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Weak pullbacks of topological groupoids

Aviv Censor and Daniele Grandini

Abstract. We introduce the category HG, whose objects are topologi-
cal groupoids endowed with compatible measure theoretic data: a Haar
system and a measure on the unit space. We then define and study
the notion of weak pullback in the category of topological groupoids,
and subsequently in HG. The category HG is the setting for topological
groupoidification, which we present in separate papers, and in which the
weak pullback is a key ingredient.
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1. Introduction

The leading actors in this paper are groupoids that we call Haar groupoids.
A Haar groupoid is a topological groupoid endowed with certain compatible
measure theoretic ingredients. More precisely, a Haar groupoid is a locally
compact, second countable, Hausdorff groupoid G, which admits a contin-
uous left Haar system λ•, and is equipped with a nonzero Radon measure
µ(0) on its unit space G(0), such that µ(0) is quasi-invariant with respect
to λ•. Maps between Haar groupoids are continuous groupoid homomor-
phisms, which respect the extra structure in an appropriate sense. One is
naturally led to define a category, which we denote by HG, the category of
Haar groupoids. Section 2 introduces this category.
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A general study of the category HG from a purely categorical perspective
will be presented in a separate paper. In this paper we focus on one specific
categorical notion, namely the weak pullback. We first construct the weak
pullback of topological groupoids. The weak pullback of the following given
cospan diagram of topological groupoids and continuous homomorphisms:

S

p ��

T

q��
G

is a topological groupoid P along with projections πS : P → S and πT :
P → T , which together give rise to the following diagram (which does not
commute):

P
πS

��

πT

��
S

p ��

T

q��
G

As a set, P is contained in the cartesian product S × G × T , from which
it inherits its topology. The elements of P are triples of the form (s, g, t),
where p(s) and q(t) are not equal to g, but rather in the same orbit of G
via g. More precisely, denoting the range and source maps of G by rG and
dG respectively,

P := {(s, g, t) | s∈S, g∈G, t∈T, rG(g)=rG(p(s)) and dG(g)=rG(q(t))}.
The groupoid structure of P is described in Section 3, followed by a discus-
sion of its properties. In the discrete groupoid setting, our notion of weak
pullback reduces to the one introduced by Baez et al. in [2], which in turn
generalizes the more familiar notion of a pullback in the category of sets.

Upgrading the weak pullback from topological groupoids to the category
HG requires nontrivial measure theory and analysis. In Section 4 we con-
struct a Haar system for P . Section 5 is then devoted to creating a quasi
invariant measure on P (0). Finally, in Section 6, we prove that with these
additional ingredients, subject to a certain additional assumption, we indeed
obtain a weak pullback in HG.

This paper is part of a project we are currently working on, in which
we are extending groupoidification from the discrete setting to the realm of
topology and measure theory. Groupoidification is a form of categorifica-
tion, introduced by John Baez, James Dolan and Todd Trimble. It has been
successfully applied to several structures, which include Feynman Diagrams,
Hecke Algebras and Hall Algebras. An excellent account of groupoidification
and its triumphs to date can be found in [2]. So far, the scope of groupoid-
ification and its inverse process of degroupoidification has been limited to
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purely algebraic structures and discrete groupoids. The category HG pro-
vides the setting for our attempt at topological groupoidification, in which
the notion of the weak pullback plays a vital role. This line of research is
pursued in separate papers.

This paper relies heavily on general topological and measure theoretic
techniques related to Borel and continuous systems of measures and their
mapping properties. A detailed study of this necessary background theory
appears in our paper [4], from which we quote many definitions and results
and to which we make frequent references throughout this text.

1.1. A note about terminology. Seeking for a distinctive name for the
groupoids we consider in these notes and in our subsequent work on topo-
logical groupoidification, we opted to call them “Haar groupoids”. These
groupoids bear close resemblance to measure groupoids with Haar measures,
as studied by Peter Hahn in [5], following Mackey [6] and Ramsay [10], lead-
ing to the theory of groupoid von Neumann algebras. Like the groupoids
we consider, measure groupoids carry a measure (or measure class), which
admits a disintegration via the range map, namely what is nowadays known
as a Haar system. The main discrepancies are that we require our groupoids
to exhibit a nice topology (locally compact, Hausdorff) and to be endowed
with a continuous Haar system, whereas measure groupoids need only have
a Borel structure in general, and host Borel Haar systems.

Locally compact topological groupoids which may admit continuous Haar
systems are as well studied in the literature as measure groupoids, in par-
ticular as part of groupoid C∗-algebra theory as developed by Jean Renault
in [11] (other standard references include [7] and [8]). In many cases locally
compact groupoids indeed exhibit the full structure of our Haar groupoids,
yet the literature does not single them out terminology-wise.

