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A class of locally conformally flat
4-manifolds

Selman Akbulut and Mustafa Kalafat

Abstract. We construct infinite families of nonsimply connected lo-
cally conformally flat (LCF) 4-manifolds realizing rich topological types.
These manifolds have strictly negative scalar curvature and the under-
lying topological 4-manifolds do not admit any Einstein metrics. Such
4-manifolds are of particular interest as examples of Bach-flat but non-
Einstein spaces in the nonsimply connected case. Besides that the un-
derlying smooth manifolds are examples of spaces that admit open book
decomposition in dimension 4.
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1. Introduction

A Riemannian n-manifold (M, g) is called locally conformally flat (LCF)
if there is a function f : U → R+ in a neighborhood of each point p ∈ M
such that g̃ = fg is a flat metric on U . It turns out that there is a simple
tensorial description of this elaborate condition. The Weyl curvature tensor
is defined as

Wijkl = Rijkl +
R

(n− 1)(n− 2)
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gik gil
gjk gjl

∣∣∣∣−
1

n− 2
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∣∣∣∣+
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)
.

It is a nice exercise in tensor analysis [JV] that for n ≥ 4, M is LCF if and
only if W = 0. In dimension 3 this role is taken over by the Cotton tensor,
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and in dimension 2 all manifolds are LCF. The Weyl curvature tensor yields
a symmetric operator W : Λ2 → Λ2 defined by the formula

W(ω) =
1

4
Wijklωkle

i ∧ ej

where {e1, . . . , en} is an orthonormal basis of the 1-forms. We are mainly
concerned with dimension 4, and in this case the space of the 2-forms de-
composes into the ±1 eigenspaces of the Hodge star operator Λ2 = Λ2

+⊕Λ2
−.

Furthermore the operator W sends (anti-) self-dual 2-forms to (anti-) self-
dual 2-forms, hence inducing the decomposition W =W+ ⊕W−. We call a
Riemannian manifold M self-dual (SD) ifW− = 0, and anti-self-dual (ASD)
if W+ = 0. In these terms M is LCF if and only if it is SD and ASD at the
same time. For basics of LCF manifolds we refer to [Mat, JV]. Some com-
mon examples in dimension four are the manifolds with constant sectional
curvature, product of two constant sectional curvature metrics of curvature
1 and −1, e.g., S2×Σg for g ≥ 2, product of a manifold of constant sectional
curvature with S1 or R. See [K] for a recent survey of LCF and self-dual
structures on basic 4-manifolds. Our main result is the following.

Theorem 1.1. There are infinite families of closed, nonsimply connected,
locally conformally flat 4-manifolds, called panelled web 4-manifolds, with
Betti number growth: b1 → ∞, b2 → ∞ or bounded, and χ → −∞. These
manifolds have strictly negative scalar curvature.

We show that many new topological types can be realized. The idea is to
conformally compactify S1 ×M3 where M is a hyperbolic 3-manifold with
boundary. The reader will see that the resulting manifold is closed but it is
not simply S1 cross a 3-manifold. It is obtained through spinning around
the boundary of the 3-manifold. Recall:

Theorem 1.2 ([Br]). Let M̄3 be an oriented, geometrically finite complete
hyperbolic manifold with nonempty boundary, such that ∂M̄ = ∪Sj consists
of either a disjoint union surfaces of genus ≥ 2, or M̄ = D2 × S1. Let M
be the interior of M̃ . Then M ×S1 has a oriented closed, smooth conformal
compactification X4, with an S1 action.
X is locally conformally flat (LCF). The action has the fixed point sets

conformal to the boundary surfaces ∪Sj of M̄ (the ideal points of the com-
pactification). The normal bundles of the fixed surfaces are trivial with S1

weight 1. The hyperbolic structure on M can be recovered from X by giving
X−∪Sj the metric in the conformal class for which the S1 orbits have length
2π. Then M is the Riemannian quotient of X − ∪Sj by S1.

In particular the connected sums ]nS
3 × S1 and S2 × Σg for g ≥ 2 can

be obtained from this theorem. In the first case we begin with several
cyclic groups of isometries of H3 each of which yields a quotient D2 × S1,
combining them by the first combination theorem gives a classical Schottky
group corresponding to the boundary connected sums of the corresponding



A CLASS OF LOCALLY CONFORMALLY FLAT 4-MANIFOLDS 735

D2× S1s. Boundary connected sum in three dimensions corresponds to the
(S1 equivariant conformal) connected sum in four dimensions. In the second
case we begin with a Fuchsian group of isometries of H3, yields a quotient
I × Σg.

In this paper we begin with a more general class of Kleinian groups called
the panelled web groups, constructed by Bernard Maskit in [MaPG]. Af-
ter the application of the Theorem 1.2, we obtain 4-manifolds with more
complicated topology. We describe concrete handlebody pictures of these
manifolds in terms of framed links, which describes their smooth topology.
We will call these LCF manifolds panelled web 4-manifolds. We hope that
our concrete “visual” techniques here will be useful in constructing special
metrics on other manifolds, especially the other nonsimply connected ones.

We are also able to compute the sign of the scalar curvature for the pan-
elled web 4-manifolds. Recall that by the solution of the Yamabe problem,
any Riemannian metric on a closed manifold is conformally equivalent to
the one with constant scalar curvature. And the sign of this constant is
an invariant of the conformal structure, called the type of the metric or its
conformal class. Using the results of [LeSD] and additionally [SY, Na] we
can show the following.

Theorem 1.3. The conformal class of the natural metric on the panelled
web 4-manifolds is of negative type, i.e., the metric can be rescaled to have
constant negative scalar curvature. In the case of b2 6= 0, more generally the
underlying topological manifolds of panelled web 4-manifolds do not admit
any locally conformally flat metric of positive or zero scalar curvature.

Considering the natural metric of these manifolds, one can also directly
compute its sign through the Hausdorff dimension of the Kleinian groups
used to uniformize the related hyperbolic 3-manifold. See Section 6 for the
details.

Finally, we can give an answer to the problem of whether the underly-
ing smooth 4-manifolds admit any Einstein metric. We compute the Euler
characteristics of the manifolds we construct. The Euler characteristics of
the building blocks are all strictly negative, since the Euler characteristic
is additive, and it turns out to be strictly negative for all of our panelled
web 4-manifolds. By the generalized Gauss–Bonnet Theorem we express the
Euler characteristic χ of a 4-manifold as

χ(M) =
1

8π2

∫

M

s2

24
− |

◦
Ric |2

2
+ |W |2 dVg.

