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Sequences of pseudo-Anosov mapping
classes and their asymptotic behavior

Aaron D. Valdivia

Abstract. In this paper we provide a construction which produces
sequences of pseudo-Anosov mapping classes on surfaces with decreasing
Euler characteristic. The construction is based on Penner’s examples
used in the proof that the minimal dilatation, δg,0, for a closed surface
of genus g behaves asymptotically like 1

g
. We give a bound for the

dilatation of the pseudo-Anosov elements of each sequence produced by
the construction and use this bound to show that if gi = rni for some
rational number r > 0 then δgi,ni behaves like 1

|χ(Sgi,ni
)| where χ(Sgi,ni)

is the Euler characteristic of the genus gi surface with ni punctures.
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1. Introduction

Consider a surface Sg,n with genus g and n punctures with negative Euler
characteristic. The group of orientation preserving self homeomorphisms of
the surface up to isotopy is called the mapping class group, Mod+(Sg,n).
By the Nielsen–Thurston classification [4] an element of the mapping class
group is either periodic, reducible (i.e., there exists a nontrivial invariant
family of disjoint curves), or pseudo-Anosov. A pseudo-Anosov element is
one which fixes a pair of transverse measured singular foliations

φ((F±, µ±)) = (F±, λ±1µ±)

up to scaling the measures µ± by a constants λ±1 where λ > 1. The number
λ is called the dilatation of φ. For fixed g and n the set of dilatations of
pseudo-Anosov mapping classes in Mod+(Sg,n) is discrete and closed [1] [7].
Therefore for fixed g and n the minimum, δg,n, is achieved by some mapping
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class φ ∈ Mod+(Sg,n). One open question about the spectrum of dilatations
is the following one.

Question 1.1. Given a surface of negative Euler characteristic, Sg,n, what
is the value of δg,n?

This question is only answered for a handful of cases of small g and
n, see [11], [5], [2]. More is known about the asymptotic behavior of these
numbers. Penner proved a lower bound for minimal dilatations and explored
the asymptotic behavior for closed surfaces.

Theorem 1.2 ([9]). Given a surface Sg,n with negative Euler characteristic
the minimal dilatation, δg,n, satisfies the following inequality:

(1) log(δg,n) ≥ log(2)

12g − 12 + 4n
.

Theorem 1.3 ([9]). Consider the closed surfaces of negative Euler charac-
teristic. Then the minimal dilatations, δg,0, statisfy the following:

(2) log(δg,0) �
1

g
.

By the notation A � B we mean there exists C ∈ R+ such that B
C ≤ A ≤

BC.

Tsai [12] (cf. [6]) continued this investigation for punctured surfaces and
showed that for g = 0 or g = 1 and n even the behavior is

log δg,n �
1

n
.

However for surfaces of fixed genus g > 1 the minimal dilatations behave
like

log(δg,n) � log(n)

n
where n→∞.

This leads to the following question.

Question 1.4 ([12]). What is the behavior for the minimal dilatations for
different sequences of (g, n)?

In this paper we provide a partial answer to Tsai’s question.

Theorem 1.5. Given any rational number r the asymptotic behavior of δg,n
along the ray defined by g = rn is

log(δg,n) � 1

|χ(Sg,n)|
,

where χ(Sg,n) is the Euler characteristic of the surface Sg,n.

The proof follows Penner’s proof of Theorem 1.3. Penner proves a gen-
eral lower bound in Theorem 1.2 and defines a sequence of pseudo-Anosov
mapping classes φg : Sg,0 → Sg,0 such that λ((φg)

g) is bounded by some



PSEUDO-ANOSOV MAPPING CLASSES 611

constant. We use Penner’s lower bound and generalize his examples. This
generalization allows us to construct sequences with the logarithm of the
dilatation bounded by some constant multiple of 1

|χ(Sg,n)| . Making certain

choices we find examples giving the upper bound for Theorem 1.5.
In Section 2 we recall some known results about pseudo-Anosov mapping

classes and train tracks and some techniques of Penner’s used in provid-
ing the upper bound for closed surfaces. In Section 3 we define general-
ized Penner sequences and begin to prove that such a sequence φm has
log(λ(φm)) � 1

|χ(Sg,n)| . In Section 4 we apply our construction and its be-

havior to the proof of Theorem 1.5.

Acknowledgments. I would like to thank Eriko Hironaka for suggesting
the problem solved in this paper and for many helpful conversations. I would
like to thank Beson Farb for reading an earlier version and for his helpful
comments. I would also like to thank the referee for a number of suggestions
that greatly improved the readability of the paper.