2. Preliminaries and the category HG
We begin by fixing notation. We shall denote the unit space of a groupoid

G by G(0) and the set of composable pairs by G(2). The range (or target) and
domain (or source) maps of G are denoted respectively by r and d, or by rG
and dG when disambiguation is necessary. We set Gu = {x ∈ G | r(x) = u},
Gv = {x ∈ G | d(x) = v} and Guv = Gu ∩Gv, for all u, v ∈ G(0). Thus Guu is
the isotropy group at u.

We let G = G(0)/G = {[u] | u ∈ G(0)} denote the orbit space of a groupoid

G. The orbit space G inherits a topology from G via G(0), defined by
declaring W ⊆ G to be open whenever q−1(W ) is open in G(0), where

q : G(0) −→ G is the quotient map u 7→ [u].
Throughout this paper, we will assume our topological groupoids to be

second countable, locally compact and Hausdorff. Any such groupoid G is
metrizable and normal, and satisfies that every locally finite measure is
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σ-finite. Moreover, G is a Polish space and hence strongly Radon, i.e., ev-
ery locally finite Borel measure is a Radon measure. For more on Polish
groupoids, we refer the reader to a paper by Ramsay [9]. In general, how-
ever, G does not necessarily inherit these properties, a fact that will require
occasional extra caution.

Haar systems for groupoids play a key role in this paper. In the groupoid
literature, modulo minor discrepancies between various sources (see for ex-
ample standard references such as [7], [8], [11] and [1]), a continuous left

Haar system is usually defined to be a family λ = {λu : u ∈ G(0)} of positive
(Radon) measures on G satisfying the following properties:

(1) supp(λu) = Gu for every u ∈ G(0).

(2) For any f ∈ Cc(G), the function u 7→
∫
fdλu on G(0) is in Cc(G

(0)).

(3) For any x ∈ G and f ∈ Cc(G),
∫
f(xy)dλd(x)(y) =

∫
f(y)dλr(x)(y).

In this paper we shall use Definition 2.1 below as our definition of a Haar
system. It is taken from [4], where it is shown to be equivalent to the more
common definition above. For the convenience of the reader we include here
a very brief summary of the notions from [4] that lead to Definition 2.1,
all of which we will use extensively throughout this paper. Henceforth, as
in [4], all topological spaces are assumed to be second countable and T1

in general, and also locally compact and Hausdorff whenever dealing with
continuous systems of measures.

Let π : X → Y be a Borel map. A system of measures ([4], Definition
2.2) on π is a family of (positive, Borel) measures λ• = {λy}y∈Y such that:

(1) Each λy is a Borel measure on X.
(2) For every y, λy is concentrated on π−1(y).

We will denote a map π : X → Y admitting a system of measures λ• by the

diagram X
π

λ•
// Y .

We will say that a system of measures λ• is positive on open sets ([4],
Definition 2.3) if λy(A) > 0 for every y ∈ Y and for every open set A ⊆
X such that A ∩ π−1(y) 6= ∅. A system of measures λ• on a continuous
map π : X → Y will be called a continuous system of measures or CSM
([4], Definition 2.5) if for every nonnegative continuous compactly supported
function 0 ≤ f ∈ Cc(X), the map y 7→

∫
X f(x)dλy(x) is a continuous

function on Y . A system of measures λ• on a Borel map π : X → Y is
called a Borel system of measures or BSM ([4], Definition 2.6) if for every
Borel subset E ⊆ X, the function λ•(E) : Y → [0,∞] given by y 7→ λy(E) is
a Borel function. A system of measures λ• satisfying that every x ∈ X has
a neighborhood Ux such that λy(Ux) < ∞ for every y ∈ Y , will be called
locally finite ([4], Definition 2.14), and locally bounded if there is a constant
Cx > 0 such that λy(Ux) < Cx for any y ∈ Y ([4], Definition 2.3). A detailed
discussion of the mutual relations between the above concepts appears in [4].
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Let G be a topological groupoid. A system of measures λ• on the range
map r : G → G(0) is said to be a system of measures on G ([4], Defini-
tion 7.1). It is called left invariant ([4], Definition 7.2) if for every x ∈ G
and for every Borel subset E ⊆ G,

λd(x)(E) = λr(x)
(
x · (E ∩Gd(x))

)
.

Definition 2.1 ([4], Definition 7.5). A continuous left Haar system for G is
a system of measures λ• on G which is continuous, left invariant and positive
on open sets.

Playing side by side to the Haar system λ•, another leading actor in our
work is a Radon measure on the unit space G(0) of a groupoid G, which
we denote by µ(0). The measure µ(0) will be related to λ• via the notion
of quasi invariance, which we spell out below. We usually follow [7], where
the reader can find much more about the important role of quasi invariant
measures in groupoid theory.

