn)
H̃

=

∫
R+

λr+td
(
P H̃H Ẽλxj , xn

)
H
.

Let us write the last relation in a matrix form:

(22) Sr+t =

∫
R+

λr+tdM̃(λ), r, t ∈ Z+,

where

(23) M̃(λ) :=
((
P H̃H Ẽλxj , xn

)
H

)N−1

j,n=0
.

If we set t = 0 in relation (22), we obtain that the matrix function M̃(λ)
is a solution of the matrix Stieltjes moment problem (1). In fact, from the

properties of the orthogonal resolution of unity it easily follows that M̃(λ)

is left-continuous nondecreasing and M̃(0) = 0.
Thus, we obtained another proof of the solvability criterion for the matrix

Stieltjes moment problem (1):

Theorem 2. Let a matrix Stieltjes moment problem (1) be given. This
problem has a solution if and only if conditions (4) hold true.

3. A description of solutions

Let B be an arbitrary nonnegative Hermitian operator in a Hilbert space

H. Choose an arbitrary nonnegative self-adjoint extension B̂ of B in a

Hilbert space Ĥ ⊇ H. Let Rz(B̂) be the resolvent of B̂ and {Êλ}λ∈R+
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be the orthogonal left-continuous resolution of unity of B̂. Recall that the

operator-valued function Rz = P ĤHRz(B̂) is called a generalized Π-resolvent

of B, z ∈ C\R [11]. If Ĥ = H then Rz(B̂) is called a canonical Π-resolvent.

The function Eλ = P ĤH Êλ, λ ∈ R, we call a Π-spectral function of a non-
negative Hermitian operator B. There exists a one-to-one correspondence
between generalized Π-resolvents and Π-spectral functions established by
the following relation ([2]):

(24) (Rzf, g)H =

∫
R+

1

λ− z
d(Eλf, g)H, f, g ∈ H, z ∈ C\R.

Denote the set of all generalized Π-resolvents of B by

Ω0(−∞, 0) = Ω0(−∞, 0)(B).

Let a moment problem (1) be given and conditions (4) hold. Consider
the operator A defined as in (20). Formula (23) shows that Π-spectral
functions of the operator A produce solutions of the matrix Stieltjes moment
problem (1). Let us show that an arbitrary solution of (1) can be produced
in this way.

Choose an arbitrary solution M̂(x) = (m̂k,l(x))N−1
k,l=0 of the matrix Stieltjes

moment problem (1). Consider the space L2(M̂) and let Q be the operator

of multiplication by an independent variable in L2(M̂). The operator Q is
self-adjoint and its resolution of unity is given by (see [15])

(25) Eb − Ea = E([a, b)) : h(x)→ χ[a,b)(x)h(x),

where χ[a,b)(x) is the characteristic function of an interval [a, b), 0 ≤ a <
b ≤ +∞. Set

~ek = (ek,0, ek,1, . . . , ek,N−1), ek,j = δk,j , 0 ≤ j ≤ N − 1,

where k = 0, 1, . . . N − 1. A set of (equivalence classes of) functions f ∈
L2(M̂) such that (the corresponding class includes) f = (f0, f1, . . . , fN−1),

f ∈ P, we denote by P2(M̂). It is said to be a set of vector polynomials in

L2(M̂). Set L2
0(M̂) := P2(M̂).

For an arbitrary (representative) f ∈ P2(M̂) there exists a unique repre-
sentation of the following form:

(26) f(x) =
N−1∑
k=0

∞∑
j=0

αk,jx
j~ek, αk,j ∈ C.

Here the sum is assumed to be finite. Let g ∈ P2(M̂) have a representation

(27) g(x) =
N−1∑
l=0

∞∑
r=0

βl,rx
r~el, βl,r ∈ C.
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Then we can write

(f, g)
L2(M̂)

=

N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,r

∫
R
xj+r~ekdM̂(x)~e ∗l(28)

=
N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,r

∫
R
xj+rdm̂k,l(x)

=
N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,rsj+r;k,l.

