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Growth of maximal functions

S. Butler and J. Rosenblatt

Abstract. We consider the integrability of φ(f∗) for various maxi-
mal functions f∗ and various increasing functions φ. We show that for
some of the standard maximal functions arising in harmonic analysis
and ergodic theory, there is never integrability of φ(f∗) for all Lebesgue
integrable functions f except in cases where the growth of φ is slow
enough so that the integrability follows from the standard weak maxi-
mal inequalities.
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1. Introduction

Suppose that (X,B, µ) is a σ-finite positive measure space and (Tn) is a
sequence of bounded linear operators on L1(X,µ). Consider the maximal
function

f∗ = sup
n≥1
|Tnf |
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for f ∈ L1(X,µ). Pointwise almost everywhere convergence of (Tnf) guaran-
tees that f∗ is finite almost everywhere. In many well-known cases, because
of additional information that is available, it is enough to prove that f∗ is
finite a.e. for all f ∈ L1(X,µ) in order to show that (Tnf) converges a.e. for
all f ∈ L1(X,µ). The classical approach to this typically includes obtaining
a weak (1, 1) maximal inequality of this form: there is a constant C such
that for all λ > 0 and f ∈ L1(X,µ),

(1.1) µ{f∗ > λ} ≤ C

λ
‖f‖1.

One way to prove this would be to have a strong maximal inequality: for
some constant C, we have for all f ∈ L1(X,µ),

‖f∗‖1 ≤ C‖f‖1.
However, such a strong maximal inequality often fails to be true.

Nonetheless, it is important to characterize which f ∈ L1(X,µ) have
f∗ ∈ L1(X,µ). This is in general a difficult issue because of the following
proposition. Given a subsequence n = (nm) and f ∈ L1(X,µ), let f∗n =
sup
m≥1
|Tnmf |.

Proposition 1.1. Suppose (Tn) are bounded linear operators on L1(X,µ)
and (Tnf) is L1-norm convergent for all f ∈ L1(X,µ). Then for each f ∈
L1(X,µ), there exists a subsequence n such that f∗n ∈ L1(X,µ).

Proof. Let Lf ∈ L1(X,µ) denote the L1-norm limit of (Tnf). Take a
subsequence n = (nm) such that ‖Tnmf − Lf‖1 ≤ 1

2m . Then

f∗n ≤ |Lf |+ sup
m≥1
|Tnmf − Lf | ≤ |Lf |+

∞∑
m=1

|Tnmf − Lf |.

Hence

‖f∗n‖1 ≤ ‖Lf‖1 +

∞∑
m=1

‖Tnmf − Lf‖1 ≤ ‖Lf‖1 +
∞∑
m=1

1

2m
<∞. �

Proposition 1.1 suggests the possibility that there is one subsequence n
such that for all f ∈ L1(X,µ) we have f∗n ∈ L1(X,µ). However, we will
see in this article that this is too much to expect because it is typically not
the case. Can we reduce our expectations and obtain something nontrivial
along these lines? Suppose momentarily (X,B, µ) is actually a probability
space. Then the integrability of f∗n would follow from having

∞∑
k=1

µ{f∗n > k} <∞.

See (2.6) and (2.7) below. What happens if we somewhat weaken our ex-
pectations here and replace (k) by a more rapidly increasing sequence of
weights (wk)? Given that there is a weak inequality as in (1.1), we would
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not want to take (wk) increasing so rapidly that
∞∑
k=1

1
wk

< ∞ because then

clearly
∞∑
k=1

µ{f∗n > wk} < ∞ for all f . So we assume that
∞∑
k=1

1
wk

= ∞.

We may assume without loss of generality that (wk) is strictly increasing
and lim

k→∞
wk =∞. Then we know that there is a strictly increasing smooth

function φ : R+ → R+ such that φ−1(k) = wk for all k ≥ 1. Also, in the
case of a probability measure µ, it follows that φ(f∗n) would be integrable if
and only if

∞∑
k=1

µ{φ(f∗n) > k} =

∞∑
k=1

µ{f∗n > φ−1(k)} =

∞∑
k=1

µ{f∗n > wk} <∞.

Remark 1.2. Here is an integral characterization of
∞∑
n=1

1
φ−1(n)

= ∞. As-

sume that φ is smooth and increasing. By the integral test, this is the same

as
∞∫
1

1
φ−1(x)

dµ(x) =
∞∫
1

φ′(y)
y dµ(y) is infinite.

This is the manner in which we arrive at the central question that is
treated in various cases in this article. Take a sequence (Tn) of bounded
linear operators on L1(X,B, µ). For generality, we do not restrict µ to being
a probability measure, but assume that (X,B, µ) is a σ-finite measure space.
Let φ : R+ → R+ be a strictly increasing smooth function.

Question 1.3. When do we have

φ

(
sup
n≥1
|Tnf |

)
∈ L1(X,B, µ)

for all f ∈ L1(X,B, µ)?

Answer. In this article, we show that for most natural settings (e.g., for
differentiation, for ergodic averages, and for martingales), there is never
a subsequence (Tn) of the process and a nontrivial function φ for which

φ

(
sup
n≥1
|Tnf |

)
in L1(X,B, µ) for all f ∈ L1(X,B, µ).

In obtaining results as above, it certainly does matter what the stochastic
process is. If (Tn) converges in operator norm to a limit operator L, then
there is always of a subsequence (Tnm) such that sup

m≥1
Tnm |f | ∈ L1(X,µ) for

all f ∈ L1(X,µ). Just take (Tnm) such that C =
∞∑
m=1
‖Tnm − L‖1 < ∞. It

follows that sup
m≥1

Tnm |f | ≤
∞∑
m=1
‖Tnm |f | − L|f |‖1 + ‖L|f |‖1 ≤ (C + 1)‖f‖1.

Example 1.4. An interesting example of this principle is the following. Let
τ be an ergodic invertible measure-preserving transformation of a nonatomic
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probability space (X,B, p). Let Tnf(x) = 1
nf(τnx) + n−1

n f(x) for all f ∈
L1(X,µ). It is not hard to see that Tn is a positive linear operator on
L1(X,p) which has norm one, even if one restricts to the subspace of mean-
zero functions in L1(X, p). Also, (Tn) converges to L = Id in the opera-
tor norm limit. So there is a subsequence (Tnm) such that sup

m≥1
Tnm |f | ∈

L1(X, p) for all f ∈ L1(X, p). On the other hand, sup
n≥1
|Tnf | /∈ L1(X, p)

for the generic function in L1(X, p). To see this, use Proposition 2.16
in this article and the following construction that shows that for some
f ∈ L1(X, p) one has sup

n≥1
|Tnf | /∈ L1(X, p). First, observe that if Bk is

the base of a Rokhlin tower for τ of height Nk, and fk = 1
p(Bk)1Bk , then

‖ supn |Tnfk|‖1 ≥ ‖
Nk∑
n=0

1
n

1
p(Bk)1τ−nBk‖1 ≥ C log(Nk). So it is not hard see

then that a series f =
∞∑
k=1

1
2k

1
p(Bk)1Bk , where Bk is a base of a Rokhlin

tower of height Nk = exp(k2k), will give a function f ∈ L1(X, p) such that
‖ sup
n≥1
|Tnf |‖1 =∞.