Definition 2.2. Let G be a groupoid admitting a Haar system λ• and a
Radon measure µ(0) on G(0). The induced measure µ on G is defined for any
Borel set E ⊆ G by the formula:

µ(E) =

∫
G(0)

λu(E)dµ(0)(u).

Lemma 2.3. The induced measure µ is a Radon measure on G.

Proof. Since G is strongly Radon, it suffices to prove that µ is locally finite.
The induced measure µ is obtained as a composition of the system λ• with
the measure µ(0). The Haar system λ• is a CSM, hence a locally bounded
BSM, by Lemma 2.11 and Proposition 2.23 of [4]. In addition, the measure

µ(0) is locally finite. Therefore, the conditions of Corollary 3.7 in [4] are
met, and we conclude that µ is locally finite. �

The following simple observation will be useful in the sequel.

Lemma 2.4. For any Borel function f on G:∫
G
f(x)dµ(x) =

∫
G(0)

(∫
G
f(x)dλu(x)

)
dµ(0)(u).

Proof. For every Borel subset E ⊆ G, by Definition 2.2,∫
G
χE (x)dµ(x) = µ(E) =

∫
G(0)

λu(E)dµ(0)(u)

=

∫
G(0)

(∫
G
χE (x)dλu(x)

)
dµ(0)(u).

Generalizing from χE to any Borel function f is routine. �
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The image of µ under inversion is defined by

µ−1(E) := µ(E−1) = µ({x−1 | x ∈ E})
for any Borel set E ⊆ G.

Remark 2.5. It is a standard exercise to show that for any Borel function
f , ∫

G
f(x)dµ−1(x) =

∫
G
f(x)dµ(x−1).

Definition 2.6. Let G be a groupoid admitting a Haar system λ• and a
Radon measure µ(0) on G(0). The measure µ(0) is called quasi invariant if
the induced measure µ satisfies µ ∼ µ−1.

Here ∼ denotes equivalence of measures in the sense of being mutually
absolutely continuous.

Remark 2.7. Let µ(0) be quasi invariant. The Radon–Nikodym derivative
∆ = dµ/dµ−1 is called the modular function of µ. Although ∆ is determined
only a.e., it can be chosen ([7], Theorem 3.15) to be a homomorphism from
G to R×+, so we will assume this to be the case. Recall that for any Borel
function f ,

(1)

∫
G
f(x)dµ(x) =

∫
G
f(x)∆(x)dµ−1(x).

Furthermore, ∆−1 = dµ−1/dµ satisfies the useful formula

(2)

∫
G
f(x)∆−1(x)dµ(x) =

∫
G
f(x−1)dµ(x),

since
∫
f(x)∆−1(x)dµ(x)=

∫
f(x)dµ−1(x)=

∫
f(x)dµ(x−1)=

∫
f(x−1)dµ(x)

by Remark 2.5.

Definition 2.8. Let G be a topological groupoid, which satisfies the follow-
ing assumptions:

(1) The topology of G is locally compact, second countable and Haus-
dorff.

(2) G admits a continuous left Haar system λ•.

(3) G(0) is equipped with a nonzero Radon measure µ(0) which is quasi-
invariant with respect to λ•.

Such a groupoid will be called a Haar groupoid.

We will denote a Haar groupoid by (G,λ•, µ(0)), or just by G when λ•

and µ(0) are evident from the context.

Definition 2.9. Let (G,λ•, µ(0)) and (H, η•, ν(0)) be Haar groupoids. Let
p : G→ H be a continuous groupoid homomorphism which is also measure
class preserving with respect to the induced measures, i.e., p∗(µ) ∼ ν. We
say that p is a homomorphism of Haar groupoids.
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In the above definition p∗ is the push-forward, defined for any Borel set
E ⊂ H by p∗µ(E) = µ(p−1(E)). A homomorphism of Haar groupoids is
also measure class preserving on the unit spaces, as we shall shortly see. We
first need the following fact.

Lemma 2.10. Let (G,λ•, µ(0)) be a Haar groupoid. The range map r : G→
G(0) satisfies r∗(µ) ∼ µ(0).