If M admits an Einstein metric, then the trace free Ricci curvature tensor

◦
Ric = Ric− s

4
g

vanishes identically. So that χ ≥ 0, which implies the following:
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Theorem 1.4. The topological manifolds underlying the panelled web 4-
manifolds do not admit any Einstein metrics.

This is interesting because of the following. Einstein metrics are have
vanishing Bach tensor, so that they are Bach-flat (BF). LCF metrics are also
BF. Then our examples are BF but not Einstein. Therefore, in the highly
nonsimply connected case, these examples illustrates the converse statement.
See also 6.32 of [Bes] for simpler examples. It is easier to give simply-
connected examples of this phenomenon; ]nCP2 carries self-dual metrics
by [LeEx] however no Einstein metric for n ≥ 4 by the Hitchin–Thorpe
inequality.

It is a curious question whether these smooth manifolds carry any optimal
metric [LeOM]. Since they do not admit any Einstein metric, the first
possibility is eliminated. Another possibility of being scalar-flat anti-self-
dual (SF-ASD) can also be eliminated in b2 6= 0 case, since the techniques
mentioned in Section §6 goes through in this case as well. Besides that,
since the signature of these manifolds vanish, self-duality or anti-self-duality
of the metric is equivalent to being locally conformally flat in this case.
Consequently the optimal metric problem currently remains open for these
manifolds.

Note that the handlebody pictures are essential to deal with nonsimply
connected manifolds in general. This is the standard and only way to define
and understand them generally. Otherwise one trapped into products and
connected sums. There is no way to get complicated topological types other
than showing the explicit surgery scheme. They are somehow the definition
of the manifolds. Products of simple manifolds and their connected sums
constitute a set of measure zero in the whole family of nonsimply connected
4-manifolds. Because of this reason, we consider this study as a foundational
work to analyze, give examples of LCF (and also SD) metrics on nonsimply
connected spaces. This work has many further applications. In a forth-
coming paper [AKO] using the techniques here, we construct self-dual but
not locally conformally flat metrics on families of nonsimply connected 4-
manifolds with small signature. Secondly, in [AK] we analyze the existence
of symplectic, almost complex and complex structures on the panelled web
4-manifolds constructed here, and give interesting counterexamples. More
applications are on the way.

In Section 2 we review the hyperbolic 3-manifolds which we use in our
constructions. In Section 3 we describe the topology of the building blocks
of the 4-manifolds in interest, by constructing their handlebody pictures. In
Section 6 we compute the sign of the scalar curvature of the metrics on these
manifolds. In Section 4 we compute the algebraic topological invariants of
these 4-manifolds. Finally in Section 5 we construct interesting sequences
of locally conformally flat 4-manifolds by using these building blocks.
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2. Panelled web groups

In this section we will describe the 3-manifolds from which we construct
our LCF 4-manifolds. These are closed hyperbolic 3-manifolds, which are
obtained by dividing out the hyperbolic 3-space H3 with a group of its
isometries. The isometry group is a discrete group obtained out of certain
Fuchsian and extended-Fuchsian groups, by taking their combinations using
the theorems of Maskit. In 1981 B. Maskit introduced this new class of
Kleinian groups called the panelled web groups, and gave a set of examples.
Here we first review the constructions in [MaPG].

Definition 2.1. A Fuchsian group is a discrete group of fractional linear
transformations z 7→ (az + b)/(cz + d) acting on the hyperbolic plane1 H2,
where ad − bc 6= 0 and a, b, c, d are real. The group is of the first kind if
every real point is a limit point, it is of the second kind otherwise.

Möbius transformations can be written as a composition of reflections
and inversions. These motions act on the extended complex line Ĉ as well
as on the upper half space H3 = {(z, t)|z ∈ C, t ∈ R+} by the usual way. In
our case the trasformations preserves the H2 so that they are written as a
product of reflections and inversions in lines and circles which are orthogonal
to the real line. The extended motions in H3 preserve the planes passing
through the real line, it follows that if G is a Fuchsian group then, H3/G =
H2/G× (0, 1).

A group of Möbius transformations is called elementary if it has at most
two limit points. As an example, a hyperbolic cyclic group

H = 〈z 7→ λ2z〉, λ 6= 1

or its conjugates has two limit points and H2/H is an annulus. Another is a
trivial group, it has no limit point and H2/{1} is a disk. Let Σg,n be the inte-
rior of a compact orientable surface with boundary, where g and n stand for
the genus and number of boundary components, respectively. Assume Σg,n

is neither a disk nor an annulus. Then there is a purely hyperbolic, nonele-
mentary Fuchsian group of the second kind G so that H3/G = Σg,n× (0, 1).
Conversely, if G is a finitely generated, purely hyperbolic, nonelementary
Fuchsian group of the second kind, then H2/G is the interior of a compact

1We will be using the upper half plane model of the hyperbolic plane throughout this
paper.
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orientable surface with boundary neither a disk nor an annulus, so that
H3/G = Σg,n × (0, 1).

We can construct the group G corresponding to the surface of genus g
with n boundary components using 4g + 2(n − 1) disjoint, identical circles
C1, C

′
1 · · · C2g+n−1, C ′2g+n−1 centered at the real line. The generators of

G will be Möbius transformations ai mapping Ci to C ′i, which can be con-
structed as a composition of an inversion in Ci followed by a reflection in the
perpendicular bisector of the centers of the two circles. Using either of the
combination theorems, we see that the group G generated by a1 · · ·α2g+n−1
is discrete, and acts freely on H2. Figure 1 shows the case for g = 1 and

a3 a4a1 a2

C1 C2 C ′
1 C ′

2 C3 C ′
3 C4 C ′

4

H2

Figure 1. Schottky generators for the Fuchsian group for Σ1,3.

n = 3. Notice that each generator a3, a4 generates a hole, on the other hand
the generators producing the genus a1, a2 altogether generates only one hole
as they stick all the nearby boundary components together. The quotient
H3/G is the product Σ × (0, 1) is the interior of Σ × I for I = [0, 1] which
is called an I-bundle of type (i) or a trivial I-bundle on Σ. If there is an ori-
entation reversing, free, involutive homeomorphism h : Σ→ Σ, we extend h
to an orientation preserving homeomorphism

h′ : Σ× I → Σ× I by h′(x, t) = (h(x), 1− t),
then we call the quotient Σ× I/h′ to be an I-bundle of type (ii) or a twisted
I-bundle associated to Σ or over Σ/h. Next we will construct the Kleinian
groups corresponding to the twisted I-bundles.