On the other hand, we can write ∞∑
j=0

N−1∑
k=0

αk,jxjN+k,
∞∑
r=0

N−1∑
l=0

βl,rxrN+l


H

(29)

=
N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,r(xjN+k, xrN+l)H

=
N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,rγjN+k,rN+l

=

N−1∑
k,l=0

∞∑
j,r=0

αk,jβl,rsj+r;k,l.

From relations (28), (29) it follows that

(30) (f, g)
L2(M̂)

=

 ∞∑
j=0

N−1∑
k=0

αk,jxjN+k,
∞∑
r=0

N−1∑
l=0

βl,rxrN+l


H

.

Let us introduce the following operator:

(31) V f =
∞∑
j=0

N−1∑
k=0

αk,jxjN+k,

for f(x) ∈ P2(M̂), f(x) =
∑N−1

k=0

∑∞
j=0 αk,jx

j~ek, αk,j ∈ C. Let us show
that this definition is correct. In fact, if vector polynomials f , g have repre-
sentations (26), (27), and ‖f − g‖

L2(M̂)
= 0, then from (30) it follows that

V (f − g) = 0. Thus, V is a correctly defined operator from P2(M̂) into H.

Relation (30) shows that V is an isometric transformation from P2(M̂)
onto L. By continuity we extend it to an isometric transformation from

L2
0(M̂) onto H. In particular, we note that

(32) V xj~ek = xjN+k, j ∈ Z+; 0 ≤ k ≤ N − 1.
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Set L2
1(M̂) := L2(M̂) 	 L2

0(M̂), and U := V ⊕ E
L2
1(M̂)

. The operator U is

an isometric transformation from L2(M̂) onto H ⊕ L2
1(M̂) =: Ĥ. Set

Â := UQU−1.

The operator Â is a nonnegative self-adjoint operator in Ĥ. Let {Êλ}λ∈R+

be its left-continuous orthogonal resolution of unity. Notice that

UQU−1xjN+k = V QV −1xjN+k = V Qxj~ek = V xj+1~ek = x(j+1)N+k

= xjN+k+N = AxjN+k, j ∈ Z+; 0 ≤ k ≤ N − 1.

By linearity we get

UQU−1x = Ax, x ∈ L = D(A),

and therefore Â ⊇ A. Choose an arbitrary z ∈ C\R and write∫
R+

1

λ− z
d(Êλxk, xj)Ĥ =

(∫
R+

1

λ− z
dÊλxk, xj

)
Ĥ

(33)

=

(
U−1

∫
R+

1

λ− z
dÊλxk, U

−1xj

)
L2(M̂)

=

(∫
R+

1

λ− z
dU−1ÊλU~ek, ~ej

)
L2(M̂)

=

(∫
R+

1

λ− z
dEλ~ek, ~ej

)
L2(M̂)

=

∫
R+

1

λ− z
d(Eλ~ek, ~ej)L2(M̂)

,

0 ≤ k, j ≤ N − 1. Using (25) we can write

(Eλ~ek, ~ej)L2(M̂)
= m̂k,j(λ),

and therefore

(34)

∫
R+

1

λ− z
d(P ĤH Êλxk, xj)H =

∫
R+

1

λ− z
dm̂k,j(λ), 0 ≤ k, j ≤ N−1.

By the Stieltjes–Perron inversion formula (see, e.g., [1]) we conclude that

(35) m̂k,j(λ) = (P ĤH Êλxk, xj)H .

Proposition 1. Let the matrix Stieltjes moment problem (1) be given and
conditions (4) hold. Let A be a nonnegative Hermitian operator which is
defined by (20). The deficiency index of A is equal to (n, n), 0 ≤ n ≤ N .

Proof. Choose an arbitrary u ∈ L, u =
∑∞

k=0 ckxk, ck ∈ C. Suppose that
ck = 0, k ≥ N +R + 1, for some R ∈ Z+. Consider the following system of
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linear equations:

−zdk = ck, k = 0, 1, . . . , N − 1;(36)

dk−N − zdk = ck, k = N,N + 1, N + 2, . . . ;(37)

where {dk}k∈Z+ are unknown complex numbers, z ∈ C\R is a fixed param-
eter. Set

dk = 0, k ≥ R+ 1,(38)

dj = cN+j + zdN+j , j = R,R− 1, R− 2, . . . , 0.