2. Background

In this section we recall some facts about pseudo-Anosov mapping classes
and train tracks that will be used later in this paper.

Dehn showed in [3] that the mapping class group is generated by finitely
many Dehn twists dx where x is a simple closed curve in the surface. The
following theorem of Penner’s gives a partial answer to the question of which
compositions of Dehn twists define pseudo-Ansov mapping classes.

Theorem 2.1 (Penner’s Semigroup Criterion [8]). Suppose C and D are
each collections of disjointly embedded simple closed curves in an oriented
surface S. Suppose C interesects D minimally and C ∪D fills S (i.e., the
connected components of S\C ∪ D have nonnegative Euler characteristic).
Let R(C+, D−) be the semigroup generated by {dc | c ∈ C} ∪ {d−1d | d ∈ D}.
If ω ∈ R(C+, D−), then ω is pseudo-Anosov if each dc and d−1d appears in
ω.

A train track is graph embedded in a surface with a definable tangent
direction at the vertices. An example can be found in Figure 3. Every
pseudo-Anosov mapping class φ : Sg,n → Sg,n has an invariant train track
τ ⊂ Sg,n. Invariant here means we pick a representative of φ which we
will also call φ. Then φ(τ) is carried by τ , or there exists a homotopy
Ht(x) : Sg,n → Sg,n such that H0(x) = id, H1(φ(τ)) ⊂ τ , H1(x)|φ(τ) is

C1, and the restriction of the differential dH1(p) is nonzero for every point
p ∈ φ(τ). This homotopy defines a transition matrix T [ai,j ] on the edges of
τ . The entry ai,j is the incidence of the edge i with the edge j after applying
φ followed by the homotopy. To be more precise let p be a point on edge j
of τ we have ai,j = |H−11 (p) ∩ φ(ei)|.
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Definition 2.2. An admissible measure is a set of real non negative num-
bers, or weights, assigned to each edge of a train track τ with the sum of
weights for the incoming edges equal to the sum of weights for the outgoing
edges at each vertex. Incoming and outgoing are defined by an arbitrary
choice of tangent direction at each vertex.

The matrix T [ai,j ] defines a linear action on the vector space of admissable
measures of τ . Each admissable measure of τ defines a measured singular
foliation of Sg,n. The real positive eigenvector of T is the invariant foliation
and the eigenvalue is the dilatation. For a further discussion of train tracks
see [10] [8].

Recall that a nonnegative matrix M such that Mn is positive for some n >
0 is said to be Perron–Frobenius. Such a matrix has a unique positive real
eigenvector with real eigenvalue which is the spectral radius of the matrix.
We will use the following lemma to bound the spectral radii of these matrices.
The result is well known, and we include the proof for the convenience of
the reader.

Lemma 2.3. The spectral radius of a Perron–Frobenius matrix is bounded
by the largest column sum.

Proof. Let M be a Perron–Frobenius matrix with spectral radius λ and
corresponding left eigenvector v with norm 1. This eigenvector is real and
positive.

|vM | = λ =

∑n
i=1 vimij

vj
for all j = 1, . . . , n.

Let vj be the largest component of v. Then we have:

|vM | = λ =
n∑
i=1

vi
vj
mij .

But each term vi
vj
≤ 1 and each term mij ≥ 0 and so we have the inequality:

λ ≤
n∑
i=1

mij .

Thus λ is bounded by the largest column sum. �

We will construct pseudo-Anosov maps and corresponding Perron–Frobe-
nius matrices.

As we have already mentioned a pseudo-Anosov mapping class defines
a pair of transverse measured singular foliations (F±, µ±). The following
lemma tells us when a pseudo-Anosov mapping class extends under the
forgetful map to another with the same dilatation, see [6].

Lemma 2.4. If φ is a pseudo-Anosov mapping class on the surface Sg,n
with some subset I of the punctures fixed setwise, if none of the points in
I are 1-pronged then the punctures in I may be filled in and the induced
mapping class φ̃ : Sg,n−|I| → Sg,n−|I| is pseudo-Anosov with λ(φ) = λ(φ̃).
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An m-gon is a possibly punctured disc in Sg,n\τ with m cusps on its
boundary. We will be able to apply Lemma 2.4 with the use of the following
Lemma, see [10].

Lemma 2.5. Let φ be a pseudo-Anosov mapping class and τ an invariant
train track. Then we have the following:

(1) The singularities and punctures of S defined by the stable foliation
of φ are in one-to-one correspondence with the the m-gons of τ .