Definition 2.2. A nonelementary Kleinian group which is not itself Fuch-
sian, but contains a subgroup of index 2 which is Fuchsian, is called an
extended Fuchsian group.

A Möbius transformation is called parabolic, loxodromic or elliptic if the
number of its fixed points in H̄3 is one, two or infinity, respectively. Hyper-
bolic elements are the transformations conjugate to z 7→ λz, λ > 1, which
are also loxodromic. Besides, a transformation is elliptic iff it has a fixed
point in H3.

If we start with a finitely generated, nonelementary, purely loxodromic
extended Fuchsian group G, we can write G = 〈g,G0〉, for some Fuchsian
group G0, so that g G0g−1 = G0 and g2 ∈ G0 ([MaPG, MaKG, MaTa]).
After renormalizing we can assume that g has fixed points at 0,∞ and then
g maps a Euclidean plane passing through the real line with an inclination
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of α with the upper half plane onto a Euclidean plane also passing through
the real line with inclination of π − α degrees. The plane with α = π/2 is
kept invariant. G has no elliptic elements so it is torsion-free, implying that
the action of g on the α = π/2 plane can have fixed points only on the real
axis. We conclude that H3/G is equal to the H3/G0 modulo the action of
g, so is an I-bundle of type (ii) over H2/G.

To construct our 3-manifolds, we glue the hyperbolic 3-manifolds obtained
out of the quotients of Fuchsian and extended-Fuchsian groups. The gluing
is done along the cylinders. If we begin with the case n > 0, i.e., surfaces
with holes, then the quotient 3-manifolds have cylinders along the boundary,
corresponding to the boundary curves. These are of the form W × I for a
boundary curve W . Each boundary cylinder has a median W × {1/2} on
it, which divides it into two half cylinders. The gluing procedure is to glue
these half cylinders by the standard homeomorphism matching the medians
to get a connected 3-manifold at the end, which does not have any more
spare (unglued) half cylinders. Then we finish the construction with the
optional complex twist operation along some of the medians. All of these
operations are done using the combination theorems, which never lead us
out of the class of geometrically finite groups. Gluing the half cylinders of
two different 3-manifolds is achieved by the following:

Theorem 2.3 (First Combination [MaC1, MaC3]). Let G1 and G2 be Klein-
ian groups with a common subgroup H. Let C be a simple closed curve
dividing Ĉ into the topological disks B1, B2 where Bi is precisely invariant
under H in Gi. Then the group G generated by G1 and G2 is discrete, and
G is the free product of G1 and G2 with amalgamated subgroup H. If Di’s
are fundamental domains for Gi’s, where Di ∩Bi is a fundamental domain
for the action of H on Bi, then D1 ∩D2 is a fundamental domain for G.

Here, a subset A of Ĉ is said to be precisely invariant under the subgroup
H in G, if h(A) = A for every h ∈ H and g(A) ∩A = ∅ for every g ∈ G\H.
Let us illustrate this gluing with an example from [MaPG] with a Fuchsian
group G1 and an extended-Fuchsian group G2, which will correspond to
the trivial and twisted I-bundles over Σ1,2. Here G1 is generated by the
elements whose actions are described by the circles C1, C

′
1 · · ·C4, C

′
4. We

choose the circles generating the genus closer to each other so that they do
not generate an extra hole, this reduces the number of boundary circles to
two. We label the elements generating these holes as b and a, and slide the
center of the circle C ′4 to the right on the real axis till it reaches +∞ and
then slide back from −∞ to the right till it reaches to the origin. So that
the outside of C4 is mapped inside of C ′4 contrary to the standard mapping
in Figure 1. The fundamental region of G1 as a Kleinian group looks like
Figure 2. C ′4 is the large and C4 is the small circle centered at the origin.
By our choice of the circle C ′4 we intend to provide the common subgroup
to be H = 〈a〉 where a : z 7→ λz, λ > 1. a is a dilation which is still a
schottky generator. The dotted lines and circles denote the lens angle for
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a and b, which is the smallest angle between the real axis and the largest
precisely invariant circular region bounded above by a circle passing through
the fixed points of the group, and below by the real axis. It is denoted by
ϕH . Incidentally, a and b are the boundary elements of this Fuchsian group,
e.g., the generators of the hyperbolic cyclic subgroups of a Fuchsian group
of the second kind keeping invariant the segment of the real axis on which
the group acts discontinously. The dashed circles encloses invariant regions
for the boundary elements a and b. The two lines stand for the parts of
circles at infinity.

b

a

precisely
invariant
under a

precisely
invariant
under b

π/3

C4

C ′
4

Figure 2. Fundamental region of G1 as a Kleinian group.

Figure 3. Σ1,2 with its involution and how it sits in the funda-

mental region for G2.

The fundamental region for G2 is constructed in a more complicated way.
We begin with the Fuchsian group generating Σ0,3, such that one of the
holes is generated by the same a as in G1. We than add a new generator g2
mapping the rest of the holes to one another. Adjoining this new element g2
can be considered as an application of the second combination Theorem 2.4.
G2 corresponds to the twisted I-bundle over Σ1,2.
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a

precisely
invariant
under a

π/3

Figure 4. Fundamental region of G2 as a Kleinian group.

Finally, we conjugate the group by g : z 7→ exp(2πi/3)z to rotate the
fundamental region by π/3 in the counter clockwise direction so that the
fixed points, geodesics of the elements of G2 generated by other than a lies
on the other side of the line C : θ = π/3, as in Figure 4 . We direct the
reader to [MaPG] for details. To apply the combination theorem, we take

the line C as the seperating circle which seperates Ĉ into the disks B1, B2

lying on the left and right hand side in the Figure 5, respectively. We choose
our lens angles ϕ < π/3 so that Bi is precisely invariant under H = 〈a〉 in
Gi. The combination theorem says that the group generated by G1 and G2

is discrete. A fundamental domain is as in Figure 5.
In three dimension, we glued the cylinder of the twisted I-bundle to a

cylinder of the trivial I-bundle along L/H where L is the geodesic plane
in H3 with boundary C. However we only want to glue the half-cylinders.
We can take apart the glued half-cylinders and glue back in a different way
using the second combination theorem.

