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On dual-valued operators on Banach
algebras

Maria J. Aleandro and Carlos C. Pena

ABSTRACT. Let U be a regular Banach algebra and let D : U — U™ be
a bounded linear operator, where U™ is the topological dual space of U.
We seek conditions under which the transpose of D becomes a bounded
derivation on U**. We focus our attention on the class D (i) of bounded
derivations D : U — U™ so that (a, D(a)) = 0 for all a € U. We consider
this matter in the setting of Beurling algebras on the additive group of
integers. We show that U is a weakly amenable Banach algebra if and
only if D (U) # {0}.
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1. Introduction

Throughout this article & will be a Banach algebra. By [J and ¢ we will
denote the first and second Arens products on U** (cf. [1]). The Banach
algebra U is said to be reqular when these products coincide, in which case
we will simply write [0 = = e. If U/ is regular it is readily seen that U*
becomes a Banach U**-bimodule. As usual, B (U ,U{*) will denote the space
of bounded operators between U and U* and Z' (U**,U*) will be the space
of bounded derivations between U** and U*. As is well known, when en-
dowed with the uniform norm B (U,U*) and Z* (U**,U4*) are Banach spaces.
By D (U) we will denote the class of D-derivations consisting of bounded
derivations D : U — U* such that (a,D(a)) = 0 if a € U. Clearly any in-
ner derivation from U into U* is a D-derivation. For problems related to
these special classes of derivations, their characterization and examples in
the context of Banach algebras of continuous functions or projective Ba-
nach algebras, we recommend [3]. In Proposition 1 we will characterize
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those operators D € B (U, U*) whose dual belongs to Z! (U**,U*) under the
hypothesis that U is a regular Banach algebra. Further, the corresponding
problem if D € Z! (U,U*) will be considered in Proposition 2. In Theorem
6 we will provide conditions under which D € D (i) if D* € Z' (U**,U*).
In Proposition 7 it will be shown that any D € D (U) is (w,w) continuous.
This matter and examples in the setting of Beurling algebras on Z will be
considered in Theorem 8. For further information and background on the
subject of this paper, we recommend [11], §1.4, p. 46. In addition, impor-
tant articles concerning the regularity of Banach algebras are [8], [12] and
[13]. Conditions under which the second transpose of a U*-valued bounded
derivation on U becomes a bounded derivation on U** endowed with the
first Arens product were investigated in [7] and [2].

2. Transposes and bounded derivations between U4 and U*

Proposition 1. If i is a regular Banach algebra and if D € B (U,U*), then
the following assertions are equivalent:

(i) D* € Z (U™, u*).
(i) If a € U and if ®, ¥ € U**, then
(aD* (®),V) = (VD(a) — D* (V) a, D).
(iii) If a € U and if &,V € U**, then
(D* (V) a,®) = (D(a)® — aD* (@), V).
Proof. (i)=(ii). Let ®,¥ € &** and @ € U. Then
(¥D(a),®) = (D(a), D e ¥)
a,D* (D e T))
a, D*(®)¥ 4 ®D*(V))
= (aD*(®), V) 4+ (D*(V)a, D).

o~ o~ o~ ——

(ii)=(iii). Given ®,¥ € U™, a € U, it will suffice to see that
(1) (UD(a),®) — (aD* (®),¥) = (D(a)® — aD* (P), V).
But (1) is an immediate consequence of the regularity of U.

(iii)=(). If a €4 and &,V € U™ we have

(a,D* (PeW)) = (D(a), D e V)
= (D(a)®, V)
= (D*(¥)a,®)+ (aD* (D), V)
= (a,PD* (V) + D* (®) V).
Since a is arbitrary the claim holds. O

Proposition 2. Let U be a regular Banach algebra and let ky» : U* < U™
be the natural embedding of U* into U***. Given D € Z! (UU*), the
following assertions are equivalent:
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(i) D* € ZY(U*=,u*).

(ii) If a € U and if ® € U™, then ky» (aD* (®)) + aD*™* (B) = 0.