Proof. Let E ⊆ G(0) be a Borel subset. We need to show that µ(r−1(E)) =

0 if and only if µ(0)(E) = 0. By the definition of the induced measure,

µ(r−1(E)) =
∫
G(0) λu(r−1(E))dµ(0)(u) =

∫
G(0) χE (u)λu(G)dµ(0)(u), because

λu(r−1(E))=0 if u /∈ E whereas λu(r−1(E)) = λu(G) if u ∈ E. Since λ• is
a Haar system, supp(λu) = Gu 6= ∅, and in particular λu(G) > 0 for every

u. It follows that µ(r−1(E)) = 0 if and only if χE (u) = 0 µ(0)-a.e., which is

if and only if µ(0)(E) = 0. �

While the proof we included above is elementary, we point out that
Lemma 2.10 also follows from the fact that by the definition of the induced
measure µ, the Haar system λ• is a disintegration of µ with respect to µ(0),
which implies that r : G → G(0) is measure class preserving. See Lemma
6.4 of [4].

Slightly abusing notation, we also denote the restriction of p to G(0) by
p.

Proposition 2.11. Let (G,λ•, µ(0)) and (H, η•, ν(0)) be Haar groupoids, and

let p : G→ H be a homomorphism of Haar groupoids. Then p∗(µ
(0)) ∼ ν(0).

Proof. Consider the following commuting diagram:

G

p

��

rG // G(0)

p

��
H

rH // H(0).

Let E ⊆ H(0) be a Borel subset. We need to show that µ(0)(p−1(E)) = 0

if and only if ν(0)(E) = 0. Indeed, by Lemma 2.10 applied to H, ν(0)(E) =
0 ⇔ ν(r−1

H (E)) = 0 ⇔ µ(p−1(r−1
H (E))) = 0. At the same time, by Lemma

2.10 applied to G, we have that µ(0)(p−1(E)) = 0 ⇔ µ(r−1
G (p−1(E))) = 0.

Since the diagram commutes, p−1(r−1
H (E)) = r−1

G (p−1(E)), and it follows

that ν(0)(E) = 0⇔ µ(0)(p−1(E)) = 0. �

Having defined Haar groupoids and their appropriate maps, we are ready
to define the setting for this paper and its sequels.

Definition 2.12. We introduce the category HG, which has Haar groupoids
as objects and homomorphisms of Haar groupoids as morphisms.
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3. The topological weak pullback

The purpose of this paper is to construct and study the weak pullback of
Haar groupoids. We start by constructing the weak pullback of topological
groupoids. We shall leave it to the reader to verify that in the case of discrete
groupoids, our notion of weak pullback reduces to the one in [2], which in
turn generalizes the more familiar notion of pullback in the category of sets.
Examples 3.4 and 3.5 below illustrate that the weak pullback is a natural
notion.

Definition 3.1. Given the following diagram of topological groupoids and
continuous homomorphisms

S

p ��

T

q��
G

we define the weak pullback to be the topological groupoid

P = {(s, g, t) | s∈S, g∈G, t∈T, rG(g)=rG(p(s)) and dG(g)=rG(q(t))}

together with the obvious projections πS : P → S and πT : P → T . We
describe the groupoid structure of P and its topology below.

The weak pullback groupoid P gives rise to the following diagram:

P
πS

��

πT

��
S

p ��

T

q��
G.

Observe that even at the level of sets, this diagram does not commute.
However, it is not hard to see that the weak pullback does make the following
diamond commute:

P
πS

��

πT

��
S

π◦p ��

T

π◦q��
G

where π : G −→ G is the map g 7−→ [r(g)] = [d(g)].
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Intuitively, we think of an element (s, g, t) in P as giving rise to the
following picture in G:

p(s)

��
q(t)

��
g
oo

Composition of (s, g, t) and (σ, h, τ) is then thought of as:

p(σ)

��
q(τ)

��

p(s)

��

h
oo

q(t)

��
g
oo

Formally, the composable pairs of P are

P (2) = {(s, g, t), (σ, h, τ) | rS(σ)=dS(s), rT (τ)=dT (t) and h=p(s)−1gq(t)}.
The product is given by

(s, g, t)(σ, h, τ) = (sσ, g, tτ),

and the inverse is given by

(s, g, t)−1 = (s−1, p(s)−1gq(t), t−1).

Thus the range and source maps of P are

rP (s, g, t) = (rS(s), g, rT (t))

and
dP (s, g, t) = (dS(s), p(s)−1gq(t), dT (t)).

The unit space of P is

P (0) =
{

(s, g, t)
∣∣∣ s ∈ S(0), t ∈ T (0) and g ∈ Gp(s)q(t)

}
.

The topology of P is induced from the Cartesian product S×G×T , namely
X ⊆ P is open if and only if there exists an open set Z ⊆ S × G × T such
that X=Z ∩ P. The product and inverse of P are continuous with respect
to this topology.