Theorem 2.4 (Second Combination [MaC2, MaC3]). Let G be a Kleinian
group with subgroups H1 and H2. Let B1, B2 be two disjoint topological disks
where (B1, B2) is precisely invariant under (H1, H2) pairwise. Suppose there
is a Möbius transformation f mapping the interrior of B1 onto the exterrior
of B2, where fH1f

−1 = H2. Then the group G∗ generated by G and f is
discrete, has the relations of G and fH1f

−1 = H2. A fundamental domain
is given by D∩ ext(B1)∩ ext(B2), where D is a fundamental domain for G.

Here, the pairwise precise invariance of {A1, A2} means the usual invari-
ance with the condition that gAi ∩Aj = ∅ for i 6= j and for any g ∈ G. We
apply this theorem to the subgroups 〈a〉 and 〈b〉 in the group G, which we
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a2,1

precisely
invariant
under a1

π/3

C

B1
B2

precisely
invariant
under a2

Figure 5. Fundamental region of the first combination of G1 and

G2 along 〈a〉.

have constructed above. We arrange the loxodromic transformations a and
b such that they are conjugate to the transformation z 7→ λz with the same
λ called the multiplier, so that they are conjugate to each other. Choose
B1 as the sector | arg z − 4π/3| < ϕ where ϕ < π/3. It is clearly precisely
invariant under H1 = 〈a〉 in G. We choose B2 to be the inside of the circular
arcs passing through the fixed point of the group H2 = 〈b〉. We take out the
sector and inside the circular arcs, and glue the boundaries by the theorem.
See Figure 6.

In three dimensions, recall that applying the first combination, we have
glued a cylinder of the trivial I-bundle to the cylinder of the twisted I-bundle.
Application of the second combination tears apart one of these glued half-
cylinders, and glues the half-cylinder of the trivial I-bundle to its opposite
half-cylinder, glues the spare half-cylinder of the trivial I-bundle to the spare
half-cylinder of the twisted I-bundle. Figure 7 shows the identifications
before and after the application of the second combination theorem.

Our final operation is the p/q complex twist operation for relatively prime
integers p and q. We illustrate the case for p/q = 1/3. This will be nothing
but the application of the Second Combination Theorem toG andH0 = 〈a0〉,
where a0 : z 7→ λ1/3 exp(2πi/3)z and the common subgroup is taken to be
H1 = 〈a〉, where a : z 7→ λz, λ > 1. If we consider the isomorphism H0 ≈ Z,
then H1 will correspond to the 3Z in Z since a30 = a. A fundamental region

in Ĉ for H1 is an annulus of radii 1 and λ. The quotient H3/H1 is an
open hyperbolic solid torus. As we adjoin the elements generated by a0
to the group, two thirds of the annulus becomes redundant, a sector of
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B1

precisely
invariant
under a

B2

precisely
invariant
under b

Figure 6. Application of the second combination theorem.

Figure 7. Effects of the first and second combination theorems

in 3 dimensions.

2π/3 degrees becomes the fundamental region for H0 as in Figure 8. The
hyperbolic quotient again becomes a solid torus, obtained from a Dehn twist.

We have to normalize G so that its fundamental region fits into the an-
nulus piece. For this purpose, G2 is joined into G via conjugation z 7→
exp(2πi/9)z by rotating 2π/9 degrees rather than 2π/3, so that the identi-
fied circles stays inside the annular region between −π/9 and 5π/9. Besides,
apply the first combination theorem to G1 and G2 taking the region B1 as
| arg z − 4π/9| < ϕ with ϕ < π/9, and B2 as before with its new lens angle
ϕ. Now to combine the annular region with G, we take B′1 as the annular
region | − π/9 < arg z < 5π/9| which is precisely invariant under H1 = 〈a〉



744 SELMAN AKBULUT AND MUSTAFA KALAFAT

a0(1)

−π/9

5π/9

1
λ1/3

λ2/3

λ

a0(λ1/3)

a0(λ2/3)

a0(λ)

Figure 8. A fundamental region for H0.

in H0. Take B′2 to be the complementary region |5π/9 < arg z < 2π − π/9|
precisely invariant under H1 in renormalized G. Figure 9 shows the resulting
fundamental region. Recall that H3/H0 is a hyperbolic solid torus topolog-

a0(1)

−π/9

5π/9

1
λ1/3

λ2/3

λ

a0(λ1/3)

a0(λ2/3)

a0(λ)

2π/9

0

Figure 9. Fundamental region after 1/3-complex twist.

ically obtained after applying three Dehn twists to the solid torus H3/H1.
The ray {(z, t)|z = 0, t > 0} ⊂ H3 projects onto the central loop of the solid
tori, where it is homotopic to the (1, 0) curve, the parallel on H3/H1. On
the other hand it is homotopic to the (1, 3) torus knot on the boundary of
H3/H0. The second solid torus is opened up along this homotopy, and glued
back onto an opened up median of H3/G in three dimensions.
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3. Handlebody diagrams

In this section we will draw handlebody diagrams of the some of the LCF
4-manifolds constructed from the 3 manifolds of the previous section via the
application of the Theorem 1.2. We will begin with Σ1,2, the torus with two
holes, then cross it with the interval I = [0, 1], and then glue the boundary
cylinders with each other either trivially or with a flip. Then by gluing a
solid torus to this (along the p/q knot in its boundary) to obtain the panelled
web 3-manifold. We then cross this with S1 and identify its boundary to
obtain the panelled web 4-manifold.

Figure 10 is a handlebody picture of the twice punctured 2-torus: It con-
sists of a 2-disk (i.e., 0-handle) with three 1-handles attached to its boundary,
and one 2-handle (attached along the outer boundary of the figure). Then
Figure 11 is just the thickening of this handlebody, which is the Heegard
diagram of I × Σ1,2.

Figure 10. One-handles of the torus with two punctures.

A

BB

A

C

D

D

C

Figure 11. Heegard Diagram for I × Σ1,2.

Now, we identify the two boundary cylinders in I × Σ1,2 via the Second
Combination Theorem of Maskit [MaKG, MaPG]. We can do this in two
different ways, either trivially or with a twist. We will sketch the pictures of
the manifolds resulting from both ways of gluing. This identification glues
the neighborhoods of the middle circles (called the medians [MaPG]) of the
cylinders. As shown in Figure 12.

This operation of identifying the neighborhoods of the two circles, is usu-
ally called the attaching a round 1-handle operation. A round 1-handle is a
combination of a 1-handle and a 2-handle as illustrated in Figure 13.
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parallel twisted

Figure 12. Identification of the boundary cylinders.

