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1. Erratum

There is an error in the remarks that occur between Equations (4.2) and
(4.3) in [1]. Checking Equation (3.6) for the map g∗ is necessary but not
sufficient for (4.2) to hold as is implied by the remarks. The sentence

Therefore G(x) = ϕi+1 ◦ g∗ ◦ ϕ−1i (x) = ϕi ◦ g∗ ◦ ϕ−1i−1(x) is
well-defined for every point x ∈ X.

does not hold. In fact G is not always well-defined when (3.6) holds. We
remove the specific form of f from (3.6), and then we add condition (3.7);
all equalities hold (mod1):

g∗({θ}) = −g∗({−θ}),(3.6)

θ ∈ [0, 1/2] ⇒ g∗({θ}) ∈ [0, 1/2].(3.7)

We note that (3.6) and (3.7) in turn imply (3.8) and (3.9):

θ ∈ (1/2, 1) ⇒ g∗({θ}) ∈ (1/2, 1),(3.8)

g∗({1/2}) = 0 or g∗({1/2}) = 1/2.(3.9)
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Figure 1. The graph of gs from Remark 5.2

Conditions (3.6) and (3.7) are sufficient for (4.2) to hold. Only (3.6) appears
in [1]; this omission led to errors in the statements of Theorem 4.1 and 6.3, for
which we offer corrections in the next section. The particular map g∗ defined
just before (4.1) does not satisfy (3.7) and in fact G is not well-defined in
Theorem 4.1; Theorem 6.3 contains a similar error. While Theorem 6.3
has a simple correction using an alternative map discussed in [1], we can
only prove a modified version of Theorem 4.1. A similar modification to
Theorem 4.2 is also required.

2. Corrigenda

We start with the simple correction needed in Section 6.

2.1. A correction for Theorem 6.3. If we use the map described in Re-
mark 5.2 instead of the map fs used (i.e., use the degree one circle map
whose graph is the reflection about x = 1/2 of the map fs used), then The-
orem 5.3 remains unchanged, and in Theorem 6.3, statement (2) is replaced
by “(2) The points A and B are repelling fixed points of Gs.” The graph of
the degree one map is shown in Figure 1.

2.2. Section 4 corrections. We cannot recover the statements of Theo-
rems 4.1 and 4.2 as given in [1]. However we state revised versions here.
Instead of fd(x) = dx (mod1) given in [1] (also written as f(z) = zd), we
use closely related maps denoted Fd, each one a d-to-one map with the prop-
erty |F ′d(x)| = d and which maps [0, 1/2] onto [0, 1/2]. The formula for F2

is:

F2(x) =



2x if x ∈
[
0, 14
)
,

1− 2x if x ∈
[
1
4 ,

1
2

)
,

2− 2x if x ∈
[
1
2 ,

3
4

)
,

2x− 1 if x ∈
[
3
4 , 1
)
.
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Figure 2. The graphs of F2 and F3
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Figure 3. The ergodic decomposition and Bernoulli parti-
tions of F ∗22 on M

There is an analogous formula for each d ≥ 3, and we describe the graph
here. For x ∈ [0, 12 ], reflect any segment of the graph of fd(x) = dx (mod1)

which lies above the y = 1/2 line across that line, and for x ∈
(
1
2 , 1
]
, reflect

any segment below the line y = 1/2 across that line. The graphs for d = 2
and d = 3 are illustrated in Figure 2. Evidently Fd satisfies the properties
in Equations (3.6)–(3.9), making G well-defined on nP .

The map Fd has two ergodic components (the intervals
[
0, 12
)

and
[
1
2 , 1
)
),

and the map F ∗2d on the symmetric product I∗2 ∼= M (the Mobius band)
has three ergodic components as shown in Figure 3; each color represents
an ergodic component and a generating Bernoulli partition is shown within
each ergodic component.
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The revised Theorems 4.1 and 4.2 are as follows; the proofs are as in
[1], but instead we use the maps Fd given here and make obvious minor
modifications.

Theorem 4.1 (Revised). Given any nonorientable compact surface X of
genus n ≥ 2, there exists a map G : X → X which is locally Lipschitz on
X (Lipschitz in each coordinate chart), continuous, and smooth except on a
finite number of curves, and satisfying:

(i) G preserves a smooth probability measure mn on X.
(ii) G has three ergodic components with respect to mn.
(iii) The restriction of G to each ergodic component is isomorphic to an

n-point extension of a one-sided Bernoulli shift.
(iv) On each ergodic component G is transitive and chaotic, but not topo-

logically exact.
(v) htop(G) = 2 log d.

Theorem 4.2 (Revised). Suppose (S1,B,m, f) is any nonsingular d-to-one
dynamical system satisfying the following conditions:

(1) f is continuous on S1 and differentiable except at finitely many
points.

(2) f is topologically exact.
(3) f is weak mixing.
(4) In additive coordinates, f(1 − x) = 1 − f(x) for all x ∈ [0, 1] and

f([0, 1/2]) = [0, 1/2].

Then for any nonorientable compact surface X of genus > 1, f defines
a d2-to-one nonsingular map G on X with respect to a smooth measure µ,
has at most three ergodic and chaotic components and G is continuous and
differentiable µ-a.e.

At the end of Section 4 in [1] we show how the measure theoretic entropy
of the examples we construct can be reduced; this still holds with a slight
variation on the examples Tp given. By reflecting the inner two line segments
of the graph shown in Figure 8 of [1] about the line y = 1/2, we can still
obtain Gp of arbitrarily small entropy as claimed.
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