(iii) If a € U and if & € YU**, then D** (a®@) + ky+ (D* (a®P)) = 0.
Proof. (i)=(ii). Let D* € Z1 (U**,U*), a € U. Given ®, ¥ € U**, consider
bounded nets {b;};cr, {¢j};c; in U such that ® = w*-limies ky (bi) and
U = w*-limjecy ki (¢j), where ky : U — U** denotes the usual isometric
embedding of U/ into its second dual space U** by means of evaluations.
Hence

(D* (V) a,®) = 111€HI1 (bj, D* (V) a) = lllenl1< (ab;) ,¥) = lller??g} (¢j, D (ab;)) .

Further,
(2) (D(a) — D* (¥)a,®) = (D(a), D e ¥) — (a,PD* (1))
~ limlim ((bicj, D(a) ~ (e, D (ab)))

= —liml D(b;
zlgjlrg@’a (0:))

= —lim (aD (b;), V)
el
— (D" (Va), ®)
and the conclusion follows from Proposition 1 and (2).
(ii)=(iii). If a € Y and @, ¥ € U™ we write
(3) (D" (¥)a,®) = (D" (Va) + ¥D(a), ®) = (¥D(a),®) — (aD" (¥),).

Moreover, (¥ D(a), ®) = (D(a)®, V) because U is regular. Hence, by (3) we
obtain
(D* (V) a,®) = (D(a)® — aD* (®),V) = — (D* (ad), V).
(ili)=(). If a €U and &,V € U** we write
(0, D" (& o W) = (D(a)®, ¥)

— (aD" (®) - D* (a®), )
= (aD*(®),¥) + (D" (V) a, ®)

= (a,D* (®) U + ®D* (V)) . O

Corollary 3. Let U be a reqular Banach algebra. Given D € Z' (U,U*)
such that D* € Z1 (U**,U*), then

UD™ (U™)U D™ (U™ )U — U*.
Theorem 4 (cf. [3, Theorem 2.1]). Let U be a general Banach algebra such
that U? is dense in U, where
U* =span{zy : z,y €U}.
Then for D € Z1 (U,U*), the following assertions are equivalent:
(i) DeDU).
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(ii) (@, D(y)) + (y, D(x)) =0 for all z,y € U.
(iii) D* o ky € Z1 (U, U*).
(iV) D+D*oky= Ou,u*.
Corollary 5. Let U be a general Banach algebra such that U? is dense in
U. If D € ZY U U*), then D € D U) if and only if for all a,b,c € U the
following identity
(4) {ab, D(c)) + {ca, D(b)) + (bc, D(a)) = 0
holds.
Proof. (=) For a,b,c e Y and D € D (U)
(ab, D(c)) + (ca, D(b)) + (bc, D(a)) = (ab, D(c)) + (ca, D(b)) — {a, D(bc))
=0.
(<) If a,b € U let {b,} and {c,} be sequences in U such that b =
lim, o0 (bncp) , then
{a, D(b)) + (b, D(a)) = lim {{a, D(bncy)) + (bncn, D(a))}
= nh_)ngo {{a, D(by)cn + b D(cp)) + (bncn, D(a))}

= nh_g)lo {{ena, D(bn)) + (abn, D(cn)) + (bncn, D(a))}
= 0. O

Theorem 6. Let U be a regular Banach algebra, and let D € Z (U,U*).
(i) IfU? is dense in U and D* € Z1 (U**,U*) then D € D(U).
(ii) Suppose D € D (U) has the property that

(5) i ling (c;, aD(bi)) = limlim (c;, aD(bi))

for every pair of bounded sequences inU, {b;};c;, {c; }jeJ’ and every
a €U for which both iterated limits exist. Then D* € Z' (U™, U*).
Proof. (i) By Proposition 2 if D* € Z! (U**,U*), the equality (4) holds for
all a,b,c € U. Thus the conclusion follows from Corollary 5.
(i) If a,b € U, then aD** (ky (b)) = ky= (aD(b)). So, by Theorem 4 we
get,
0 = ky=(aD(b)) — aD™ (ke (b))
= ky=(aD* (kg (=b))) + aD* (ks (=0)) .
If & € U™ let {b;};; be a bounded net in U such that ® = w*-lim;es ky (b;).
Define ¢ € U* by (c, () = (D* (ky (c) a) , ®). Thus ¢ = w*-lim;e; aD (b;) and
ky- (¢) = aD** (®). For, let ¥ € U™ such that ¥ = w*-limjc ky (¢;) in
U** for some bounded net {c;},; in U. So, by (5) we have