1-handle

2-handle

EE

Figure 13. 2- and 3-dimensional round handles.

In the diagram of Figure 14, the median1 and the median2 are the cores
of the 1-handles C and D, respectively. This is because the median circles
lie on the cylinders, which make the holes on the 3-manifold, and we formed
these holes by the 1-handles C and D.

There are two different ways of gluing the neighborhoods of the merid-
ians. Both ways are illustrated in Figure 14. In our figure we flipped the
hole i.e., the 1-handle so that we can obtain one identification from the
other. We will call one cross identification (the left picture), and the other
parallel identification (the right picture). In general the two different ways
of attaching the round 1-handles give nondiffeomorphic 3-manifolds. (e.g.,
Figure 15)

C

DD

C

E

E

median1

median2

C

DD

C

E

E

∼

C

D

D

C

E

E

C

D D

C

E

E

∼ ∼

Figure 14. Obtaining the parallel round handle from the cross

round handle.

The final operation to perform is to add a p/q twist to this handlebody
by gluing a solid torus to it. This is done by identifying an annulus on its
boundary with a neighborhood of a p/q torus knot on the boundary of the
solid torus, where p is the multiplicity of the meridian direction. Since the
p/q curve is isotopic to 1/q curve in the solid torus, it suffices to take p = 1.
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A

BB

A

C

DD

C

E

E

A

BB

A

C

DD

C

E

E

median1

median2

Figure 15. Two different ways of inserting the round handle.

The solid torus here is viewed as a 1-handle, with a p/q torus knot lying
on its boundary. In Figure 16 we sketch the 1/3 torus knot as an example.
This operation is similar to attaching a round handle operation (since we

FF

Figure 16. 1/3 torus knot on the 1-handle.

are identifying two circles), it is achieved with a 1-handle and a 2-handle
addition as in Figure 17. This finalizes the picture of the Maskit’s panelled
web 3-manifold.

To pass to the 4-manifold, we cross this 3-manifold with a circle, and then
shrink the boundary circles. Shrinking a circle is equivalent to identifying it
to a point, which is achieved by attaching a 2-disk, we will call this capping
the circle operation.

We begin by thickening the 3-manifold, i.e., crossing with an interval.
In particular, this amounts to thickening the pair of attaching 2-disks of
the three dimensional 1-handle to 3-balls (the attaching balls of the four
dimensional 1-handle). The attaching circles of the 2-handles inherit the
blackboard framing from the 2-dimensional Heegard diagram. The black-
board framing can be computed as the writhe of the attaching knot of the
2-handle, i.e., the signed number of self crossings, which turns out to be 0
in our case. After thickening, we need to take the double of what we have.
Thickening and taking the double is the same as crossing with a circle and
capping the boundary circles, as the lower dimensional Picture 18 illustrates.
Recall that the double of a compact n-manifold X is defined to be



748 SELMAN AKBULUT AND MUSTAFA KALAFAT

A

BB

A

C

DD

C

E

E

FF

Figure 17. Maskit’s 1/3 complex twist operation.

D(Y × I) Cap∂Y (Y × S1)

≡

Figure 18. D(Y × I) = Cap∂Y (Y × S1) for the interval Y .

DX = ∂(I ×X) = X∪id∂X X̄.
where X̄ is a copy of X with the opposite orientation. We denote the
thickened 4-manifold by X, which is a 4-dimensional handlebody without
3- or 4-handles. Then DX automatically inherits a handle decomposition:
By turning the handle decomposition of X upside down, we get the dual
handle decomposition of X̄, which we attach on top of X getting DX =
X ∪ dual handles. Note that the duals of 0-, 1- and 2-handles are 4-, 3- and
2-handles, respectively. Since 3-handles are attached in a unique way, they
don’t need to be indicated in the picture.

Hence to draw a handlebody picture of the double DX from a given
handlebody picture of X, it suffices to understand the position of the new
(dual) 2-handles. They are attached by the id∂X map, along the cocores
of the original 2-handles on the boundary. So to get the double we insert
a 0-framed meridian to each framed knot, as in the example in Figure 19.
The 3- and 4-handles are attached afterwards uniquely to obtain the closed
4-manifold (they don’t need to be drawn in the figure). We will denote
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this closed manifold by M1, it corresponds the cross identification. We will
denote the manifold obtained from the parallel identification by M2. Let
us denote the corresponding manifolds (with boundary) before the doubling
process, by M ′1 and M ′2 respectively, they only have 0-, 1- and 2-handles.

A

BB

A

C

DD

C

E

E

FF

0

0

0

bf = 0

M1

Figure 19. Thickening the Heegard Diagram and taking the dou-

ble.

Now we treat the twisted I-bundle case associated to the surface Σ1,2.
Take a freely acting orientation reversing involution h : Σ1,2 → Σ1,2, and
extend it to an orientation preserving homeomorphism

h′ : Σ1,2 × I → Σ1,2 × I by h′(x, t) = (h(x), 1− t).
The resulting quotient Σ1,2 × I/h′ is a twisted I-bundle over a punctured

Klein bottle Kl1, which we denote by Kl1 ×̃I. This could be thought as
the quotient Σ1,2 × I/ ∼ as well, where (x, 1) ∼ (h(x), 1). Next we thicken

and then double it. The thickening will result in Kl1 ×̃I × I ≈ Kl1 ×̃D2,
a twisted disk bundle over the punctured Klein bottle. Figure 20 is the

Figure 20. One-handles of the punctured Klein bottle Kl1.

handlebody of the punctured Klein bottle. Assuming that the framing is
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the number f0, the twisted disk bundle over the punctured Klein bottle is
sketched as in Figure 21. Attaching the round handle E and taking the

A

BB

A

C C

f0

Figure 21. Twisted disk bundle over the punctured Klein bottle.

double yields the Figure 22. Here, realize that there is a unique way to
attach the round handle according to Maskit’s procedure. The 3-manifold
is also drawn besides the 4-manifold picture. Also, as before, we may twist
by 1/3 to obtain the Figure 23. We denote the resulting manifold by M3,
and the manifold with boundary before doubling by M ′3.

A

BB

A

C C

f0

E

E

0

0

Kl1

Figure 22. Round handle and the double with the corresponding

3-manifold.