(2) A singularity or puncture is m-pronged if and only if it is contained
in an m-gon of τ .

We will use this information in order to construct examples, find transition
matrices that bound their dilatation and lastly extend these examples to
ones suitable for the gn-rays we are interested in.

3. Penner sequences

In this section we will define Penner sequences and give the stepping
stones to prove the following theorem.

Theorem 3.1. Given a Penner sequence of mapping classes φm : Fm → Fm,

log(λ(φm)) � 1

|χ(Fm)|
where χ(Fm) is the Euler characteristic of the surface Fm.

First we contstruct the surfaces the mapping classes are defined on. Con-
sider an oriented surface Sg,n,b with genus g, n punctures, and b boundary
components, and with two sets of disjoint arcs on the boundary components
a− and a+ such that

a− ∩ a+ = ∅
and an orientation reversing homeomorphism

ι : a+ → a−.

Let Σi be homeomorphic copies of Sg,n,b and let hi : Sg,n,b → Σi be identity
homeomorphism for each i ∈ Z. Set

F∞ =
⋃
i∈Z

Σi/∼

where yi ∼ yj if, for some x ∈ a+ and k ∈ Z,

(yi, yj) = (hk(x), hk+1(ι(x))).

Given the map

ρ = hi+1h
−1
i

the group 〈ρ〉 acts properly discontinuously on F∞. Then we define

Fm = F∞/ρ
m.
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The map πm : F∞ → Fm denotes the projection defined above. Further
we define the map ρm : Fm → Fm to be the map induced by ρ such that
ρmπm = πmρ.

We then pick two sets of multicurves C and D on Σ1 satisfying Theo-
rem 2.1. A connecting curve is a curve, γ, on F∞ such that γ ⊂ Σ1 ∪ Σ2,
C ∪ ρ(C) ∪ γ is a multicurve, γ intersects D ∪ ρ(D) minimally, and the set
of curves

J = {ρi(C ∪D ∪ γ)}∞−∞
fills the surface F∞.

Definition 3.2. A sequence of mapping classes φm : Fm → Fm is called a
Penner sequence if for some (C,D) as in Theorem 2.1, some curve γ as above,
and some fixed word ω ∈ R(πm(C)+, πm(D)−) which is pseudo-Anosov on
πm(Σ1) we have

φm = ρmdπm(γ)ω.

Next we want to show that these mapping classes are pseudo-Anosov. We
start with the following lemma about train tracks. Here we allow our train
tracks to have bigons.

Lemma 3.3. Given a Penner sequence φm there exists an invariant train
track on each surface Fm such that the curves in πm(C) and πm(D), and
the curve πm(γ) are carried on the train track.

Proof. We construct a train track on the surface F∞ and then project it
to Fm. Consider the set of curves J in the definition of F∞. Then assign
positive orientation to all curves

{ρi(C ∪ γ)}∞−∞
and negative orientation to all curves

{ρi(D)}∞−∞.
We then smooth the intersections according to Figure 1 where + denotes a
positively oriented curve and − denoted a negatively oriented curve.

Figure 1. Smoothing

This provides a train track τ which may be projected to a track τm on
Fm. It is easy to see that all the curves in J are carried by τ and thus the
projections of these curves are carried by τm. One can check that the image
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of the train track under any single positive Dehn twist about an element
of πm(C ∪ γ) or a negative Dehn twist about any element of πm(D) leaves
τm invariant. Lastly the map ρm permutes the edges of τm and so τm is
invariant with respect to φm. �

The next lemma allows us to compute the entries of a transition matrix
on this train track. First we establish some notation. Let the set of curves
πm(C) = {Γ1,Γ2 . . . ,Γr} and πm(D) = {∆1,∆2 . . . ,∆s} now set

N = r + s+ 1 = |πm(C) ∪ πm(γ)|+ |πm(D)|.
Each curve of πm(C) ∪ πm(D) ∪ πm(γ) is carried by the train track and
so induces an admissable measure on the train track. The weight for any
given edge is the cardnality of the carrying map’s preimage over a point
on the edge. We think of admissable measures as vectors where the en-
tries are weights on the edges. Let the vectors µnN+1, . . . , µ(n+1)N corre-
spond to the admissable measures defined by the curves ρnm(Γ1), . . . , ρ

n
m(Γr),

ρnm(∆1), . . . , ρ
n
m(∆s), ρ

n
m(γ) respectively where n = 0, . . . ,m− 1.

Lemma 3.4. Consider admissable measures µx and µy as above and d?x is
the map on admissable measures induced by dx then

(d?x)s(x)(µy) = µy + i(x, y)µx.