For such defined numbers {dk}k∈Z+ , all equations in (37) are satisfied. But
equations (36) are not necessarily satisfied. Set

v =

∞∑
k=0

dkxk, v ∈ L.

Notice that

(A− zEH)v =

∞∑
k=0

(dk−N − zdk)xk,

where d−1 = d−2 = · · · = d−N = 0. By the construction of dk we have

(A− zEH)v − u =

∞∑
k=0

(dk−N − zdk − ck)xk =

N−1∑
k=0

(−zdk − ck)xk,(39)

u = (A− zEH)v +
N−1∑
k=0

(zdk + ck)xk, u ∈ L.

Set

Hz := (A− zEH)L = (A− zEH)D(A),(40)

yk := xk − PHHz
xk, k = 0, 1, . . . , N − 1.

Set
H0 := span{yk}N−1

k=0 .

Notice that the dimension of H0 is less or equal to N , and H0 ⊥ Hz.
From (39) it follows that u ∈ L can be represented in the following form:

(41) u = u1 + u2, u1 ∈ Hz, u2 ∈ H0.

Therefore we get L ⊆ Hz ⊕ H0; H ⊆ Hz ⊕ H0, and finally H = Hz ⊕ H0.
Thus, H0 is the corresponding defect subspace. So, the defect numbers of
A are less or equal to N . Since the operator A is nonnegative, they are
equal. �

Theorem 3. Let a matrix Stieltjes moment problem (1) be given and con-
ditions (4) hold. Let an operator A be constructed for the moment problem
as in (20). All solutions of the moment problem have the following form

(42) M(λ) = (mk,j(λ))N−1
k,j=0, mk,j(λ) = (Eλxk, xj)H ,
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where Eλ is a Π-spectral function of the operator A. Moreover, the cor-
respondence between all Π-spectral functions of A and all solutions of the
moment problem is one-to-one.

Proof. It remains to prove that different Π-spectral functions of the oper-
ator A produce different solutions of the moment problem (1). Suppose to
the contrary that two different Π-spectral functions produce the same solu-
tion of the moment problem. That means that there exist two nonnegative
self-adjoint extensions Aj ⊇ A, in Hilbert spaces Hj ⊇ H, such that

PH1
H E1,λ 6= PH2

H E2,λ,(43)

(PH1
H E1,λxk, xj)H = (PH2

H E2,λxk, xj)H , 0 ≤ k, j ≤ N − 1, λ ∈ R+,(44)

where {En,λ}λ∈R+ are orthogonal left-continuous resolutions of unity of op-
erators An, n = 1, 2. Set LN := Lin{xk}k=0,N−1. By linearity we get

(45) (PH1
H E1,λx, y)H = (PH2

H E2,λx, y)H , x, y ∈ LN , λ ∈ R+.

Denote by Rn,λ the resolvent of An, and set Rn,λ := PHn
H Rn,λ, n = 1, 2.

From (45), (24) it follows that

(46) (R1,zx, y)H = (R2,zx, y)H , x, y ∈ LN , z ∈ C\R.

Choose an arbitrary z ∈ C\R and consider the space Hz defined as above.
Since

Rj,z(A− zEH)x = (Aj − zEHj )
−1(Aj − zEHj )x = x, x ∈ L = D(A),

we get

(47) R1,zu = R2,zu ∈ H, u ∈ Hz;

(48) R1,zu = R2,zu, u ∈ Hz, z ∈ C\R.

We can write

(Rn,zx, u)H = (Rn,zx, u)Hn = (x,Rn,z̄u)Hn = (x,Rn,z̄u)H ,(49)

x ∈ LN , u ∈ Hz̄, n = 1, 2,

and therefore we get

(50) (R1,zx, u)H = (R2,zx, u)H , x ∈ LN , u ∈ Hz̄.

By (39) an arbitrary element y ∈ L can be represented as y = yz̄ + y′,
yz̄ ∈ Hz̄, y

′ ∈ LN . Using (46) and (48) we get

(R1,zx, y)H = (R1,zx, yz̄ + y′)H = (R2,zx, yz̄ + y′)H

= (R2,zx, y)H , x ∈ LN , y ∈ L.