Example 1.5. Here is a very simple example that illustrates one can have
sup
n≥1

Tn|f | always integrable, although no subsequence (Tnm) converges in

the operator norm. Let Tnf = f1[0,1/n] for any f ∈ L1([0, 1], p) where p is
Lebesgue measure on [0, 1]. Then clearly sup

n≥1
Tn|f | ≤ |f | and so sup

n≥1
Tn|f | is

always integrable. But also (Tn) converges in the strong operator topology
to L = 0, while ‖Tn‖1 = 1 for all n ≥ 1. Hence, no subsequence (Tnm) can
converge in the operator norm since it would have to converge to 0 and yet
‖Tnm‖1 = 1 for all m ≥ 1.

2. Lebesgue derivatives

First, we consider the particular maximal functions that arise in the study
of Lebesgue derivatives. It is enough to consider the one-sided Lebesgue
derivatives which are defined by

Dεf(x) =
1

ε

ε∫
0

f(x+ t) dµ(t)

for functions f ∈ L1(R, µ) where µ is the usual Lebesgue measure. We know
that for all f ∈ L1(R, µ), (Dεf) converges in L1-norm to f as ε → 0, and
(Dεf) converges in L1-norm to 0 as ε → ∞. Also, it is a classical fact that
the associated Hardy–Littlewood maximal functions f∗HL(x) = sup

ε>0
|Dεf(x)|
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satisfies a weak (1, 1) inequality

(2.1) µ{f∗HL > λ} ≤ C

λ

∫
|f(t)| dµ(t).

In addition, a theorem of Stein [15] shows that a positive function f ∈
L1(R, µ) has f∗HL locally integrable if and only if f ∈ L logL, i.e.,∫

f(t) log+ f(t) dµ(t) <∞.

Suppose we restrict the maximal function so that we are only using a
sequence E = (εn) decreasing to 0 instead of all ε > 0. We denote the
maximal function in this case by f∗E, i.e., f∗E(x) = sup

n≥1
|Dεnf(x)|. This

maximal function will of course satisfy a weak (1, 1) inequality as in (2.1).
Also, if (εn) is not decreasing too quickly, e.g., εn = 1

2n for all n ≥ 1, then
f∗E will again be integrable if and only if f ∈ L logL. However, if we take a
more quickly shrinking sequence (εn), the situation is different. Indeed, we
have the following specific instance of Proposition 1.1.

Proposition 2.1. For any f ∈ L1(R, µ), there exists a decreasing sequence
E = (εn) such that f∗E ∈ L1(R, µ).

Remark 2.2. Hagelstein [7] gives a characterization of when one has an
integrable maximal function for a general class of averaging operators that
applies here. He gives a characterization of when f∗E is integrable in terms of
Córdoba–Fefferman collections. It is not clear how to relate his characteri-
zation to Proposition 2.1. In particular, it would be interesting to somehow
link the decreasing subsequence E that one chooses in Proposition 2.1 to the
structure of the Córdoba–Fefferman collections in [7]. One might not be able
to do this directly for f but need to look at associated functions that locally
overestimate f when it is highly oscillatory because if f oscillates a great
deal within bounds on the range of f then it may require choosing E to grow
faster in order to use Proposition 2.1, while the relevant Córdoba–Fefferman
collections do not need to change much.

Remark 2.3. If we had taken (εn) increasing to infinity, the situation would
be different because then the Lebesgue derivatives converge in operator norm
to zero. To distinguish the notation in this case, we write f∗B when B = (Bn)
is a sequence increasing to infinity and f∗B = sup

n≥1
|DBnf |. Now ‖DBnf‖∞ ≤

‖f‖1
Bn

. So, if we had C =
∞∑
n=1

1
Bn

< ∞, then ‖f∗B‖∞ ≤ C‖f‖1 for all f ∈

L1(R, µ). On the other hand, we generally do not have integrability of f∗B is
this case. For example, take f = 1[0,1] and any increasing (Bn) tending to
infinity; then ‖f∗B‖1 =∞.

Proposition 2.1 says that by taking a rarer (i.e., more rapidly decreasing)
sequence E, we can control the size of f∗E. The question is whether or not
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the right choice of E would allow this to hold on all of L1(R, µ). In addition,
as discussed in Section 1, we can measure this size by knowing whether or
not for a given increasing function φ : R+ → R+, we have ‖φ(f∗E)‖1 < ∞
for all functions f ∈ L1(R, µ). Again, if φ increases slowly enough, then
∞∑
n=1

1
φ−1(n)

<∞. In this case, (2.1) tells us that for some constant C and for

all compactly supported f ∈ L1(R, µ),

‖φ(f∗E)‖1 ≤ C
∞∑
k=1

µ{f∗E > φ−1(k)} ≤ C‖f‖1
∞∑
k=1

1

φ−1(k)
<∞.

For example, take φ(x) =
√
x. Then for every f ∈ L1(R, µ), we have

‖φ(f∗)‖1 ≤ C‖f‖1. It follows that for all f ∈ L1(R, µ), we have ‖φ(f∗)‖1 ≤
C‖f‖1.

Hence to have a nontrivial result, we would have to assume

(2.2)

∞∑
k=1

1

φ−1(k)
=∞.

That is, given this growth assumption on φ, does there exist a sequence E
decreasing to zero such that for all f ∈ L1(R, µ), we have ‖φ(f∗E)‖1 < ∞?
This question and related issues are discussed in this section for the Hardy–
Littlewood maximal function. First, in Section 2.1 we look at the case of
slowly decreasing sequences (εn) and next in Section 2.2 we look at the case
of rapidly decreasing sequences (εn). The reason that we consider these
cases separately is that different, interesting issues arise in these two cases.

2.1. The nonrare case for differentiation. Suppose we are dealing with
the maximal function f∗ such that there is a reverse weak (1, 1) inequality
of the following form: there is a constant C such that for any f ∈ L1(X,µ),
and some lower limit λf depending on f , whenever λ ≥ λf , we have

(2.3) µ{f∗ > λ} ≥ 1

Cλ

∫
{f≥Cλ}

f dµ.

Reverse inequalities like this, or weaker forms of this type of inequality, will
be the basis of much of the analysis that follows in this and later sections.

Remark 2.4. We sometimes obtain an inequality like (2.3) because a strong-
er fact is true: that this holds where the set being integrated over is {f∗ ≥
C1λ} for some constant C1, and also there is a constant C2 such that
f ≤ C2f

∗.

In proving the L logL result in [15], Stein used the inequality in (2.3). He
showed that with no restriction on λ > 0, if f ∈ L1(R, µ), then

(2.4) µ{f∗HL > λ} ≥ 1

Cλ

∫
{f≥Cλ}

f dµ.
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However, if one takes a smaller maximal function like f∗E, in the case that

E = (εn) with εn = 1
2n , then some lower limit on λ is needed. Take for

example, the larger maximal function f∗1 = sup
0<ε≤1

Dε|f |. Then a reverse

inequality as in (2.3) cannot hold for arbitrarily small λ when the function f
has bounded support. For example, suppose f = 1[0,1]. Then µ{f∗1 > λ} ≤ 2

for all λ. But if λ ≤ 1
C , then 1

Cλ

∫
{f≥Cλ}

f dµ = 1
Cλ . So (2.3) implies that

λ ≥ 1
2C . What we can say for f∗1 is that for all f ∈ L1(R, µ) and λ ≥ ‖f‖1,

we have

(2.5) µ{f∗1 > λ} ≥ 1

Cλ

∫
{f≥Cλ}

f dµ.

This equation holds because for λ ≥ ‖f‖1, f∗HL(x) > λ occurs exactly when
f∗1 (x) > λ since Dε|f |(x) ≤ ‖f‖1 when ε ≥ 1. So (2.4) gives (2.5).

We show now how reverse inequalities can be used to give a negative
answer to Question 1.3.