Here dx(y) is understood to be the Dehn twist corresponding to the curve
defining µx twisting the curve defining µy. Also

s(x) =

{
1 if x ∈ ρnm(πm(C ∪ γ)) for some n,

−1 otherwise.

Proof. We assume that the Dehn twists are performed in a neighbohood
about τm. Then if the intersection number of these curves is k, dx(y)s(x) will
have one strand parallel to the curve defining µy and k strands parallel to the
curve defining µx away from the vertices of τm. The sign s(x) insures that

near the vertices of τm the curve dx(y)s(x) moves according to the smoothing
in Lemma 3.3. We then see the curve is carried by the train track τm and
the measure induced gives the desired result. �

There is a vector space corresponding to all real weights on the edges of
the train track with standard basis {ei} for each edge ei of τm. The admiss-
able measures we have defined are each a sum of these standard basis vectors.
By construction they partition the standard basis and so are a linearly in-
dependent set of vectors. They form an ordered basis {µ1, . . . , µmN} for a
subspace of the weight space and every nonnegative vector of this subspace
is an admissable measure. We will continue to use this basis throughout the
rest of the paper.

The above lemma also shows us that the transition matrix for an appropri-
ately signed Dehn twist on this subspace can be defined by the intersection
numbers of the curves in Jm = {ρim(πm(C ∪D ∪ γ))}mi=1. Explicitly a Dehn
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twist about the curve defining the kth basis element has transition matrix
T [ai,j ] with ai,j = 1 if i = j, ak,j = i(k, j) and 0 otherwise.

Lemma 3.5. The matrix Tφm is Perron–Frobenius for each m ≥ 2.

Proof. We consider the mapping class

φmm = (ρmdπm(γ)ω)(ρmdπm(γ)ω) . . . (ρmdπm(γ)ω).

With the observation that ρmm is the identity map on Fm one can see that
this map is a composition of Dehn twists with appropriate sign about all
the curves in Jm. Since Jm is connected and is a union of mN curves using
Lemma 3.4 we see that if v is a nonnegative vector and not the zero vector
then the nonzero entries of Tmφm(v) cannot decrease in value. Furthermore

if v has components with zeros, the number of zero components of Tmφm(v)
must be less than the number of zero components of v. Since v has length

mN , (Tmφm)mN (v) is strictly positive. In particular Tm
2N

φm
(µx) is strictly

positive for each standard basis vector µx, x = 1, . . . ,mN . Therefore Tm
2N

φm
is strictly positive. �

Remark. An admissable measure on a bigon track defines a measured folia-
tion up to an equivalence of the admissable measures [10]. We only consider
a subset of the admissable measures when computing transition matrices.
Since we have shown that the transition matrix on these measures is Perron–
Frobenius the Perron–Frobenius eigenvector is positive and defines an invari-
ant foliation for the mapping class. We will prove that these mapping classes
are pseudo-Anosov in the next section, therefore the invariant expanding fo-
liation is unique and we need not worry about the equivalent measures or
measures outside the considered subset.

4. Asymptotic behavior

Proof of Theorem 3.1. Recalling the observation that φmm is a composi-
tion of Dehn twists about all the curves in Jm, with appropriate sign, we
see that the mapping classes (φm)m are pseudo-Anosov by Penner’s semi-
group criteria. If φmm is psuedo-Anosov then the mapping class φm is as well.
Lemma 3.3 gives an invariant bigon train track.

As stated in Theorem 2.3 the spectral radius of a Perron–Frobenius matrix
is bounded by the largest column sum of the matrix. So now we would like
to compute the matrix defining the action on the transverse measures. This
matrix will be Perron–Frobenius by Lemma 3.5 and can be computed using
Lemma 3.4.

The map ρ permutes the curves of Jm and so the induced map on the space
of weights spaned by µ1, . . . , µmN , is defined by an m×m block permutation
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matrix

Mρm =


0 0 . 0 I
I 0 . 0 0
0 I . 0 0
. . . . .
0 0 . I 0


where each block is N×N , all block matrices will have the same dimensions.

The Dehn twist about the connecting curve gives the map with transition
matrix defined by

Mdγ =


U V 0 . 0
0 I 0 . 0
. . . . .
0 0 0 . I


since γ intersects only elements of πm(D) ∪ ρm(πm(D)).

Lastly the transition matrix for the map induced by the word ω is given
by

Mω =


W 0 0 . X
0 I 0 . 0
0 0 I . 0
. . . . .
0 0 0 . I

 ,

since the curves we perform Dehn twists about may only intersect the curves
πm(C ∪D ∪ γ ∪ ρ−1m (γ)).