Remark 3.2. Let {An}∞n=1, {Bm}∞m=1 and {Ck}∞k=1 be countable bases for
the topologies of S, G and T respectively. Then

B = {(An ×Bm × Ck) ∩ P}∞n,m,k=1

gives a countable basis B for the topology of P , consisting of open sets of the
form E = (A×B × C) ∩ P , which we call elementary open sets. Moreover,
all finite intersections of sets in B are also of the this form.

Lemma 3.3. The groupoid P is locally compact, Hausdorff and second
countable.
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Proof. The groupoid P is second countable by Remark 3.2, and it is Haus-
dorff as a subspace of S ×G× T . Let

b : S ×G× T −→ G(0) ×G(0) ×G(0) ×G(0)

be the continuous map given by

(σ, x, τ) 7−→ (rG(p(σ)), rG(x), dG(x), rG(q(τ))).

Observe that P = b−1(∆ × ∆), where ∆ is the diagonal of G(0) × G(0).
Therefore, P is closed in S×G×T , and therefore it is locally compact. �

The following examples show that the weak pullback of groupoids is a
natural notion. A more detailed study of these examples and many others
will appear in a separate paper, where we discuss the weak pullback in the
context of topological and measure theoretic degroupoidification.

Example 3.4 (Weak pullback of open cover groupoids). Let X, Y and Z
be locally compact topological spaces, and let p : Y → X and q : Z → X
be continuous, open and surjective maps. Assume that U = {Uα}α∈A and
W = {Wα}α∈A are locally finite open covers of Y and Z, respectively (with
the same indexing set A), and assume that p(Uα) = q(Wα) for every α ∈ A,
defining an open cover V = {Vα}α∈A of X, where Vα = p(Uα). Consider
the regular pullback diagram in the category Top of topological spaces and
continuous functions:

Y ∗Z
πY

||

πZ

""
Y

p
""

Z

q
||

X

where Y ∗Z = {(y, z) ∈ Y ×Z | p(y) = q(z)}. All sets of the form (Uα×
Wβ) ∩ Y ∗Z constitute an open cover of the pullback space Y ∗Z, which we
will denote by U∗W.

Associated to an open cover U of a space Y is a groupoid

GU = {(α, y, β) : y ∈ Uα ∩ Uβ}

(called an open cover groupoid, or Čech groupoid). A pair (α, y, β), (γ, y′, δ)
is composable if and only if β = γ and y = y′, in which case their product is
(α, y, δ), and the inverse is given by (α, y, β)−1 = (β, y, α). Let GU , GW and
GV be the open cover groupoids associated to the covers of Y , Z andX above,
and let p̂ : GU → GV and q̂ : GW → GV be the induced homomorphisms, given
by p̂(α, y, β) = (α, p(y), β) and q̂(α, z, β) = (α, q(z), β). This gives rise to a
cospan diagram of groupoids, which can be completed to a weak pullback
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diagram:

P

}} !!
GU

p̂   

GW

q̂}}
GV .

We omit the technical but straightforward calculations which yield the up-
shot: the weak pullback groupoid P is isomorphic to the open cover groupoid
GU∗W corresponding to the cover U∗W of the regular pullback space Y ∗Z.

Example 3.5 (Weak pullback of transformation groupoids). Let X, Y and
Z be locally compact topological spaces, and let p : Y → X and q : Z → X
be continuous maps. Let Y ∗Z be the regular pullback in the category Top,
as in the previous example. Let Γ and Λ be locally compact groups acting
on Y and Z respectively, and let Y ×Γ and Z×Λ be the corresponding
transformation groupoids. Recall that in a transformation groupoid, say
Y×Γ, the elements (y, γ) and (ỹ, γ̃) are composable if and only if ỹ = yγ, in
which case (y, γ)(yγ, γ̃) = (y, γγ̃). The inverse, range and domain are given
by (y, γ)−1 =(yγ, γ−1), r(y, γ)=(y, e) and d(y, γ)=(yγ, e).

We view X as a transformation groupoid by endowing it with an action
of the trivial group, which amounts to regarding X as a cotrivial groupoid.
Assume that the maps p and q are equivariant with respect to the group
actions, i.e., p(y · γ) = p(y) and q(z · λ) = q(z). In this case p and q induce
groupoid homomorphisms p̂ : Y ×Γ → X and q̂ : Z×Λ → X given by
p̂(y, γ) = p(y) and q̂(z, λ) = q(z). This yields a cospan diagram of topologi-
cal groupoids which gives rise to the following weak pullback diagram:

P
πY

||

πZ

""
Y ×Γ

p̂ ""

Z×Λ

q̂||
X .

It is now not hard to verify that the weak pullback groupoid P can be iden-
tified with the transformation groupoid (Y ∗Z)×(Γ×Λ) corresponding to the
action of the group (Γ×Λ) on the regular pullback space (Y ∗Z), given by
(y, z) · (γ, λ) = (yγ, zλ).