Proposition 2.5. Given a maximal function such that (2.3) holds for a uni-

versal constant C, and a smooth, increasing function φ such that
∞∑
k=1

1
φ−1(k)

=

∞, there exists f ∈ L1(X,B, µ), supported on a set of finite measure, such
that ‖φ(f∗)‖1 =∞.

Proof. For a positive B-measurable function F on X, we have the inequality

(2.6)

∫
F dµ ≥

∞∑
n=1

µ{F > n}.

Now suppose φ(f∗) is integrable. Let wn = φ−1(n) for all n ≥ 1. Then by
(2.6) and (2.3), we would know that

∞∑
n=1

1

wn

∫
{f≥Cwn}

f dµ <∞.

This holds because for some Nf , we would know that∫
φ(f∗) dµ ≥

∞∑
n=1

µ{φ(f∗) > n}

=

∞∑
n=1

µ{f∗ > wn}

≥
∞∑

n=Nf

µ{f∗ > wn}

≥
∞∑

n=Nf

1

Cwn

∫
{f≥Cwn}

f dµ.
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This proposition is asserting that for some f ∈ L1 this cannot hold if
∞∑
n=1

1
wn

=∞.

Take f =
∞∑
n=1

Cwn1En for some sequence of sets such that
∞∑
n=1

wnµ(En) <

∞. Then f ∈ L1(X,µ) and f is supported on
∞⋃
n=1

En, which is necessarily of

finite measure since lim
n→∞

wn =∞. We are going to see how to choose (En)

such that this function gives our result. Let ρn > 0 be such that
∞∑
n=1

ρn <∞.

Choose any (En) such that µ(En) = ρn
wn

. We will see how to choose (ρn)

decreasing to zero slowly enough so that this choice of (En) gives us what
we want. Notice that we have

∞∑
n=1

1

wn

∫
{f≥Cwn}

f dµ ≥
∞∑
n=1

1

wn

∫
∞⋃
k=n

Ek

f dµ

≥
∞∑
n=1

1

wn

∫
∞⋃
k=n

Ek

∞∑
j=n

Cwj1Ej dµ

= C
∞∑
n=1

1

wn

∫ ∞∑
j=n

wj1Ej dµ

= C
∞∑
n=1

1

wn

∞∑
j=n

ρj .

But since
∞∑
n=1

1
wn

= ∞, we can choose (ρn) such that
∞∑
j=n

ρj decreases so

slowly that
∞∑
n=1

1

wn

∞∑
j=n

ρj =∞.

Therefore, f ∈ L1(X,µ), has support of finite measure, and
∞∑
n=1

µ{f∗ > wn} =∞.

Hence, ‖φ(f∗)‖1 =∞ by (2.6). �

Remark 2.6.

(a) If µ is finite, then (2.6) can be reversed in the sense that

(2.7)

∫
F dµ ≤ µ(X) +

∞∑
n=1

µ{F > n}.
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This and (2.6) are what give the standard fact that on a finite mea-
sure space (X,B, µ), a positive, B-measurable function F is inte-

grable if and only if
∞∑
n=1

µ{F > n} <∞.

(b) The argument above may seem odd because it may not be clear why
it works so easily. After all, we could use Cf∗ ≥ f directly and

try to show that
∞∑
n=1

µ{f∗ > wn} = ∞ because
∞∑
n=1

m{f > Cwn} =

∞. However, with the examples where we do not know yet if there

is f ∈ L1(R, µ) such that
∞∑
n=1

µ{f > Cwn} = ∞, we have (wn)

increasing faster than n and so generally
∞∑
n=1

µ{f > Cwn} <∞. So

this approach does not work.
(c) We can also get some insights into this argument by asking what is

happening when wn = n, in which case we are trying to show that
f∗ is not integrable. This is equivalent to having f not in L logL for
positive functions f . So our required condition on (ρn) should not
be possible when f ∈ L logL. But∫

f log f dµ =

∞∑
n=1

(n log n)
ρn
n

=

∞∑
n=1

(log n)ρn.

Hence, f ∈ L logL implies by summation by parts that
∞∑
n=1

1
n

∞∑
k=n

ρk

converges, which is the opposite of the condition that we need to
show that f∗ is not integrable.

Remark 2.7. Proposition 2.5 shows why it is an important issue to decide
when a maximal function f∗ satisfies (2.3). For example, in Theorem 1
in Hare and Stokolos [8], they consider the case of the Hardy–Littlewood
maximal function, f∗E, with E = ( 1

2mn ) for some mn → ∞ as n → ∞.
They give an argument that (2.3) holds only when mn+1 −mn is bounded.
However, their argument needs some clarification because the inequality
they are considering never holds for functions of bounded support as λ goes
to zero. Perhaps what was intended in [8] was to prove their result with
a restriction on λ such as λ ≥ ‖f‖1. But in any case, one can see that
Hagelstein [6] completely clarifies this result.

Proposition 2.5 gives this specific result for the maximal function f∗1 , the
Hardy–Littlewood maximal function for ε with 0 < ε ≤ 1.

Corollary 2.8. Let φ be a smooth, increasing function such that
∞∑
k=1

1
φ−1(k)

=

∞. Then there exists f ∈ L1(R, µ), supported on a set of finite measure,
such that ‖φ(f∗1 )‖1 =∞.
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Remark 2.9. Kita [10] proves a result like Corollary 2.8 without an explicit
use of reverse inequalities. Using Kita’s notation, just take b(s) = 1 and so
Ψ(t) = t. Assume that Φ satisfies the doubling condition so that f∗1 is in the
Orlicz space LΦ if and only if ‖a(f∗1 )‖1 is finite. We take our function φ to
be a. Then the condition from Remark 1.2 is what Kita assumes to prove

the main result in [10]: that
∞∫
0

a(s)
s ds = ∞. But then if φ(f∗1 ) is integrable

for all f ∈ L1([0, 1], µ), by the choice of b it follows that
s∫
0

a(t)
t dst is bounded

in s. This contradiction shows that there must exist f ∈ L1([0, 1], µ) such
that ‖φ(f∗1 )‖1 =∞.

2.2. The rare case for differentiation. We now want to consider max-
imal functions f∗E for which the results of Section 2.1 do not apply because
the sequence E = (εn) is decreasing very rapidly. We call these rare maxi-
mal functions. For example, if εn = 1

2n for all n ≥ 1, then the same result
that holds for f∗1 proved in Corollary 2.8 holds for f∗E because f∗1 ≤ 2f∗E.

However, if εn = 1

2n2
for all n ≥ 1, then this proportionality no longer holds

and so the results in Section 2.1 do not apply. Here we will see that there
is a restricted reverse inequality that we can use that will allow us to prove
results in general for maximal functions f∗E.

First, there is a special case of the type of result we are discussing in this
section which gives some insight into the computational issues. Take our
function φ(x) = x for all x ≥ 0. Then we are asking if there is always an
f ∈ L1(R, µ) such that f∗E /∈ L1(R, µ)?

Proposition 2.10. Suppose E is a sequence decreasing to zero. Then there
exists f ∈ L1(R, µ) with support in [0, 1] such that f∗E is not in L1(R, µ).

Proof. Consider f∗(N, δ) = sup
1≤n≤N

Dεnfδ where fδ = 1
δ1[0,δ], for some δ > 0.