Then the matrix for the map φm is given below by matrix multiplication
after making the identifications UW = Y and UX = Z:

Mφm =



0 0 0 0 . 0 I
Y V 0 0 . 0 Z
0 I 0 0 . 0 0
0 0 I 0 . 0 0
. . . . . . .
0 0 0 0 . 0 0
0 0 0 0 . I 0


.

The matrix Y depends on the word ω. The matrix V may have nonzero
entries only in the last row except that the last column must be zero since
γ ∩ ρ(γ) = ∅. The observation V 2 = 0 will be important later.

V =


0 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . 0
v1 v2 . vr+s 0

 .
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The matrix Z will depend on ω as well but only has nonzero entries in the
last column. Now we want to consider the matrix Mm

φm
. Inductively we see

that for 1 < k < m− 1 the matrix Mk
φm

has the form given by the following
matrix with the first column starting with k − 1 zero entries and the last
k − 1 entries of the first row equal to zero. Depicted is M5

φm
. Here we use

the fact that V 2 is the zero matrix.

Mk
φm

=



0 0 0 . 0 0 I 0 0 0 0
0 0 0 . 0 0 Z Y + V Z V Y 0 0
0 0 0 . 0 0 0 Z Y + V Z V Y 0
0 0 0 . 0 0 0 0 Z Y + V Z V Y
V Y 0 0 . 0 0 0 0 0 Z Y + V Z
Y V 0 . 0 0 0 0 0 0 Z
0 I 0 . 0 0 0 0 0 0 0
0 0 I . 0 0 0 0 0 0 0
0 0 0 . 0 0 0 0 0 0 0
. . . . . . . . . . .
0 0 0 . I 0 0 0 0 0 0
0 0 0 . 0 I 0 0 0 0 0



.

Then we can find the transition matrix for the mth iterate:

Mm
φm

=



Y V 0 0 0 . 0 0 Z
ZY Y + V Z + ZV V Y 0 0 . 0 0 Z2

0 Z Y + V Z V Y 0 . 0 0 0
0 0 Z Y + V Z V Y . 0 0 0
. . . . . . . . .
. . . . . . . . .
0 0 0 0 0 . Z Y + V Z V Y
V Y 0 0 0 0 . 0 Z Y + V Z


.

Then this matrix is Perron–Frobenius by Lemma 3.5 and by Theorem 2.3
the spectral radius is bounded by the largest column sum. A block column
sum is either equal to a column sum of Y +ZY +V Y , V +Y +V Z+ZV +Z,
V Y + Y + V Z +Z, or Z +Z2 + V Y + Y + V Z. Therefore the dilatation of
the mth iterate is bounded by a constant, say P . This tells us that

log(λ(φm)) ≤ P

m
.

Then Theorem 1.2 with the upper bound just given finishes the proof. �

Next we use this to prove Theorem 1.5.

Proof of Theorem 1.5. With Penner’s lower bound we only need the up-
per bound to prove the asymptotic behavior. Suppose a ray has slope p

q

with gcd(p, q) = 1 then let Sg,n,1 have (n, g) = (q, p). Create any Penner
sequence with a+ being an arc on the boundary component and a− another
disjoint arc on the boundary component such that the complement of the
two arcs in the boundary component is two points. This sequence of map-
ping classes then has the required upper bound on dilatation. This gives
sequences on gn-rays through (n, g) = (2, 0). Further if we choose our curves
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Figure 2. Choice for curves

Figure 3. Train track

as in Figure 2, which is shown with a chosen connecting curve as well, then
an invariant train track for φm is given in Figure 3.

From this we can see by Theorem 2.5 that the two fixed punctures are not
1-pronged. Filling in both fixed punctures we obtain sequences of mapping
classes with the same dilatation and two fewer punctures, the sequences for
the lines passing through the origin. �

References

[1] Arnoux, Pierre; Yoccoz, Jean-Christophe. Construction de difféomorphismes
pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 75–78.
MR0610152 (82b:57018), Zbl 0478.58023.

[2] Cho, Jin-Hwan; Ham, Ji-Young. The minimal dilatation of a genus-two surface. Ex-
periment. Math. 17 (2008), no. 3, 257–267. MR2455699 (2009i:37096), Zbl 1153.37375,
doi: 10.1080/10586458.2008.10129045.

[3] Dehn, M. Die gruppe der abbildungsklassen. Das arithmetische Feld auf
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