Remark 3.6. In general, the weak pullback coincides with a regular pull-
back whenever the groupoid G in Definition 3.1 is a cotrivial groupoid. This
is the case in Example 3.5 above.

The following observation will be essential in the sequel.
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Lemma 3.7. For any u = (s, g, t) ∈ P (0), the fiber P u is a cartesian product

of the form P u = P (s,g,t) = Ss × {g} × T t.

Proof. We follow the definitions:

P (s,g,t) = {(σ, h, τ) ∈ P | rP (σ, h, τ) = (s, g, t)}
= {(σ, h, τ) ∈ P | (rS (σ), h, rT (τ)) = (s, g, t)}
= {(σ, h, τ) ∈ P | rS (σ) = s, h = g, rT (τ) = t}
= {(σ, h, τ) ∈ P | σ ∈ Ss, h = g, τ ∈ T t}.

Note that since (s, g, t) is an element of P (0), any σ ∈ Ss satisfies rG(p(σ)) =
p(rS (σ)) = p(s) = p(rS (s)) = rG(p(s)) = rG(g) and likewise any τ ∈ T t

satisfies rG(q(τ)) = dG(g). Therefore Ss × {g} × T t ⊆ P and thus

P (s,g,t) = {(σ, h, τ) ∈ P | σ ∈ Ss, h = g, τ ∈ T t} = Ss × {g} × T t. �

Proposition 3.8. The projections πS : P → S and πT : P → T are contin-
uous groupoid homomorphisms.

Proof. The proof is straightforward. For continuity, let A ⊆ S be an open
subset. Then π−1

S (A) is open in P since

π−1
S (A) = {(s, g, t) ∈ P | πS(s, g, t) ∈ A} = {(s, g, t) ∈ P | s ∈ A}

= (A×G× T ) ∩ P.

Now take ((s, g, t), (σ, h, τ)) ∈ P (2). Then

πS((s, g, t)(σ, h, τ)) = πS(sσ, g, tτ) = sσ = πS(s, g, t)πS(σ, h, τ).

Also, πS((s, g, t)−1) = πS(s−1, p(s)−1gq(t), t−1) = s−1 = (πS(s, g, t))−1.
Thus πS is a groupoid homomorphism. The proof for πT is similar. �

4. A Haar system for the weak pullback

We now assume that S, G and T are Haar groupoids and that the maps
p and q are homomorphisms of Haar groupoids. In order to define the
weak pullback of the following diagram in the category HG, we let P be
the weak pullback of the underlying diagram of topological groupoids, as
defined above.

P

�� ��
λ•S , µ

(0)
S S

p
��

T

q
��

λ•T , µ
(0)
T

G λ•G, µ
(0)
G

Our goal is to construct a Haar groupoid structure on P . We start by
defining the Haar system λ•P . From Lemma 3.7 we know that the r-fibers

of P are cartesian products of the form P u = P (s,g,t) = Ss × {g} × T t. In
light of this it is reasonable to propose the following definition.
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Definition 4.1. Let u = (s, g, t) ∈ P (0). Define

λuP = λ
(s,g,t)
P := λsS × δg × λtT .

We denote λ•P = {λuP }u∈P (0) .

Theorem 4.2. The system λ•P is a continuous left Haar system for P .

Proof. The proof will rely on the technology developed in [4]. We consider
the following three pullback diagrams in the category Top of topological
spaces and continuous functions (i.e., we temporarily forget the algebraic
structures of the groupoids involved, and view them only as topological
spaces. Likewise all groupoid homomorphisms are regarded only as contin-
uous functions):

Diagram A G(0) ∗G(0)

��

// G(0)

v 7→[v]

��
G(0)

u7→[u]
// G

Diagram B S(0) ∗ T (0)

��

// T (0)

t7→[q(t)]

��
S(0)

s 7→[p(s)]
// G

Diagram C S ∗ T

��

// T

τ 7→[q(r(τ))]

��
S

σ 7→[p(r(σ))]
// G

Note that in order to lighten notation, we denote the pullback object, for
example in Diagram C, by S ∗ T in place of S ∗G T . By definition

S ∗ T = S ∗G T = {(σ, τ) ∈ S × T | [p(r(σ))] = [q(r(τ))] in G}
and the maps to S and T are the obvious projections. The topology of S ∗T
is the restriction of the product topology on S × T .