Since L̄ = H, we obtain

(51) R1,zx = R2,zx, x ∈ LN , z ∈ C\R.
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For an arbitrary x ∈ L, x = xz + x′, xz ∈ Hz, x
′ ∈ LN , using relations (48),

(51) we obtain

(52) R1,zx = R1,z(xz + x′) = R2,z(xz + x′) = R2,zx, x ∈ L, z ∈ C\R,
and

(53) R1,zx = R2,zx, x ∈ H, z ∈ C\R.
By (24) that means that the Π-spectral functions coincide and we obtain a
contradiction. �

We shall recall some basic definitions and facts from [4]. Let A be a closed

Hermitian operator in a Hilbert space H, D(A) = H.

Definition 1. A collection {H,Γ1,Γ2} in which H is a Hilbert space and
Γ1,Γ2 ∈ [D(A∗),H], is called a space of boundary values (SBV) for A∗, if:

(1) (A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H, ∀f, g ∈ D(A∗).
(2) The mapping Γ : f → {Γ1f,Γ2f} from D(A∗) to H⊕H is surjective.

Naturally associated with each SBV are self-adjoint operators Ã1, Ã2 (⊂
A∗) with

D(Ã1) = ker Γ1, D(Ã2) = ker Γ2.

The operator Γ2 restricted to the defect subspace Nz = ker(A∗ − zEH),

z ∈ ρ(Ã2), is fully invertible. For ∀z ∈ ρ(Ã2) set

(54) γ(z) = (Γ2|Nz)−1 ∈ [H, Nz].

Definition 2. The operator-valued function M(z) defined for z ∈ ρ(Ã2) by

(55) M(z)Γ2fz = Γ1fz, fz ∈ Nz,

is called a Weyl function of A, corresponding to the SBV {H,Γ1,Γ2}.

The Weyl function can be also obtained from the equality:

(56) M(z) = Γ1γ(z), z ∈ ρ(Ã2).

For an arbitrary operator Ã = Ã∗ ⊂ A∗ there exists an SBV with ([5])

(57) D(Ã2) = ker Γ2 = D(Ã).

(There even exists a family of such SBV).

An extension Â of A is called proper if A ⊂ Â ⊂ A∗ and (Â∗)∗ = Â. Two

proper extensions Â1 and Â2 are disjoint if D(Â1) ∩ D(Â2) = D(A) and

transversals if they are disjoint and D(Â1) +D(Â2) = D(A∗).
Suppose that the operator A is nonnegative, A ≥ 0. In this case there

exist two nonnegative self-adjoint extensions of A in H, Friedrich’s extension
Aµ and Krein’s extension AM , such that for an arbitrary nonnegative self-

adjoint extension Â of A in H it holds:

(58) (Aµ + xEH)−1 ≤ (Â+ xEH)−1 ≤ (AM + xEH)−1, x ∈ R+.
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Recall some definitions and facts from [11], [13]. For the nonnegative oper-
ator A we put into correspondence the following operator:

T = (EH −A)(EH +A)−1 = −EH + 2(EH +A)−1,(59)

D(T ) = (A+ EH)D(A).

The operator T is a Hermitian contraction (i.e., ‖T‖ ≤ 1). Its domain is not
dense in H if A is not self-adjoint. The defect subspace H 	D(T ) = N−1

and its dimension is equal to the defect number n(A) of A. The inverse
transformation to (59) is given by

A = (EH − T )(EH + T )−1 = −EH + 2(EH + T )−1,(60)

D(A) = (T + EH)D(T ).

Relations (59), (60) (with T̂ , Â instead of T,A) also establish a bijective

correspondence between self-adjoint contractive extensions T̂ ⊇ T in H and

self-adjoint nonnegative extensions Â ⊇ A in H ([13, p. 451]).

