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On shift desuspensions of
Lewis–May–Steinberger spectra

William Abram and Igor Kriz

Abstract. We prove that on suspension Lewis–May–Steinberger spec-
tra, the shift desuspension and the loop spectrum are isomorphic.
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1. Introduction

The purpose of this brief note is to record an interesting technical effect
in the development of equivariant spectra following [2].

To fix notation, let us review the basic definition: Let G be a compact
Lie group. Then a G-universe is an infinite-dimensional orthogonal rep-
resentation of G which is the direct sum of a set R of countably many
finite-dimensional irreducible representations, such that R contains a triv-
ial representation, and further contains infinitely many isomorphic copies of
every representation it contains.

For a G-universe U and a cofinal set S of finite-dimensional subrepresenta-
tions of U , an S-indexed Lewis–May–Steinberger spectrum is a collection of
based G-spaces EW , W ∈ S, together with G-equivariant homeomorphisms

Eρ
W
V = ρWV : EV → ΩW−VEW , V ⊆W, V,W ∈ S

(where W − V denotes the orthogonal complement) such that

ρVV = Id,

ν ◦ ΩW−V ρW
′

W ◦ ρWV = ρW
′

V ,(1)

Received December 23, 2011.
2010 Mathematics Subject Classification. 55P42.
Key words and phrases. Lewis–May–Steinberger spectra, RO(G)-graded spectra, shift

desuspension.
Abram was supported by an NSF graduate research fellowship. Kriz was supported in

part by NSF grant DMS 1104348.

ISSN 1076-9803/2012

55

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2012/Vol18.htm


56 WILLIAM ABRAM AND IGOR KRIZ

where

(2) νW−V,W ′−W = ν : ΩW−V ΩW ′−W ∼= ΩW ′−V

is the canonical isomorphism given by the adjunct of F (φ, ?) where φ =
φW−V,W ′−W is the 1-point compactification of the isomorphism

(W − V )⊕ (W ′ −W ) ∼= (W ′ − V )

given by

(x, y) 7→ x+ y.

One defines a category of S-indexed prespectra identically with the excep-
tion that ρWV are not required to be homeomorphisms. The forgetful functor
from spectra to prespectra has a left adjoint, which is generically denoted
by L.

It is well known ([2], Proposition I.2.4) that the categories of S-indexed
Lewis–May–Steinberger spectra with different cofinal sets S are canonically
equivalent. The analogous statement for prespectra is false.

A key object in our discussion is the functor of shift desuspension of
the suspension spectrum (Definition I.4.1 of [2]). For a finite-dimensional
subrepresentation V of U and a based G-space X, define

ΛV Σ∞X = LD

where D is the prespectrum defined by

DW =

{
ΣW−VX when V ⊆W
∗ else.

There is a more general functor of shift desuspension ΛV from spectra to
spectra ([2], Definition I.7.1) such that, as the notation suggests, ΛV Σ∞ is
isomorphic to the composition of ΛV with the suspension spectrum functor
([2], Lemma I.7.3). The shift desuspension is a key ingredient in developing
the notion of weak equivalence of spectra technically.

It is a somewhat notorious peculiarity of the theory that it is not known
(and widely believed false, cf. [3]) that ΛV is isomorphic to the level-wise
loop functor ΩV . The reason is that the obvious level-wise map fails to com-
mute with the structure maps due to a switch of isomorphic representation
summands. Of course an analogous statement does hold on the level of the
stable category.

The main result of the present note is the following:

Proposition 1. There is a natural isomorphism

ΛV Σ∞X ∼= ΩV Σ∞X.

Surprisingly, this has apparently not been observed before, although a
step in this direction is the Untwisting lemma 4.5 of the Appendix to [1].
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2. The proof

Let E be a Lewis–May–Steinberger spectrum indexed, without loss of
generality, on the set S(U) of all finite-dimensional subrepresentations of U .
Let V be a finite-dimensional subrepresentation of U . Let E(V ) be the spec-
trum indexed on the set S(U, V ) of all finite-dimensional subrepresentations
of U containing V , given by

(3) E(V )W = EW−V for W ∈ S(U, V )

with structure maps

E(V )ρ
W ′
W = Eρ

W ′−V
W−V .

To get the identity (1) for E(V ) with V,W,W ′ replaced by W ⊆W ′ ⊆W ′′,
W,W ′,W ′′ ∈ S(U, V ), use identity (1) for E with V,W,W ′ replaced by
W − V,W ′ − V,W ′′ − V .

Lemma 2. There is a natural isomorphism E(V ) ∼= ΩVE.

Proof: For W ∈ S(U, V ), define the isomorphism

E(V )W → ΩVEW

to be the structure map

Eρ
W ′−V
W−V : EW−V → ΩVEW .

To prove that this is an isomorphism of spectra, we must prove the commu-
tativity of the following diagram for W ⊆W ′, W,W ′ ∈ S(U, V ):

EW−V
ρW
′−V

W−V //

ρWW−V
��

ΩW ′−WEW ′−V

ΩW ′−W ρW
′

W ′−V��
ΩVEW

ν−1
W ′−W,V

νV,W ′−W (ΩV ρW
′

W )
// ΩW ′−WΩVEW ′ .

In the diagram, ρ means Eρ. By (1), both compositions in the above dia-

gram are equal to ν−1
W ′−W,V ρ

W ′
W−V . In more detail, composing νW ′−W,V with

the right column with the top row gives νW ′−W,V ◦ ΩW ′−WρW
′

W ′−V ◦ ρ
W ′−V
W−V ,

which is ρW
′

W−V by (1) with V , W , W ′ replaced by W − V , W ′ − V , W ′,
respectively. Composing νW ′−W,V with the bottom row with the left col-

umn gives νV,W ′−W ◦ΩV ρW
′

W ◦ ρWW−V which is ρW
′

W−V by (1) with V , W , W ′

replaced by W − V , W , W ′, respectively. �

By cofinality, ΛV Σ∞ is naturally isomorphic to the spectrum associated
with the S(U, V )-indexed prespectrum

D′(W ) = ΣW−VX for W ∈ S(U, V ),

with the same structure maps φW ′−W,W−V . Since the (?)(W ) construction
makes sense as a functor from S(U)-indexed prespectra to S(U, V )-indexed
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prespectra, and commutes obviously with spectrification on inclusion pre-
spectra (levelwise, the colimits being of isomorphic diagrams on both sides),
we obtain an isomorphism

LD′ ∼= Σ∞(V ).

This concludes the proof of the proposition.
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