As δ → 0, f∗(N, δ) converges in L1-norm to sup
1≤n≤N

1
εn

1[−εn,0]. Hence, we have

‖f∗(N, δ)‖1 → 1 +
N−1∑
n=1

εn−εn+1

εn
. It is elementary to show that

∞∑
n=1

εn−εn+1

εn

diverges. Indeed, this series only decreases by taking a subsequence and
clearly diverges if (εn) is lacunary. See the argument in the proof of Propo-
sition 5.1 in Butler, Pavlov, and Rosenblatt [3]. So we can choose δk and

(Nk) such that ‖f∗(Nk, δk)‖1 ≥ k2k. But then consider f =
∞∑
k=1

1
2k
fδk . We

have f supported in [0, 1] and ‖f‖1 = 1. But also, f∗E ≥
1
2k
f∗(Nk, δk) and

so ‖f∗E‖1 ≥
1
2k
‖f∗(Nk, δk)‖1 ≥ k for all k. Hence, ‖f∗E‖1 =∞. �

Remark 2.11. In proving Proposition 2.10, by passing to a subsequence,
we could have assumed at the outset that (εn) is lacunary. In this case, the

divergence of
∞∑
n=1

εn−εn+1

εn
is immediately clear.
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We could try this same approach to the integrability of φ(f∗E). We would

need to know that
∞∑
n=1

φ( 1
εn

)(εn − εn+1) always diverges. But take a func-

tion φ like φ(x) = x/ log+ x. Then φ−1(n) ≤ Cn log n and so we do have
∞∑
n=1

1
φ−1(n)

= ∞. However, if εn = 1/2n
2
, then

∞∑
n=1

φ( 1
εn

)εn converges, and

of course then so does
∞∑
n=1

φ( 1
εn

)(εn − εn+1). So the simple method that we

used above does not work this time.
Therefore, we need another approach with rare maximal functions. The

idea for the necessary step may be provided by this theorem in Stokolos [17],
in the case that n = 1. This result says the following.

Proposition 2.12 (Stokolos). For any E, there is a constant C such that
for each λ, 0 < λ ≤ 1, there is a bounded measurable set Q such that

µ{(1Q)∗E > λ} ≥ 1

Cλ
µ(Q).

We need to extend this so that we can use more than one λ for a given
set Q. Notice that for a fixed C, if λ is too small related to the size of µ(Q),
then the right hand side would be larger than 1 and the left hand side is not.
So if we are going to use smaller values of λ, then we have to shrink m(Q)
too, and this creates an issue of the balance between these two factors.

Proposition 2.13. There exists a constant C such that for all sequences E
decreasing to 0 and ε, 0 < ε < 1, there exist a measurable set Q ⊂ [0, 1] such
that µ(Q) < ε and for any λ ∈ [µ(Q), 1]

µ

{
(1Q)∗E >

λ

C

}
≥ 1

Cλ
µ(Q).

Proof. The proof uses ideas of the proof of the basic theorem in Stoko-
los [17]. First, without loss of generality, if necessary we can replace E by
a subsequence so that if we write for each n, 1/2kn−1 ≥ εn > 1/2kn , for a
whole number kn, then (kn) is strictly increasing, and even kn+1 ≥ kn + 2.
Let E0 = (1/2kn : n ≥ 1). Now for any n,

Dεn |f |(x) ≥ 1

1/2kn−1

1/2kn∫
0

|f(x+ t)| dµ(t).

So f∗E ≥
1
2f
∗
E0

.
Now we first work with the Hardy–Littlewood maximal function f∗E0

. We
extend the index sequence (kn : n ≥ 1) by letting k0 = 0. Let

rn(x) = sign sin(2nπx), n = 0, 1, 2, . . .
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be the Rademacher functions on [0, 1]. Choose a whole number J such that
2−J < ε. For j = 0, . . . , J consider sets

Vj = {x ∈ [0, 1] : rkn(x) = 1 for n = 0, . . . , j}.

Each set Vj consists of disjoint dyadic intervals of length 2−kj . It is easy
to see that V0 = [0, 1], Vj ⊂ Vj−1 and µ(Vj) = 1

2µ(Vj−1) for j = 1, . . . , J .
Thus, for j = 0, . . . , J

µ(Vj) =
1

2j
.

Let Q = VJ . Note that µ(Q) = 2−J < ε, and Q ⊂ Vj for j = 0, . . . , J . Let I

be any of the constituent intervals of length 2−kj that make up Vj . Observe
that

µ(I ∩Q)

µ(I)
=

1
2J−j

µ(I)

µ(I)
=

1

2J−j
.

Because of the periodic structure of the constituent intervals in the sets Vj ,

one can see that for any x in the left hand half of I, x+ [0, 1/2kj ] contains
the right hand half of I. Hence, since kn+1 ≥ kn + 2 for all n, we have

µ((x+ [0, 2−kj ]) ∩Q)

2−kj
≥ 1

2

µ(I ∩Q)

µ(I)
=

1

2

1

2J−j
.

So we have

(1Q)∗E0
(x) ≥ 1

2−kj

∫
x+[0,2−kj ]

1Q dµ =
µ((x+ [0, 2−kj ]) ∩Q)

2−kj
≥ 1

2

1

2J−j
.

It follows that if V 0
j is the union of the left hand halves of all of the con-

stituent intervals I in Vj , then

V 0
j ⊂

{
x : (1Q)∗E0

(x) ≥ 1

2J−j+1

}
for j = 0, . . . , J .

Now if λ ∈ [µ(Q), 1] choose j, 1 ≤ j ≤ J, such that

1

2J−j+1
≤ λ ≤ 1

2J−j
.

Then

µ

{
x : (1Q)∗E0

(x) ≥ λ

2

}
≥ µ

{
x : (1Q)∗E0

(x) ≥ 1

2J−j+1

}
≥ µ(V 0

j )

=
1

2
µ(Vj) =

1

2j+1

= µ(Q)2J−j−1 = µ(Q)
1

4
2J−j+1

≥ µ(Q)
1

4λ
.
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Using this inequality, we see that for λ ∈ [µ(Q), 1], we have

µ

{
x : (1Q)∗E ≥

λ

4

}
≥ µ(Q)

1

4λ
.

So let C = 5 and we get the inequality that we wanted. �

Remark 2.14.

(a) The set Q in Proposition 2.13 depends on the choice of E.
(b) The inequality in Proposition 2.13 does not hold, even in a suitably

altered form, for all measurable sets in place of Q. So also there can
not be a reverse maximal inequality for a rare (enough) maximal
function in this context. See Hare and Stokolos [8]. This is what Hare
and Stokolos [8] and Hagelstein [6] are characterizing, as discussed
in Remark 2.7.

Proposition 2.13 gives this result.

Proposition 2.15. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Let E be a sequence decreasing to 0. Then there exists

f ∈ L1(R, µ), supported in [0, 1], such that ‖φ(f∗E)‖1 =∞.

Proof. Let φ−1(n) = wn. This result follows if we can show that there
exists a positive function f ∈ L1(R, µ), supported in [0, 1], such that

∞∑
n=1

µ{f∗E > wn} =∞.

We may assume that wn ≥ 1 for each n. Choose a convergent series
∞∑
k=1

tk <

∞, 0 < tk ≤ 1. For each k, choose Q = Qk ⊂ [0, 1] satisfying the conditions
in Proposition 2.13 but with µ(Qk) so small that if

Nk =

{
n ∈ N : wn ≤

tk
µ(Qk)

}
,

then

(2.8)
∑
n∈Nk

1

wn
≥ k

tk
.

Then for n ∈ Nk

µ(Qk) ≤
wnµ(Qk)

tk
≤ 1,

and by Proposition 2.13

(2.9) µ

{(
Ctk
µ(Qk)

1Qk

)∗
E

> wn

}
= µ

{
(1Qk)∗E >

wnµ(Qk)

Ctk

}
≥ tk
Cwn

.
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Define the positive function f ∈ L1(R, µ) supported in [0, 1] by:

f =
∞∑
k=1

Ctk
µ(Qk)

1Qk .