Using G(0) ∗G(0), S(0) ∗ T (0) and S ∗ T , we can now construct two more
pullback diagrams (still in Top). Our identifications of the pullback objects

in Diagrams D and E with P (0) and P , respectively, are justified below. A
moment’s reflection reveals that the maps in these diagrams are well defined.
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Diagram D P (0)

��

// S(0) ∗ T (0)

(s,t)7→(p(s),q(t))

��
G

x 7→(r(x),d(x))
// G(0) ∗G(0)

Diagram E P

��

// S ∗ T

(σ,τ)7→(p(r(σ)),q(r(τ)))

��
G

x 7→(r(x),d(x))
// G(0) ∗G(0)

In Diagram D we identified the pullback object G ∗G(0)∗GG(0) (S(0) ∗G T (0))

with P (0). Indeed,

G ∗G(0)∗GG(0)

(
S(0) ∗G T (0)

)
={(g, (s, t)) | (rG(g), dG(g)) = (p(s), q(t))}
={(g, (s, t)) | rG(g) = p(s) and dG(g) = q(t)}

=
{

(g, (s, t)) | g ∈ Gp(s)q(t)

}
which can obviously be identified, as sets, with our definition of P (0). More-
over, the topology on the pullback is precisely that of P (0), namely the
induced topology from S(0)×G×T (0). Similarly, in Diagram E we identified
the pullback object G ∗G(0)∗GG(0) (S ∗G T ) with P . Indeed,

G ∗G(0)∗GG(0) (S ∗G T ) ={(g, (s, t)) | (rG(g), dG(g))=(p(rS (s)), q(rT (t)))}
= {(g, (s, t)) | rG(g)=p(rS (s)) , dG(g)=q(rT (t))}

which can be identified with our definition of P , as sets as well as in Top.
Henceforth, we shall follow Section 5 of [4], where we studied fibred prod-

ucts of systems of measures. Observe that the results we invoke at this point
from [4] only require spaces to be T1 and second countable. The spaces we
consider all satisfy these hypotheses. Using Diagram C as the front face
and Diagram B as the back face, we construct the following fibred product
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diagram:

S(0) ∗ T (0) T (0)

S(0) G

S ∗ T T

S G

//

//

//[p]

//
[p◦rS ]

�� ��

[q]

�� ��

[q◦rT ]

??

rS∗rT

??

rT λ•T

??

rS λ•S

??

The connecting maps are the range maps rT and rS , and they are endowed
respectively with the Haar systems λ•T and λ•S , which are continuous systems
of measures and therefore locally finite (see Corollary 2.15 of [4]). It is im-
mediate to see that the compatibility conditions on the maps of the bottom
and the right faces are satisfied. The map rS ∗ rT : S ∗ T → S(0) ∗ T (0) is
defined by (rS ∗ rT )(s, t) = (rS(s), rT (t)). By Definition 5.1 and Proposition
5.2 of [4], we obtain a locally finite system of measures (λS ∗λT )• on rS ∗rT ,
where

(λS ∗ λT )(s,t) = λsS × λtT .
Moreover, by Proposition 5.5 of [4] it is positive on open sets.

With this at hand, we construct another fibred product diagram. We take
Diagram E as the front face and Diagram D as the back face, and use rS ∗rT
and id : G→ G as the connecting maps. The map rS ∗ rT is equipped with
the above locally finite system of measures (λS ∗ λT )•, whereas the identity
map on G naturally admits the system δ• of Dirac masses, which is trivially
locally finite:

P (0) S(0) ∗ T (0)

G G(0) ∗G(0)

P S ∗ T

G G(0) ∗G(0)

//

//

(r,d)
//

//
(r,d)

�� ��

p∗q

�� ��

(p◦r)∗(q◦r)

??

rP

??

rS∗rT (λS∗λT )•

??

id δ•

??
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It is again easy to see that the compatibility conditions on the maps of the
bottom and the right faces are satisfied. Note that in this last diagram we
have identified the map from P to P (0) with rP , the range map of P .

Resorting once again to Definition 5.1 and Proposition 5.2 of [4], we obtain

a locally finite system of measures (δ ∗ (λS ∗ λT ))• on rP : P → P (0), where

(δ ∗ (λS ∗ λT ))(g,s,t) = δg × (λS ∗ λT )(s,t) = δg × λsS × λtT .
We denote this system of measures on rP by λ•P . Yielding to the original
convention of writing elements of P as (s, g, t) rather than (g, s, t), we write

λ
(s,g,t)
P = λsS × δg × λtT . Our construction of λ•P as a fibred product of the

systems δ• and (λS ∗ λT )•, which are locally finite and positive on open
sets, guarantees (by Propositions 5.2 and 5.5 of [4]) that λ•P inherits these
properties.