Consider an arbitrary Hilbert space Ĥ ⊇ H. It is not hard to see that

relations (59), (60) (with T̂ , Â instead of T,A) establish a bijective cor-

respondence between self-adjoint contractive extensions T̂ ⊇ T in Ĥ and

self-adjoint nonnegative extensions Â ⊇ A in Ĥ, as well.
There exist extremal self-adjoint contractive extensions of T in H such

that for an arbitrary self-adjoint contractive extension T̃ ⊇ T in H,

(61) Tµ ≤ T̃ ≤ TM .

Notice that

(62) Aµ = −EH + 2(EH + Tµ)−1, AM = −EH + 2(EH + TM )−1.

Set

(63) C = TM − Tµ.

Consider the following subspace:

(64) Υ = ker
(
C|N−1

)
.

Definition 3. Let a closed nonnegative Hermitian operator A be given. For
the operator A we are in a completely indeterminate case if Υ = {0}.

By Theorem 1.4 in [12], on the set {x ∈ H : Tµx = TMx} = kerC, all

self-adjoint contractive extensions in a Hilbert space H̃ ⊇ H coincide. Thus,
all such extensions are extensions of the operator Text:

(65) Textx =

{
Tx, x ∈ D(T )

Tµx = TMx, x ∈ kerC.

Introduce the following operator:

(66) Aext = −EH + 2(EH + Text)
−1 ⊇ A.
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Thus, the set of all nonnegative self-adjoint extensions of A coincides with
the set of all nonnegative self-adjoint extensions of Aext. Since Text,µ = Tµ
and Text,M = TM , Aext is in the completely indeterminate case.

Proposition 2. Let A be a closed nonnegative Hermitian operator with
finite defect numbers, such that A is in the completely indeterminate case.
Then extensions Aµ and AM given by (62) are transversal.

Proof. Notice that

(67) D(AM ) ∩D(Aµ) = D(A).

In fact, suppose that there exists y ∈ D(AM ) ∩ D(Aµ), y /∈ D(A). Since
AM ⊂ A∗ and Aµ ⊂ A∗ we have AMy = Aµy. Set

g := (AM + EH)y = (Aµ + EH)y.

Then
TMg = −g + 2(EH +AM )−1g = −g + 2y,

Tµg = −g + 2(EH +Aµ)−1g = −g + 2y,

and therefore Cg = (TM − Tµ)g = 0. Since y /∈ D(A), then g ∈ N−1. We
obtain a contradiction, since A is in the completely indeterminate case.

Introduce the following sets:

(68) DM := (AM + EH)−1N−1, Dµ := (Aµ + EH)−1N−1.

Since D(AM ) = (AM + EH)−1D(TM ), D(Aµ) = (Aµ + EH)−1D(Tµ), we
have

(69) DM ⊂ D(AM ), Dµ ⊂ D(Aµ),

and

(70) DM ∩D(A) = {0}, Dµ ∩D(A) = {0},
By (67), (69) and (70) we obtain that

(71) DM ∩Dµ = {0}.
Set

(72) D := DM uDµ.

By (68) we obtain that the sets DM and Dµ have the linear dimension n(A).
Elementary arguments show that D has the linear dimension 2n(A). Since
D(Aµ) ⊂ D(A∗), D(AM ) ⊂ D(A∗), we can write

(73) D(A)uDM uDµ ⊆ D(A∗) = D(A)uNz uNz̄,

where z ∈ C\R.
Let

g1, g2, . . . , g2n(A),

be 2n(A) linearly independent elements from D. Let

(74) gj = gA,j + gz,j + gz̄,j , 1 ≤ j ≤ 2n(A),
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where gA,j ∈ D(A), gz,j ∈ Nz, gz,j ∈ Nz. Set

(75) ĝj := gj − gA,j , 1 ≤ j ≤ 2n(A).

If for some αj ∈ C, 1 ≤ j ≤ 2n(A), we have

0 =

2n(A)∑
j=1

αj ĝj =

2n(A)∑
j=1

αjgj −
2n(A)∑
j=1

αjgA,j ,

then
2n(A)∑
j=1

αjgj = 0,

and αj = 0, 1 ≤ j ≤ 2n(A). Therefore elements ĝj , 1 ≤ j ≤ 2n(A) are
linearly independent. Thus, they form a linear basis in a finite-dimensional
subspace Nz uNz̄. Then

(76) Nz uNz̄ ⊆ D,

(77) D(A∗) = D(A)uNz uNz̄ ⊆ D(A)uD = DL.