Then using (2.9) and (2.8) we have for each k:

∞∑
n=1

µ{f∗E > wn} ≥
∞∑
n=1

µ

{(
Ctk
µ(Qk)

1Qk

)∗
E

> wn

}
≥
∑
n∈Nk

µ

{(
Ctk
µ(Qk)

1Qk

)∗
E

> wn

}
≥
∑
n∈Nk

tk
Cwn

≥ tk
k

Ctk
=
k

C
.

Since k is arbitrary, it follows that

∞∑
n=1

m{f∗E > wn} =∞. �

2.3. Generic counterexamples. We can usually also obtain a result that
says that our counterexamples to integrability are generic. Here is one ap-
proach to such a result.

Proposition 2.16. Suppose (Tn) is a sequence of positive, continuous linear
operators on L1(X,B, µ). Suppose φ is a increasing smooth function. As-
sume that for all K, there is a positive function f ∈ L1(X,µ), ‖f‖1 = 1 such

that

∥∥∥∥φ(sup
n≥1
Tn|f |

)∥∥∥∥
1

≥ K. Then there is a dense Gδ set L in L1(X,µ)

such that for any f ∈ L, we have

∥∥∥∥φ(sup
n≥1
Tn|f |

)∥∥∥∥
1

=∞.

Proof. Consider the set

GK =

{
f ∈ L1(X,µ) :

∥∥∥∥φ(sup
n≥1
Tn|f |

)∥∥∥∥
1

≤ K

}
.

We claim that this is closed in L1-norm and has no interior. It follows that
L = L1(X,µ)\

⋃
K≥1

GK is a dense Gδ set with the property that we wanted.

To see that GK is closed, we observe that with

GK,N =

{
f ∈ L1(X,µ) :

∥∥∥∥∥φ
(

sup
n≤N
Tn|f |

)∥∥∥∥∥
1

≤ K

}
,



GROWTH OF MAXIMAL FUNCTIONS 537

we have GK =
⋂
N≥1

GK,N . So it suffices to show each GK,N is L1-norm

closed. But if (fk) is a sequence in GK,N converging in L1-norm to f , then
without loss of generality we may assume the convergence is also pointwise
a.e. since we can pass to a subsequence which converges almost everywhere.

Then φ

(
sup
n≤N
Tn|fk|

)
converges pointwise a.e. to φ

(
sup
n≤N
Tn|f |

)
, and so by

Fatou’s Lemma,∥∥∥∥∥φ
(

sup
n≤N
Tn|f |

)∥∥∥∥∥
1

≤ lim inf
k→∞

∥∥∥∥∥φ
(

sup
n≤N
Tn|fk|

)∥∥∥∥∥
1

≤ K.

Assume now that GK contains interior. Then there is some f0 ∈ L1(X,µ)
and δ > 0 such that for all f ∈ L1(X,µ), ‖f‖1 ≤ 1, we have f0 + δf ∈ GK .
Let σ be a measurable function with |σ| = 1 a.e. such that |f0| = σf0.
We have ||f0| + δf | = |σf0 + δf | = |f0 + σδf |. So for any f ∈ L1(X,µ)
with ‖f‖1 ≤ 1, we have |f0| + δf ∈ GK also. Now take a positive function

f ∈ L1(X,µ) with ‖f‖1 = 1 and

∥∥∥∥φ(sup
n≥1
Tnf

)∥∥∥∥
1

≥ 2K
δ . Then, because the

operators Tn are positive and φ is nondecreasing,

2K ≤
∥∥∥∥φ(sup

n≥1
Tn(δf)

)∥∥∥∥
1

≤
∥∥∥∥φ(sup

n≥1
Tn(|f0|+ δf)

)∥∥∥∥
1

≤ K.

This is impossible. �

Remark 2.17. It should be just a technical adjustment to prove the same
result with the maximal function sup

n≥1
|Tnf |, but at this time we do not have

a proof of this stronger fact.

This general result gives the following.

Proposition 2.18. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Let E be a sequence decreasing to 0. Then there exists a

dense Gδ set L, in the closed subspace of functions in L1(R, µ). which are
supported on [0, 1], such that for all f ∈ L we have ‖φ(f∗E)‖1 =∞.

Proof. This follows immediately from Proposition 2.16 and Proposition 2.8.
�

3. Ergodic maximal functions

We now consider the behavior of the maximal function f∗τ for ergodic
averages on a standard Lebesgue probability space (X,B, p). We have an
invertible ergodic measure-preserving transformation τ on (X, p) and let

ANf = 1
N

N−1∑
n=0

f ◦ τn. Then f∗τ = sup
N≥1
|ANf | for f ∈ L1(X, p). Again, we
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could consider the size of the full maximal function f∗τ or more generally the
maximal function f∗N = sup

m≥1
|ANmf | for a subsequence N = (Nm) of N. In

this section, we will just consider these simultaneously instead of breaking
the discussion into two separate subsections.

Ornstein’s Theorem [14] says that for ergodic transformations τ and pos-
itive functions f ∈ L1(X, p), f∗τ is integrable if and only if f ∈ L logL. This
was proved using this reverse inequality for the ergodic maximal function:
for any positive function f ∈ L1(X, p), if p{f∗τ > λ} < 1, then

(3.1) p{f∗τ > λ} ≥ 1

2λ

∫
{f∗τ>λ}

f dp.

Remark 3.1. Since f∗τ ≥ f , we see that {f∗τ > λ} can be replaced by
{f > λ} in (3.1). So (2.3) holds with C = 2.

Remark 3.2. See Ornstein [14], and Jones [9], for the reverse weak inequal-
ity (3.1). In this inequality, λ must be restricted from being too small. The
criterion used in Ornstein [14], is that Ef = {f∗τ > λ} has p(X\Ef ) > 0.
In particular, this requires that at least λ ≥

∫
|f | dp. Some restriction on λ

should have also been included in Jones [9] because without that, one might
have p(X\Ef ) = 0 and then the stopping time τ that is used would not be
defined.

Despite Ornstein’s Theorem, by passing to subsequences we have this
improvement.

Proposition 3.3. For every f ∈ L1(X, p), there exists a sequence N =
(Nm) such that f∗N ∈ L1(X,µ).

Proof. This is an immediate consequence of Proposition 1.1 because the
ergodic averages converge in L1-norm. �

However, as with the Hardy–Littlewood maximal functions, we expect
that this result requires adjusting the sequence to the function, even if we
modulate the maximal function by considering φ(f∗n) for functions φ growing
more slowly than φ0(x) = x. But first, there is a direct analog of Propo-
sition 2.10 where we now consider the issue of integrability of f∗N for all
f ∈ L1(X,µ) simultaneously.

Proposition 3.4. Suppose τ is ergodic and N is a subsequence of N. Then
there exists a positive function f ∈ L1(X, p) such that f∗N is not integrable.

Proof. It is an elementary argument to show that
∞∑
m=1

Nm+1−Nm
Nm+1

= ∞.

Indeed, with εm = 1/Nm, we have
∞∑
m=1

Nm+1−Nm
Nm+1

=
∞∑
m=1

εm−εm+1

εm
. So

∞∑
m=1

Nm+1−Nm
Nm+1

is an analogue of the divergent series in Proposition 2.10. We
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now use the Rokhlin Lemma. Suppose we take a stack (B, TB, . . . , TLB) of
pairwise disjoint sets of positive measure. For a fixed M , if L is sufficiently
large, one can see that

sup
1≤m≤M

ANm

(
1

p(B)
1B

)
≥ 1

p(B)

M−1∑
m=1

1

Nm+1

Nm+1−1∑
l=Nm

1T lB.