(U, aD™ (®)) = hIrIl l.in} (cj,aD(b;)) = hm hm (¢j,aD(b;)) = (¢, V).
ST ANIS
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Consequently,

(U, kye+ (aD* (®)) + aD™ (®)) = (U, ky= (aD* (®) + ())
~ (D" (8) + C, )
= %1619 (¢j,aD™ (@) + ()

= lim [(D(cja), ®) + (¢ ku(c;))]
je

= limlim [(b;, D (¢cja)) + (aD(bi), ku(c;))]
jedJ iel
= lim li i a (D" (ky (b D (b;
syl (e, 0 (D" (ke () + D (0:))
=0.
Since ¥ was arbitrary, ky- (aD* (®)) + aD** () = 0 and the conclusion
follows from Proposition 2. O

Proposition 7. If D € D (U) then D* is (w, w)-continuous.

Proof. If D € D, let {®;},.; be a net in U** such that w-lim;c; D*(®;) #
Oy« There exists © € U™ and a subnet {®;};.; of {®;};.; such that

(D*(®;),0)| > 1if iel.
Let {aj}jEJ be a bounded net in U such that

= w* — i Y.
0 =w jlemjku(aj)

Since {ky- (D (aj))},c; is a bounded net in &*** by the Banach-Alaoglu
theorem there is a subnet {a;}, ; such that the limit w*-limje s, k= (D (a;))
defines an element M in U**. As D** € (w*, w*),

D™(©) = w* — lim D**(ky (a;)).
J€N

In particular, by Theorem 4 we deduce that D** o kyy = ky» o D. Hence, if
i € I we obtain

1 < (D*(®;),0)]
= |(®;, D™(0))|
= lim (@i, D" (ku (a)))]
= lim [(®i, k- (D ()]

i.e., w—limiej @1 # OU**' U
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3. An application to Beurling algebras on the group (Z, +)

Given a function w : Z — RT let U = ¢! (Z,w) be the space of complex
sequences {am},cz such that ||al|, , £ 3, o7 |am|w(m) is finite. With the

natural vector space operations (Z/{ , HoHLw> is a Banach space. Further, let

us suppose that w is a weight function, i.e., w (m +n) < w (m)w (n) for all
m,n € Z and w (0) = 1. Then, for a,b € U the convolution product

axb= {Z ambn_m}
nel

meEZ
is well defined and U/ becomes a Banach algebra. These algebras are called

Beurling algebras on the additive group Z (cf. [6], [9]). The topological dual
U* consists of all functions A : Z — C such that

Nt 2 sup {IA (m)] w(m) ™ s m € 2}
is finite. Indeed, U is a dual Banach algebra whose predual can be identified
with the the closed subspace cg (Z, wil) consisting of those sequences A €
£ (Z,w_l) such that Aw~! vanishes at infinity. Since the additive group

of integers is discrete and countable there are weights w on Z such that

0 (Z,w) is regular. Further, U is regular if
it @ (mi + ny) _0
i<i w (m;) w(n;)

for all sequences of distinct elements of Z (see [5]). For instance, U is not
regular if w (m) = 1 or w(m) = exp (|m|), and it is regular if w(m) = 1+|m|
for all m € Z.
Theorem 8. Let D € Z* (U U*).

(i) There is a unique complex sequence {Am},,cz such that

(6) HDH = sup {wh(n| ) sup ‘)\m—f—P—l’ } ,

meZ m) pez w(p)

and if a € U we have

(7) D(a) = { Z m)\mﬂ,lam} .
PEZL

meZ

(ii) If we write Do (a) £ {—ma—m},,cz for a € U then Dy € DU) and
any other element of D(U) is a constant multiple of Dy.

(iii) D(U) #{0} if and only if U is a non-weakly amenable Banach al-
gebra.

(iv) If D € D(U) then D (U) C co (Z,w™).