So, we get the equality

(78) D(A)uDM uDµ = D(A∗).

Since D(A) +DM ⊆ D(AM ), Dµ ⊆ D(Aµ), we get

D(A∗) = D(A) +DM +Dµ ⊆ D(AM ) +D(Aµ).

Since D(AM ) +D(Aµ) ⊆ D(A∗), we get

(79) D(A∗) = D(AM ) +D(Aµ).

From (67), (79) the result follows. �

We shall use the following classes of functions [4]. Let H be a Hilbert
space. Denote by RH the class of operator-valued functions F (z) = F ∗(z̄)
holomorphic in C\R with values (for z ∈ C+) in the set of maximal dissi-
pative operators in C(H). Completing the class RH by ideal elements we

get the class R̃H. Thus, R̃H is a collection of functions holomorphic in C\R
with values (for z ∈ C+) in the set of maximal dissipative linear relations
θ(z) = θ∗(z̄) in H. The indeterminate part of the relation θ(z) does not
depend on z and the relation θ(z) admits the representation

(80) θ(z) = {〈h1, F1(z)h1 + h2〉 : h1 ∈ D(F1(z)), h2 ∈ H2},
where H = H1 ⊕H2, F1(z) ∈ RH1 .

Definition 4 ([4]). An operator-valued function F (z) ∈ RH belongs to the
class S−0

H (−∞, 0) if ∀n ∈ N, ∀zj ∈ C+, hj ∈ D(F (zj)), ξj ∈ C, we have

(81)
n∑

i,j=1

(z−1
i F (zi)hi, hj)− (hi, z

−1
j F (zj)hj)

zi − zj
ξiξj ≥ 0.
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Completing the class S−0
H (−∞, 0) with ideal elements (80) we obtain the

class S̃−0
H (−∞, 0).

From Theorem 9 in [4, p.46] taking into account Proposition 2 we have
the following conclusion (see also Remark 17 in [4, p.49]):

Theorem 4. Let A be a closed nonnegative Hermitian operator in a Hilbert
space H in the completely indeterminate case. Let {H,Γ1,Γ2} be an arbi-

trary SBV for A such that Ã2 = Aµ and M(z) be the corresponding Weyl
function. Then the formula

(82) Rz = (Aµ− zEH)−1− γ(z)(τ(z) +M(z)−M(0))−1γ∗(z̄), z ∈ C\R,

establishes a bijective correspondence between Rz ∈ Ω0(−∞, 0)(A) and τ ∈
S̃−0
H (−∞, 0). The function τ(z) ≡ τ = τ∗ in (82) corresponds to the canon-

ical Π-resolvents and only to them.

Now we can state our main result.

Theorem 5. Let a matrix Stieltjes moment problem (1) be given and condi-
tions (4) hold. Let an operator A be the closure of the operator constructed
for the moment problem in (20). Then the following statements are true:

(1) The moment problem (1) is determinate if and only if Friedrich’s
extension Aµ and Krein’s extension AM coincide: Aµ = AM . In
this case the unique solution of the moment problem is generated by
the orthogonal spectral function Eλ of Aµ by formula (42).

(2) If Aµ 6= AM , define the extended operator Aext for A as in (66). Let

{H,Γ1,Γ2} be an arbitrary SBV for Aext such that Ã2 = (Aext)µ
and M(z) be the corresponding Weyl function. All solutions of the
moment problem (1) have the following form:

(83) M(λ) = (mk,j(λ))N−1
k,j=0,

where∫
R+

dmk,j(λ)

λ− z
=
(
(Aµ − zEH)−1xk, xj

)
H

(84)

−
(
γ(z)(τ(z) +M(z)−M(0))−1γ∗(z̄)xk, xj

)
H
,

z ∈ C\R,

where τ ∈ S̃−0
H (−∞, 0). Moreover, the correspondence between all

τ ∈ S̃−0
H (−∞, 0) and all solutions of the moment problem (1) is

one-to-one.

Proof. This follows directly from Theorems 3 and 4. �
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