Hence, ∥∥∥∥∥ sup
1≤m≤M

ANm

(
1

p(B)
1B

)∥∥∥∥∥
1

≥
M−1∑
m=1

Nm+1 −Nm

Nm+1
.

So, we can choose (Mk) and stacks (Bk, TBk, . . . , T
LkBk) such that∥∥∥∥∥ sup

1≤m≤Mk

ANm

(
1

p(Bk)
1Bk

)∥∥∥∥∥
1

≥ k2k

for all k. Let f =
∞∑
k=1

1
2k

1Bk
p(Bk) . Then for all k,

‖f∗N‖1 ≥

∥∥∥∥∥ sup
1≤m≤Mk

ANmf

∥∥∥∥∥
1

≥ 1

2k

∥∥∥∥∥ sup
1≤m≤Mk

ANm

(
1

p(Bk)
1Bk

)∥∥∥∥∥
1

≥ k.

Hence, ‖f∗N‖1 =∞. �

Remark 3.5. In proving Proposition 3.4, by passing to a subsequence we
could have assumed that (Nm) is lacunary. Then it is immediate, just as in

Remark 2.11, that
∞∑
m=1

Nm+1−Nm
Nm+1

=∞.

It follows that if we want to have a nontrivial result concerning the growth
of f∗N, we will have to consider again φ(f∗N) where φ is a smooth, increasing
function. Of course, we do have again a weak (1, 1) maximal inequality for
the ergodic maximal function.

There is a constant C such that for all λ > 0 and f ∈ L1(X, p), we have

(3.2) p{f∗τ > λ} ≤ C

λ

∫
|f | dp.

Consequently, if we want to entertain the idea that φ(f∗n) is always in-
tegrable, and that this is a nontrivial fact, then we have to assume that∑
n=1

1
φ−1(n)

= ∞. The basic result that we are going to prove here is that

there is no such result. By comparison with Section 2.2, it will be good to
have a restricted reverse weak inequality for the rare maximal function.
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Proposition 3.6. There is a constant C such that the following holds.
Assume that τ is ergodic. Given a sequence N increasing to ∞, and ε,
0 < ε < 1, there exist a measurable set Q ⊂ X such that p(Q) < ε and for
any λ ∈ [p(Q), 99

100 ]

p

{
(1Q)∗N >

λ

C

}
≥ 1

Cλ
p(Q).

Proof. This proof is a direct analogue of the proof of Proposition 2.13. We
first may assume that we can take whole numbers km such that 2km ≤ Nm ≤
2km+1 and km+1 ≥ km + 2 for all m. Then f∗N ≤ 2 sup

m≥1
ANmf for all positive

functions f ∈ L1(X, p). So without loss of generality we replace (Nm) by
(2km).

Now we use the Rokhlin Lemma to choose a large stack

S = (B, TB, . . . , T 2L−1B)

of pairwise disjoint subsets of X with p(B) > 0. The sets T lB are the levels

of S. We let XS =
2L−1⋃
l=0

T lB. We assume that the stack has been chosen

so that s = p(X\XS) < 1
100 . Choose integers M and L so that 1/2M < ε

and L ≥ kM . For n ≤ L we can define an analogue of the Rademacher
function, the function Rn(l) on the indices l = 0, . . . , 2L− 1, by periodically
extending to {0, . . . , 2L − 1} the function that is 1 for l = 0, . . . , 2n − 1 and
0 for l = 2n, . . . , 2n+1 − 1. Let Ej =

⋃
{T lB : Rki(l) = 1, i = j, . . . ,M}.

Each Ej consists of a union of the levels T lB with l in particular dyadic

blocks L of length 2kj . Call these blocks L the defining blocks for Ej . It is
easy to see that Ej ⊂ Ej+1 and p(Ej+1) = 2p(Ej) for j = 1, . . . ,M . Also,
p(EM ) = 1

2(1 − s). So p(EM−j) = 1
2j+1 (1 − s) and p(E1) < ε. Let Q = E1.

Then p(Q) < ε and Q ⊂ Ej for all j = 1, . . . ,M . Consider a constituent

block I = IL, i.e., the union of all the levels T lB with l in some defining
block L. Observe that

p(I ∩Q)

p(I)
=

1
2j−1 p(I)

p(I)
=

2

2j
.

Take any x in the lower half of I = IL, i.e., x is in a level whose index is in
the left hand half of the corresponding dyadic block L. Since km+1 ≥ km+2,
it follows that we have A

2kj
1Q(x) ≥ 1

2j
. So, with E0

j denoting the union of

the lower halves of the constituent blocks I of Ej , we have for any x ∈ E0
j ,

(1Q)∗N(x) ≥ 1
2j

.
Now if λ ∈ [p(Q), 1− s] choose j, 0 ≤ j ≤M − 1, such that

1

2j+1
(1− s) ≤ λ ≤ 1

2j
(1− s).
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Then

p

{
x : (1Q)∗N(x) ≥ λ

1− s

}
≥ p

{
x : (1Q)∗N(x) ≥ 1

2j

}
≥ p(E0

j )

=
1

2
p(Ej) =

1

2

1− s
2M−j+1

= p(Q)2j−2

≥ p(Q)
1− s
8λ

.

That is, for λ ∈ [p(Q), 1− s], we have

p

{
x : (1Q)∗N(x) ≥ λ

1− s

}
≥ p(Q)

1− s
8λ

.

So with C = 9, we have the inequality that we wanted. �

In the same manner we obtained Proposition 2.15 from Proposition 2.13,
we obtain this result from Proposition 3.6.

Proposition 3.7. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Let N be a sequence increasing to ∞. Then there exists

f ∈ L1(X, p) such that ‖φ(f∗N)‖1 =∞.

In addition, we again get a generic result using Proposition 3.7 and Propo-
sition 2.16.

Proposition 3.8. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Let N be a sequence increasing to ∞. Then there exists a

dense Gδ set L in L1(X, p) such that for all f ∈ L we have ‖φ(f∗N)‖1 =∞.

4. Other possibilities

4.1. Approximate identities. Here is a natural harmonic analysis con-
text for trying to generalize Proposition 2.15. Suppose (ψn) is a normalized,
positive approximate identity on L1(R, µ). That is, for each n, ‖ψn‖1 = 1,
ψn ≥ 0, and for all f ∈ L1(R, µ), lim

n→∞
‖ψn∗f−f‖1 = 0. By Proposition 1.1,

we have this general fact.

Proposition 4.1. If (ψn) is a normalized, positive approximate identity on
L1(R, µ) and f ∈ L1(R, µ), then there is a subsequence (ψnm) such that
sup
m≥1

ψnm ∗ |f | ∈ L1(R, µ).

We do generally have the following contrasting result. This result makes
it clear that our question is about general functions φ, not just φ = Id.
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Proposition 4.2. Given any approximate identity (ψn), there exists a pos-
itive compactly supported function f ∈ L1(R, µ) such that∥∥∥∥sup

n≥1
ψn ∗ f

∥∥∥∥
1

=∞.