As a third example, we consider the twisted I-bundle over the twice punc-
tured Klein bottle. We glue the boundary cylinders of the twisted disk bun-
dle over Kl2 in the cross and parallel fashion to obtain the Figure 24. After
these operations, one may want to add the complex twists as well. To sim-
plify the figures, one can use the dotted circle notation of [A] to present our
4-manifolds. For example, Figure 25 is the alternative handlebody picture
of the cross manifold just constructed.

Here, we give a procedure of identifying the boundary cylinders of differ-
ent manifolds. Note that whenever we draw two handlebody diagrams of
4-manifolds next to each other, it means that their handles are attached on
a common S3 i.e., they have the same 0-handle D4. So that they can be
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A

BB

A

C C

f0

E

E

0

0
FF

0

M2

Figure 23. Maskit’s 1/3 complex twist operation.

A

BB

A

C C

f0

E

0

0

D D

E

A

BB

A

C C

f0

E

0

0

D D

E

Figure 24. Cross and parallel identifications of the boundary

cylinders of Kl2 ×̃D2.

f0

0

0

Figure 25. Dotted circle convention for the cross manifold of Figure 24.

thought as two separate handlebodies connected by a 1-handle. Hence we
only need to use the 2-handle of the round handle to identify the two cylin-
ders. This is how the identification performed for the first pair of cylinders.
For the rest of the identifications the regular procedure applies, that is to
build a tube (round handle) we need a 1-handle over which the 2-handle
passes.

Finally, we draw the handlebody of the 4-manifold corresponding to an
example of Maskit, which he constructed from two different (trivial and
twisted) types of I-bundles associated to a torus with two holes namely
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P1 and P2. He pairs the two ends of P2 with a pair of cross ends of P1,
the remaining cross ends of P1 are identified with one another. This 4-
manifold is given by Figure 26. Here, E is the 1-handle of the round handle

median1

median2

A2

B2B2

A2

C2 C2

f0

0

A

BB

A

C

DD

C

E

E

0

0

0

0

0

E′ E′

Figure 26. 4-manifold corresponding to the Maskit’s example.

attaching a pair of cross ends of the 4-manifold corresponding to P1. Also
C2 is identified to D by using only a 2-handle, and E′ is the 1-handle of the
second round handle identifying C2 to C.

4. Invariants

In this section we compute the topological invariants of the manifolds
constructed in the previous section. We first write down the generators and
relations of the fundamental groups. We begin with the first set of construc-
tion (Figure 19). Each 1-handle is a generator of the fundamental group,
and each 2-handle provides a relation. We call the generators a, b, c, d, e, f .
We take the convention of left to right and top to bottom to be the positive
directions. Then, if we begin from the portion of the first 2-handle joining
D to A, going in the direction of A, the first 2-handle provides the relation

(1) a−1b−1abcd−1 = 1.

If we begin with the 1-handle E of the round handle, its 2-handle gives the
relation

(2) ede−1c−1 = 1.

Finally, the complex twist handle beginning with F in the reverse direction
will provide

(3) f−3d−1 = 1.
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If we abelianize this group, the first two relations yield the relation c = d
and the third yields c = f−3. Since 〈c, f | cf3 = 1〉 = 〈f−3, f〉 = 〈f〉 the
abelianization reduces the number of generators by 2, hence

H1(M1,Z) = Z4.

Computing the second homology group needs more care. Since in the dou-
bling process we attach the upside down handles. Corresponding to each
1-handle, we have a 3-handle. So that the handles generate the chain com-
plex

0 // C4
// C3

// C2
// C1

// C0
// 0

0 // Z // Z6 // Z6 // Z6 // Z // 0.

This gives us the Euler characteristic χ(M1) = 1 − 6 + 6 − 6 + 1 = −4.
So in terms of Betti numbers −4 = 2b0 − 2b1 + b2, implying b2(M1) = 2.
This is the free part. Next we compute the torsion piece. By Poincaré
duality H2(M1,Z) ≈ H2(M1,Z), and since H1(M1,Z) free the first term of
the Universal Coefficient Theorem (e.g., [H]) is zero, we compute

0→ Ext(H1(M1,Z),Z)→ H2(M1,Z)→ Hom(H2(M1,Z),Z)→ 0

H2(M1,Z) = Z2.

Similarly, we get H3 ≈ H1 ≈ H1 (by Poincare duality, and H0(M1,Z) is
free)

H3(M1,Z) = Z4.

The alternative attachment of the round handle as E in Figure 15(a) gives
the alternative for the second relation (2)

(4) ed−1e−1c−1 = 1

which yields c = d−1 in the abelianization process, combining with the c = d
of (1) yields c2 = 1. This implies that the relation d = f−3 of (2) enforces
f6 = 1. So that the first homology group becomes

H1(M2,Z) = 〈a, b, e, f | f6 = 1〉 ≈ Z3 ⊕ Z6.

The Euler characteristic χ(M2) = −4 since number of handles do not change,
which implies b2(M2) = 0. Also Ext(Z3 ⊕ Z6,Z) = Z6 becomes the torsion
part of

H2(M2,Z) = Z6.

Again by H3 ≈ H1 ≈ Hom(H1,Z) we have

H3(M2,Z) = Z3.

Similarly, in the second set of constructions, in Figure 23 we have the
relations

a−1babc = 1 , ec−1e−1c = 1 , f−3c = 1.

The first and third relation imposes restrictions so that

H1(M3,Z) = 〈a, b, c, e, f | c = b−2 = f3〉 = 〈a, e, bf〉 ≈ Z3
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since (bf)3 = b, (bf)−2 = f and (bf)−6 = c. The Euler characteristic is
χ(M3) = 1− 5 + 6− 5 + 1 = −2. So b2(M3) = 2. H1 and H0 has no torsion,
hence

H2(M3,Z) = Z2 and H3(M3,Z) = Z3.

The signatures are σ(M1,2,3) = 0 so that b±2 (M1,3) = 1, b±2 (M2) = 0 and
the the intersection forms are [Br]

QM1,3 =

[
0 1
1 0

]
:= H and QM2 = (0).

The invariants of the other two type of variations can be similarly calculated.

5. Sequences of metrics

Our goal in this section will be to combine our building blocks to construct
some interesting sequences of 4-manifolds admitting LCF metrics. We begin
by exploiting the first example described by Figure 19. There is no harm to
replace the torus, with any genus-g surface. We call the 4-manifolds arisen
this way as M1

g . In this case the relation

a−11 b−11 a1b1 · · · a−1g b−1g agbgcd
−1 = 1

replaces the relation (1); other relations (2), (3) remain. If we let g −→∞,
then we obtain

b1(M
1
g ) = 2g + 2→∞,
b2(M

1
g ) = 2,

χ(M1
g ) = −4g → −∞.