(v) If D € D(U) then D* + Do Koy w1y = O (z0-1)* foo (1)

(vi) If D € D (U) then Do k? = k%, oD

o(Zw—1) 0 (Z,w)
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Proof. (i) If m € Z, let ey, be the characteristic function of {m} considered
as an element of U and let D (em) = {Amp} ey in £ (Z,w™t). Since D
satisfies the Leibnitz rule, the following identities Ay, 4p g = A p+q + Apm+q
hold for all m,p,q € Z. Let us write A, = Ai,m for m € Z. It is readily seen
that A p = mAmyp—1 if m,p € Z. Hence (7) holds since for each p € Z the
linear form p — (ep, 1) belongs to £ (Z, w_l)* . Now,

< €m ) ‘ . 1 |)\m,p|

sup || D = sup P

meZ w (m) co,w—1  mMEL w(m) pez w(p)
Im| [ Amtp—1]

= sup <|ID].

sup
mez w(m) pez W ()

We can assume that D # 0. If 0 < ¢t < ||D|| there exist m,p € Z such that
ImAm4p—1] /w(m)w(p) > t. Otherwise, we can choose u,v € [Uf], such that

< (0, D)) <Y opl D ImAmp-1um| <ty 0], <t
PEZ mEZ

which is absurd. Thus (6) follows.
(ii) It is straightforward to see that Dy € D(U). Moreover, with the above
notation let D € D(U) and m,p € Z. By Theorem 4(ii) we see that

0 = (em, D(ep)) + (ep, D(em)) = (M + p) Apip—1.
Hence A\, p = Antp—1 = 0 if m +p # 0 while A\, _,;, = mA_1. Consequently
D (en) = A_1me_,, and D = A_1Dy.
(iii) Observe that U is not weakly amenable if and only if
[ml
B e wlm)w(—m)
(cf. [10], Corollary 4.8). Further, by (6),

< 400

Im|
9 Dy|| =sup ————
) 1Doll = 28 tomy(=m)
and the conclusion now follows.

(iv) If a € U and m € Z by (9) we have

[—ma_m| ___|m|

o) = wimyw(em 1=l w=m) < Dol am w(=m),

ie., limy, oo (—ma—p,) /w(m) = 0.

(v) Let & be the subset of elements F' € £>° (Z)* whose induced finitely
additive set function ur(E) £ (xg, F) defined for all E € P (Z) vanishes on
finite subsets of Z. Certainly

(°(Z) =kpz) [('(Z)] @ &
(cf. [4, Theorem 3.2]). Further, since Id1 (7, = k:o(Z,wfl) o kp1(z,4) then

(10) 2 (Z,07Y)" = gy [ (Z,w)] @ Ker [, .01
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Let Ay : 01 (Z) — £* (Z,w) be the isometric isomorphism such that

Ay () = {z(m)/w (m)}mEZ
if z € ¢*(Z). Then

(11) AT (R) = ker [k;;o(sz,l)] .
For, let be given F' € £ and A € ¢g (Z, w_l). Then
(12) (A Ky @ (A::,*<F>>> S <A;1; (kepzw 1y V) F)

(m) /w(m)} ez F)

/ —dpp.

But {em},,cz can be considered as a Schauder basis of cg (Z, w_l). More-
over, using (12) we can write

(13) (A Ky )<A::<F>>>=<ZA ) €, k(0 )<A:;*<F>>>

meZ
=D A(m <em, co(Z,w1) (AZ*(F))>
meZ
=> A(m / A
mEeZ
= 0.

Since A was arbitrary then k 1 (A% (F) = Op(zw)- On the other
hand, given ® € ker [k:O(Z w*l)} we set F' = (A;l)** (®). Ifm e Z, let X{m)
be the characteristic function of {m} considered as an element of (> (Z).
Given a € (! (Z,w) we see that

() = (42 (33 )
= <w (m) keo(zw—1) (em) , q)>
=w(m) <em, k':o(z;,wfl) (<I>)>
=0.

Therefore, F' € 8 and (8) holds. If ® € U/**, then by (10) and (11), there are
unique elements a € Y and F € K such that ® = ki (a) + A% (F) . Finally,
it is easy to verify that a = k7 Zw-1) (®) and given b € U we have

(b, DG (®)) = (b, =Dy (a)) + (A} (F), key(zu-1) (Do(0)))

_ <b, _ (DO ° k:o(m,l)) (<I>)> .

(vi) It suffices to apply Theorem 4 and (v). O
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