Proof. The proof is a straightforward modification of the proof of Propo-

sition 2.10 using the fact that

∥∥∥∥sup
n≥1

ψn

∥∥∥∥
1

= ∞. One way to see this is to

choose a rapidly increasing subsequence (ψnm) such that the functions ψnm
are approximately singular to each other. Then one can see that∥∥∥∥sup

n≥1
ψn

∥∥∥∥
1

≥
∥∥∥∥sup
m≥1

ψnm

∥∥∥∥
1

≥ 1

2

∞∑
m=1

‖ψnm‖1 =∞. �

Remark 4.3. There is a result analogous to this for averages in ergodic the-
ory. Suppose (µn) is a sequence of probability measures on Z and (X,β, p) is
a probability space. Given an ergodic transformation τ of (X,β, p), consider
the averaging operators µτnf =

∑
k∈Z

µ(k)f ◦ τk. In order to have a nontrivial

averaging process, we would usually assume that the measure are uniformly
dissipative, i.e., sup

k≥1
µn(k)→ 0 as n→∞. But it is enough here to assume

they are dissipative, i.e., for all k, µn(k)→ 0 as n→∞. Then in a manner
analogous to the proof of Proposition 4.2 one can show that ‖ sup

n≥1
µn‖1 =∞.

It follows from a simple argument using the Rokhlin Lemma that there ex-
ists a positive f ∈ L1(X, p) such that ‖ sup

n≥1
µτnf‖1 =∞. So in this context,

as above, the unresolved issue is if we can also have ‖φ(sup
n≥1

µτnf)‖1 =∞ for

some positive f ∈ L1(X, p) as long as we knew that
∞∑
n=1

1
φ−1(n)

=∞.

Sometimes there is a pointwise a.e. convergence result on L1(R, µ) for
the operators Tnf = ψn ∗ f , and sometimes there is not. If there is no
pointwise convergence result, then it is a standard fact that there would
be a positive function f ∈ L1(R, µ) such that sup

n≥1
ψn ∗ f = ∞ a.e. and so

certainly sup
n≥1

ψn ∗ f is not in L1(R, µ). But in any case, there is always a

pointwise good subsequence of (ψn); see Kostyukovsky and Olevskii [11].
So assume that we know for all f ∈ L1(R, µ), that f∗P = sup

n≥1
|ψn ∗ f | < ∞

almost everywhere. Then it makes sense to ask for a characterization of
when f∗P ∈ L1(R, µ).

Question 4.4. Given any approximate identity (ψn) and a strictly increas-

ing smooth function φ such that
∞∑
n=1

1
φ−1(n)

=∞, is there a compactly sup-

ported function f ∈ L1(R, µ) such that ‖φ(f∗P)‖1 =∞?
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We know the answer to this question for certain classical approximate
identities like the Fejér kernels, giving the averages of the partial sums of
the Fourier series of a function in L1[0, 1], and the Poisson kernels, giving the
harmonic extension of a function into the disc (or upper half plane). First,
taking a function ψ on R, the dilations ψt are given by ψt(x) = tψ(tx).
If ψ is positive and

∫
ψ dµ = 1, then (ψt : t = 1, 2, 3, . . . ) is a positive

normalized approximate identity on L1(R, µ). For example, consider the
function ψ(x) = 1

π
1

x2+1
. Then with y = 1

t , the Poisson kernels ψ(x, y) =
1
π

y
x2+y2

are just the dilations ψt(x). So the following general results apply

in particular to the Poisson kernels.

Proposition 4.5. Suppose ψ is a positive even function on R which is
decreasing on R+. Assume that

∫
ψ dµ = 1. Then the approximate identity

(ψt : t ≥ 1) satisfies the following: for some constants c and C,

c f∗1 ≤ sup
t≥1

ψt ∗ f ≤ C f∗1

for all positive f ∈ L1(R, µ).

Proof. The upper estimate is obtained by approximating ψt by a convex
combination of functions of the form 1

2ε1[−ε,ε]. The lower estimate is obtained
from the fact that for x0 > 0, with ψ(x0) > 0, if x ∈ [0, x0t ], then ψt(x) ≥
tψ(tx0t ) = c t

x0
for some constant c. �

Corollary 4.6. Suppose ψ is a positive even function on R which is decreas-
ing on R+. Assume that

∫
ψ dµ = 1. The for a positive compactly supported

function f ∈ L1(R, µ), sup
t≥1

ψt ∗ f is integrable if and only if f ∈ L logL.

Proof. This follows immediately from Proposition 4.5 and Stein [15]. �

Corollary 4.7. Let φ be a smooth, increasing function such that
∞∑
k=1

1
φ−1(k)

=

∞. For any increasing sequence (tm), there exists a positive function f ∈

L1(R, µ), supported on [0, 1], such that

∥∥∥∥sup
m≥1

ψtm ∗ f
∥∥∥∥

1

=∞.

Proof. This follows from Proposition 4.5 and Proposition 2.15. �

Remark 4.8. Another example of the idea used above is the Fejér kernels

given by σn(x) = 1
n

(
sin(nx/2)
sin(x/2)

)2
on [−π, π]. Take our measure space to be

([−π, π], β, µ) where µ is Lebesgue measure. One feature of the Fejér kernels
that causes issues in calculations is that they are not decreasing on [0, π).
However, there is a constant c such that σn(1/n) ≥ cn. Since σn is an
even function and decreasing on [0, 1/n), this says that for come constant
c, σn ? f ≥ cn1[0,1/n] ? f for positive functions f . Hence, certainly there is
a constant c such that for positive functions f , we have c sup

n≥1
n1[0,1/n] ∗ f ≤
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sup
n≥1

σn ∗ f . It follows from Stein [15] that for a positive function, if the

Fejér maximal function sup
n≥1

σn ∗ f is integrable, then f ∈ L logL. Moreover,

for any rare maximal function supm σnm ∗ f , we have the same result as in
Corollary 4.7.

Since σn is not decreasing on [0, π), we cannot argue as with the dilation
approximate identities above, that for positive functions the maximal Fejér
function is dominated by the maximal Hardy–Littlewood function. How-
ever, one of the results in Móricz [12], see also Brown, Dai, and Móricz [2],
shows that for functions in L logL the maximal Fejér function is integrable.
Combining that with the above, we see for positive functions the maximal
Fejér function is integrable if and only if f ∈ L logL.

Remark 4.9. The comparisons above between the maximal functions for
the Poisson kernels, the maximal function for the Fejér kernels, and the
Hardy–Littlewood maximal function, show that for positive functions the
maximal functions for the Poisson kernels and the maximal function for
the Fejér kernels satisfy reverse weak inequalities (with suitable restrictions
on λ) as in (2.3). Also, the corresponding rare maximal functions have
restricted reverse weak inequalities as in Proposition 2.13.

4.2. Moving averages. One particular class of approximate identities that
we can handle as above with only a slight modification is the case of mov-
ing averages. See Nagel and Stein [13], Sueiro [16], and Bellow, Jones, and
Rosenblatt [1].

First we prove this proposition.

Proposition 4.10. Suppose we have a sequence (kn) in N with lim
n→∞

kn =

∞, and a sequence (xn) with lim
n→∞

xn = 0. Suppose θn = 2kn1[xn,xn+2−kn ].

Then for every ε ∈ (0, 1) there exists a measurable set Q ⊂ [0, 1] such that
µ(Q) < ε and for any λ ∈ [µ(Q), 1]

µ

{
sup
n≥1

θn ∗ 1Q >
λ

4

}
≥ 1

4λ
µ(Q).