Clearly σ(M1
g ) = 0 and QM1

g
= H, both stay constant as we take the limit.

Secondly, we may increase the number of CDE components in (19) and
omit the complex twist handle F for simplicity. We denote the resulting
manifold M2

g,n (or sometimes M1
g,n) where n stands for he number of CDE

components. See Figure 27. The orientations for A handles are taken to
be counterclockwise, and for B handles to be clockwise. The relations for
1-handles are

a−11 b−11 a1b1 · · · a−1g b−1g agbgc1 · · · cnd−1n · · · d−11 = 1

eidie
−1
i c−1i = 1 for i = 1 · · ·n.

So that we obtain

b1(M
2
g,n) = 2g + 2n→∞,
b2(M

2
g,n) = 2

and

χ(M2
g,n) = 4− 4g − 4n→ −∞

as n −→∞, and the intersection forms are given by QM2
g,n

= H.
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En

En

0

.. .

...

︸ ︷︷ ︸
n−copies

g − copies

0

Figure 27. The LCF manifolds M2
g,n.

In the third sequence, we will make use of another building block. This
will be the trivial I-bundle over a punctured annulus Σ0,3. The correspond-
ing 4-manifold can be obtained by doubling the trivial disk bundle over Σ0,3.
Disk bundles over S2 are sketched as n-framed unknot. We only need to dig
holes by attaching three 1-handles. As a result the handlebody diagram is
going to look as in Figure 28. We could have cancelled the 2-handles along

Hi

Gi

Gi Ji

Ji

0

Hi

0

Figure 28. Doubling the D2 × Σ0,3.

with a 1-handle and this makes it diffeomorphic to S1 × S3]S1 × S3. How-
ever we cannot make any handle cancellation at this point as it will destroy
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one of holes which we are using for attachment. Next we will attach this
piece through the Di handles. Since we are attaching a different manifold,
the round handle of the first identification has no 1-handle, the rest of the
round handles are as usual. We attach it n-times and denote the resulting
manifold by M3

g,n. See Figure 29. The original 1-handle gives us a similar
relation

a−11 b−11 a1b1 · · · a−1g b−1g agbgd
−1
n · · · d−11 = 1 ⇒ d1 · · · dn = 1.

on the other hand each attached new piece provides the relations

g−1i d−1i = 1 ⇒ di = g−1i ,

kihik
−1
i gi = 1 ⇒ hi = g−1i ,

l−1i jilihi = 1 ⇒ hi = j−1i ,

m−1i d−1i mij
−1
i = 1 ⇒ di = j−1i ,

gihiji = 1 ⇒ ji = 1,

where the right hand side of the arrows indicate the outcome in the abelian-
ization process, so that we obtain 1 = ji = hi = gi = di and the three free
variables ki, li,mi emerge from each attachment. Counting these along with
ai, bi for i = 1 · · · g we have

b1(M
3
g,n) = 2g + 3n.

The Euler characteristic is computed at the chain level as

χ(M3
g,n) = 2− 2(2g + 7n) + (10n+ 2) = 4− 4g − 4n.

From here we get
b2(M

3
g,n) = 2 + 2n.

So that b1, b2 → ∞ and χ → −∞ as n −→ ∞. The main difference of this
sequence of metrics from the previous ones is that b2 gets arbitrarily large
rather than staying constant. If we let g −→ ∞ instead, then b1 → ∞ ,
χ→ −∞ and b2 =constant, a behaviour similar to the previous situations.

Our final sequence of panelled web manifolds is obtained by attaching
many copies of the new building block to each other as a chain. One uses
round handles without 1-handles to attach each copy, and finally when clos-
ing up the line to a chain we use a complete round handle. So that our
chain contains only one complete round handle. Figure 30 shows the case
for n = 3. Again we have the relations

kihik
−1
i gi = 1 ⇒ hi = g−1i ,

l−1i jilihi = 1 ⇒ hi = j−1i ,

gihiji = 1 ⇒ ji = 1.

The generators gi, hi, ji for the first homology are homologous to each other
and moreover are trivial. Only ki, li for i = 1 · · ·n and m survive, so

b1(M
4
n) = 2n+ 1.



A CLASS OF LOCALLY CONFORMALLY FLAT 4-MANIFOLDS 757

A1

B1

B1

A1

D1

Ki

Ki

D1

Li

Li

0

Bg

Ag

Bg

Ag

Dn Dn

Mi

Mi

.. .

...

n−copies︷ ︸︸ ︷

g − copies

0

Hi

Gi

Gi Ji

Ji

0

Hi

0

Di Di

... ...

...

Figure 29. The LCF manifolds M3
g,n.

The Euler characteristic

χ(M4
n) = 2− 2(5n+ 1) + 8n = −2n,

and from these

b2(M
4
n) = 2n.

Again we have b1, b2 →∞ and χ→ −∞ as n −→∞.

6. Sign of the scalar curvature

In this section, we will verify the Theorem 1.3 on the sign of the scalar
curvature. We will be using the results of LeBrun in [LeSD] in this section
unless otherwise stated. Main tool is the Weitzenböck formula of [Bou] in-
volving the Weyl curvature. On a Riemannian manifold, the Hodge/modern
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Figure 30. The LCF manifold M4
3 .

Laplacian can be expressed in terms of the connection/rough Laplacian as

(d+ d∗)2 = ∇∗∇− 2W +
s

3
where ∇ is the Riemannian connection and W is the Weyl curvature tensor.
First observation is that if there is a LCF metric of positive scalar curvature
on a manifold, then the second Betti number b2 = 0. Recall that any de
Rham cohomology class can be represented by a harmonic form uniquely on
a closed manifold. One starts with an arbitrary harmonic 2-form and feeds
it to the above formula. Then taking the inner product with the form and
integrating over the manifold forces the norm of the form to vanish. The
zero scalar curvature case is more delicate. We will be using the following
result, alternative exposition of which can be accessed through [LeOM] as
well.

Theorem 6.1 ([LeSD]). Let (M, g) be a closed, scalar-flat anti-self-dual
(SF-ASD) 4-manifold, then either:

• b+2 = 0, or
• b+2 = 1 and g is a scalar-flat Kähler metric, or
• b+2 = 3 and g is a hyper-Kähler metric.