Proof. The proof proceeds just as the proof of Proposition 2.13 We extend
the index sequence (kn : n ≥ 1) by letting k0 = 0. Let

rn(x) = sign sin(2nπx), n = 0, 1, 2, . . .

be the Rademacher functions on [0, 1]. Choose a whole number J such that
2−J < ε. For j = 0, . . . , J consider sets

Vj = {x ∈ [0, 1] : rkn(x) = 1 for n = 0, . . . , j}.
Each set Vj consists of disjoint dyadic intervals of length 2−kj . It is easy
to see that V0 = [0, 1], Vj ⊂ Vj−1 and µ(Vj) = 1

2µ(Vj−1) for j = 1, . . . , J .
Thus, for j = 0, . . . , J

µ(Vj) =
1

2j
.
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Let Q = VJ . Note that µ(Q) = 2−J < ε, and Q ⊂ Vj for j = 0, . . . , J . Let I

be any of the constituent intervals of length 2−kj that make up Vj . Observe
that

µ(I ∩Q)

µ(I)
=
µ(Vj ∩Q)

µ(Vj)
=
µ(Q)

µ(Vj)
=

1

2J−j
.(4.1)

Let L be the left half of I and let R be the right one. For any y ∈ R+ xj

[y − xj − 2−kj , y − xj ] ⊇ L,

so

µ(Q ∩ [y − xj − 2−kj , y − xj ]) ≥
1

2
µ(I ∩Q).

Since

θj ∗ 1Q(y) = 2kjµ(Q ∩ [y − xj − 2−kj , y − xj ])

we see that for any y ∈ R+ xj

sup
n≥1

θn ∗ 1Q(y) ≥ θj ∗ 1Q(y)

≥ 1

2
2kjµ(I ∩Q)

=
1

2

µ(I ∩Q)

µ(I)
=

1

2J−j+1

by (4.1). Let V 0
j be the union of the right halves of all of the constituent

intervals I in Vj . Then µ(V 0
j + xj) = µ(V 0

j ) = 1
2µ(Vj) = 1

2j+1 and

V 0
j + xj ⊂

{
y : sup

n≥1
θn ∗ 1Q(y) ≥ 1

2J−j+1

}

for j = 0, . . . , J .
Now if λ ∈ [µ(Q), 1] choose j, 1 ≤ j ≤ J, such that

1

2J−j+1
≤ λ ≤ 1

2J−j
.
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Then

µ

{
y : sup

n≥1
θn ∗ 1Q(y) ≥ λ

4

}
≥ µ

{
y : sup

n≥1
θn ∗ 1Q(y) ≥ λ

2

}
≥ µ

{
y : sup

n≥1
θn ∗ 1Q(y) ≥ 1

2J−j+1

}
≥ µ

{
y : θj ∗ 1Q(y) ≥ 1

2J−j+1

}
≥ µ(V 0

j + xj) =
1

2j+1

=
1

2
µ(Q)2J−j

≥ 1

2
µ(Q)

1

2λ

=
1

4λ
µ(Q). �

This proposition gives immediately the following result, just as Proposi-
tion 2.13 gave Proposition 2.15.

Proposition 4.11. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Suppose that we have sequences (εn) with all εn > 0 and

lim
n→∞

εn = 0, and (xn) such that lim
n→∞

xn = 0. Let θn = 1
εn

1[xn,xn+εn]. Then

there exists f ∈ L1(R, µ), supported in [0, 1], such that∥∥∥∥φ(sup
n≥1

θn ∗ |f |
)∥∥∥∥

1

=∞.

Remark 4.12.

(a) Of course, it follows from Proposition 2.16 that generically the result
in Proposition 4.11 holds.

(b) In both moving averages for differentiation and the ergodic averages,
when the moving averages yield an L1 pointwise result, then the
maximal function of the moving average is dominated in distribution
by the maximal function of the corresponding nonmoving averages.
Hence, if the function f is in L logL, then the maximal function is
locally integrable (integrable) respectively in the real case (ergodic
theory case). However, since the moving averages are inherently
defined along some subsequence, there can be no reverse result as in
Stein [15] and Ornstein [14].

The following analog of Proposition 4.11 holds for moving averages in
ergodic theory. The argument for this proceeds using Proposition 4.10 and
Proposition 4.11 as models, just as the results in Section 3 were proved.
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Proposition 4.13. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

=∞. Let N be a sequence increasing to ∞. Let v = (vm) be any

sequence of whole numbers. Let f∗N,v = sup
m≥1
|ANmf ◦ T vm | Then there exists

f ∈ L1(X, p) such that ‖φ(f∗N,v)‖1 =∞.

4.3. Dyadic martingales. Let Enf denote the usual classical dyadic mar-
tingale defined on L1([0, 1], p) where p is Lebesgue measure on [0, 1]. The
maximal functions sup

m≥1
E(|f ||βkm) and sup

m≥1
D1/2km |f | are distributionally

equivalent. This means that for some constant C, one has for all sequences
(km), for all λ > 0, and for all positive functions f ∈ L1([0, 1], p),

(4.2) p

{
sup
m≥1
E(f |βkm) > λ

}
≤ Cp

{
sup
m≥1

D1/2kmf >
λ

C

}
and

(4.3) p

{
sup
m≥1

D1/2kmf > λ

}
≤ Cp

{
sup
m≥1
E(f |βkm) >

λ

C

}
.

See Goubran [4], Lemma 2.1.11, where this idea appears in a comparison of
ergodic averages on `1(Z) and the usual dyadic reverse martingales on `1(Z).
The same technique can be used to prove the inequalities in (4.2) and (4.3).
The argument requires a cover lemma step and the estimate that Lemma 2.4
in [3] provides. See also Goubran [5] for a discussion of pointwise versions
of (4.2) and (4.3).

This equivalence in distribution shows that Stein [15] proves that for
a positive function f ∈ L1[0, 1], the full dyadic martingale (E(f |βk)) has
sup
k≥1

E(f |βk) integrable if and only if f ∈ L logL. Moreover, the follow-

ing also is immediate from our earlier result Proposition 2.8 by a simple
comparison of level sets.

Proposition 4.14. Suppose φ is a smooth, increasing function such that
∞∑
n=1

1
φ−1(n)

= ∞. Let (km) be any increasing sequence of whole numbers.

Then there exists a positive function f ∈ L1[0, 1] such that∥∥∥∥φ(sup
m≥1

E(f |βkm)

)∥∥∥∥
1

=∞.

Remark 4.15. Because the martingale is L1-norm convergent, Proposi-
tion 1.1 applies. So as in the above discussions about differentiation and
ergodic averages, Proposition 4.14 provides us a limitation on what we can
do by dropping to a subsequence of the dyadic martingale.



548 S. BUTLER AND J. ROSENBLATT

Remark 4.16. From (4.2), we can see there is there is a reverse weak in-
equality for the full dyadic martingale maximal function sup

k≥1
E(f |βk) anal-

ogous to the results of Stein [15] and Ornstein [14]. Moreover, there would
be restricted reverse maximal inequalities as in Proposition 2.13, and these
could also be used to prove Proposition 4.14 directly.

5. Additional issues

Here are some particular questions that we have not yet been able to
answer.

(1) For which classical maximal functions is there a result analogous to
Stein’s result in [15]? Alternatively, for which ones are there reverse
weak inequalities for a useful range of λ?

(2) For what other maximal functions can we obtain divergence results
as above? In particular, for which ones are there restricted reverse
weak inequalities?

There are a number of other issues raised by the results in this paper. For
example, generally we cannot characterize the subspaces where rare maximal
functions are integrable. Also, if we have two rare maximal functions, we do
not know how to determine when the functions integrable with respect to
one of them are the same as the functions that are integrable with respect
to the other one. These questions and related ones will be discussed more
in a later paper.
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