The origin of the numbers 1 and 3 here is the possible number of the gen-
erating complex structures. Parallel self-dual 2-forms have constant length
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hence they correspond to compatible almost complex structures on a man-
ifold and they are determined by their value at a point. Moreover each
independent parallel form reduces the holonomy. If b2 6= 0 for a SF-LCF
manifold then since τ = 0 we are in the Kähler case. We are able to use the
following result.

Theorem 6.2 ([LeSD]). Let (M, g) be a closed, self-dual, Kähler, spin 4-
manifold of type zero, then M is isometrically diffeomorphic to one of the
following:

• a K3 surface with a Yau metric,
• a flat 4-torus modulo a finite group, or
• a flat 2-sphere bundle over a Riemann surface of genus ≥ 2 with

local product metric.

The idea here is to use spin Weitzenböck formula for nonzero signature
to get a trivial canonical bundle, and in the zero signature case, the metric
is LCF, and reducing the holonomy to a subgroup of U(1) × U(1) to get a
Riemannian splitting. Applying to our case, the first two cases are elimi-
nated by the signature. panelled web 4-manifolds are not of the last two
cases either. So that, they are not of zero type either, in the b2 6= 0 case.

If one thinks in terms of metrics, one can verify this sign using the results
of [SY, Na] even in the b2 = 0 case. Computation of the sign of the scalar
curvature for our LCF manifolds is related to the Hausdorff dimension of
the Kleinian groups used to uniformize the hyperbolic 3-manifold. A basic
observation of [Br] is that the Kleinian group G of an hyperbolic 3-manifold
acts on S4 by the following orientation preserving conformal diffeomorphism:

i : H3 × S1 → R2 × (R2)∗ ≈ R4 − R2 ≈ S4 − S2

(x, y, t, θ) 7→ (x, y, t cos θ, t sin θ)

where x, y ∈ R, t ∈ R+ are the coordinates of the hyperbolic space. The
circle action in the domain corresponds to the rotations of R2 × R2∗ in the
second component. When we continuously extend this map to the boundary,
we obtain the compactification map i : H̄3 × S1 → S4. PSL(2,C) acts on
H̄3 to result M̄3 as well as on S4 on the right by conformal transformations,
i.e., fractional linear transformations

HP1 × PSL(2,C)→ HP1(
[x, y],

[
a c
b d

])
7→ [xa+ yb, xc+ yd].

The circle action is free in the interrior, its fixed point set is the boundary
S2×S1, which maps to the S2 of the image S4. S1×PSL(2,C) acts equivari-
antly with respect to i. If Λ is the limit set of G, the limit set of the G-action
on S4 equals i(Λ× S1), since the circle action does not move the boundary
S2 this limit set is isomorphic to Λ. Summarizing Λ ⊂ CP1 ⊂ HP1. Consid-
ering the inclusions G ⊂ PSL(2,C) ⊂ PGL(2,H), we can state the result of
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Schoen–Yau and the refinement of Nayatani which helps us to compute the
sign.

Theorem 6.3 ([SY, Na]). Let (X, [g]) be a compact, LCF 4-manifold, which
is uniformized by taking the quotient of Ω ⊂ S4 by the Kleinian group G ⊂
PGL(2,H) of conformal transformations of HP1. Let g ∈ [g] be a metric (in
the conformal class) of constant scalar curvature which exists by the solution
of the Yamabe Problem. Assume that the limit set Λ of G is infinite, and
the Hausdorff dimension dim(Λ) > 0. Then the sign of the scalar curvature
is equal to the sign of 1− dim(Λ).

We will see that the LCF manifolds constructed in the previous sections
are all of (strictly) negative scalar curvature type. To be able to make use of
Theorem 6.3 we begin with a definition and cite some results in hyperbolic
geometry.

Definition 6.4 ([CaMiTa]). A compact irreducible 3-manifold M with in-
compressible boundary is called a generalized book of I-bundles if one may
find a disjoint collection A of essential annuli in M such that each compo-
nent R of the manifold obtained by cutting M along A is either a solid torus,
a thickened torus, or homeomorphic to an I-bundle such that ∂R ∩ ∂M is
the associated ∂I-bundle.

For a hyperbolic 3-manifold (M, g), let d(M, g) or d(M) denote the Haus-
dorff dimension of the limit set of the discrete group which acts on the hy-
perbolic space isometrically to give (M, g) as the quotient. By minimizing
d over all of the supporting hyperbolic structures, we obtain a topological
invariant of M :

D(M) := inf {d(M, g) | g is a complete hyperbolic metric on M}.
Theorem 6.5 ([BisJon]). Let M be a compact, orientable, hyperbolic 3-
manifold. If d(M) = 1 then M is either a handlebody or an I-bundle. (If
d(M) < 1 then M is a handlebody or a thickened torus.)

Theorem 6.6 ([CaMiTa] Main Theorem II, Corollary 2.4). Let M be a
compact, orientable, hyperbolizable 3-manifold which is not a handlebody or
a thickened torus. Then D(M) ≥ 1.

If we combine these two theorems, we see that d(M, g) > 1 for our hy-
perbolic metrics. So that 1 − d < 0, hence the scalar curvature is strictly
negative for our LCF 4-manifolds according to the Theorem 6.3. We should
keep in mind the equality d(M, g) = dim(Λ), as explained prior to the the-
orem.

The theorem of Schoen–Yau and the refinement of Nayatani is actually
more general than what we have stated in Theorem 6.3, and it is valid for all
dimensions n ≥ 3. The group of conformal transformations of the n-sphere
is the group of isometries of the hyperbolic (n+1)-ball by the Liouville’s
theorem [dC]. The isometry group of the hyperbolic ball on the other hand
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is computed by considering it as the imaginary upper unit sphere in the
Minkowski space Rn+1,1. The transformations that preserve the indefinite
metric and the orientation happen to preserve the upper sheet of the hyper-
boloid [dC, Pet] so that

Conf(Sn) = Isom(Bn+1
h ) = SO↑(n+ 1, 1).

Consequently, the uniformizing Kleinian group is a subgroup of this Lie
group. In the particular cases we have [LeOM]

Conf(HP1) = PGL(2,H) = SO↑(5, 1)

Conf(CP1) = PSL(2,C) = SO↑(3, 1).

In the general case, the sign of the scalar curvature is equal to the sign of
the quantity

n

2
− 1− dim(Λ).
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