Recall that as we have pointed out in the preliminaries, G need not be a
Hausdorff space in general. Moreover, S∗T , for example, need not be locally
compact, as it is not necessarily closed in S × T . The assumption that all
spaces are locally compact and Hausdorff is essential in the CSM setting in
[4]. For this reason we cannot simply use Proposition 5.4 of [4] to deduce
that as fibred products, (λS ∗ λT )• and subsequently λ•P are CSMs. Thus,
we present a separate direct proof that λ•P is a CSM in Proposition 4.3
below. Furthermore, at this point we return to viewing P , G, S and T
as groupoids, and in Proposition 4.4 we state and prove that λ•P is left
invariant. We conclude that λ•P is a continuous left Haar system for the
groupoid P . �

Proposition 4.3. The system λ•P is a continuous system of measures.

Proof. From the definition of a CSM, in order to prove that λ•P is a CSM

on rP : P → P (0), we need to show that for any 0 ≤ f ∈ Cc(P ), the map

(s, g, t) 7→
∫
P f(σ, x, τ)dλ

(s,g,t)
P (σ, x, τ) is a continuous function on P (0).

Let 0 ≤ f ∈ Cc(P ). Recall from the proof of Lemma 3.3 that P is
closed in S×G×T . By Tietze’s Extension Theorem, there exists a function
F ∈ C(S×G×T ) such that F |P = f . Since we can multiply F by a function
ϕ ∈ Cc(S×G×T ) which satisfies ϕ = 1 on K = supp(f), we can assume,
without loss of generality, that F ∈ Cc(S×G×T ).

We now resort to (symmetric versions of) Lemma 4.5 in [4]. First we

take X = S×G, Y = T , Z = T (0) and γ•= λ•T , to deduce that the function

F1 defined by (σ, x, t) 7→
∫
T F (σ, x, τ)dλtT (τ) is in Cc(S×G×T (0)). Next,

taking X =S×T (0), Y=G, Z=G and γ•= δ•, we get that the function F2

defined by (σ, g, t) 7→
∫
G F1(σ, x, t)dδg(x) is in Cc(S×G×T (0)). Finally, with

X =G×T (0), Y=S, Z=S(0) and γ•=λ•S , Lemma 4.5 of [4] implies that the

function F3 defined by (s, g, t) 7→
∫
S F2(σ, g, t)dλsS(σ) is in Cc(S

(0)×G×T (0)).
Merging these results, we can rewrite the function F3 by

(s, g, t) 7−→
∫
S

∫
G

∫
T
F (σ, x, τ) dλtT (τ)dδg(x)λsS(σ).
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Note that in the above integral rS(σ) = s and rT (τ) = t, since supp(λsS) =

r−1
S (s) and supp(λtT ) = r−1

T (t). Therefore, if we take (s, g, t) ∈ P (0), in
which case p(s) = rG(g) and q(t) = dG(g), we get that p(rS(σ)) = rG(g)

and q(rT (τ)) = dG(g). In other words, when restricting F3 to P (0), we are
actually integrating over P . Recalling the definition of λ•P and that F |P =

f , we retrieve precisely the function (s, g, t) 7→
∫
P f(σ, x, τ)dλ

(s,g,t)
P (σ, x, τ),

which is continuous on P (0) as a restriction of a continuous function on
S(0)×G×T (0). �

Proposition 4.4. The system λ•P is left invariant.

Proof. From the definition of left invariance, we need to show that

(3) λ
dP (x)
P (E) = λ

rP (x)
P

(
x · (E ∩ P dP (x))

)
,

for every x ∈ P and for every Borel subset E ⊆ P .
Assume first that E is a set of the form E=(A×B×C)∩P , where A⊆S,

B ⊆G and C ⊆ T . Let x = (σ, y, τ) ∈ P , so rP (x) = (rS(σ), y, rT (τ)) and
dP (x) = (dS(σ), p(σ)−1yq(τ), dT (τ)). We will denote z = p(σ)−1yq(τ). We
calculate the left- and right-hand sides of (3) separately. On the one hand
we get:

λ
dP (x)
P (E) = λ

dP (x)
P

(
(A×B × C) ∩ P dP (x)

)
since λ

dP (x)
P is concentrated on P dP (x). By Lemma 3.7

= λ
dP (x)
P

(
(A×B × C) ∩ (SdS(σ) × {z} × T dT (τ))

)
= λ

dP (x)
P

(
(A ∩ SdS(σ))× (B ∩ {z})× (C ∩ T dT (τ))

)
= λ

dS(σ)
S (A ∩ SdS(σ)) · δz(B ∩ {z}) · λdT (τ)

T (C ∩ T dT (τ))

= λ
dS(σ)
S (A) · δz(B) · λdT (τ)

T (C).

On the other hand,

λ
rP (x)
P

(
x · (E ∩ P dP (x))

)
= λ

rP (x)
P

(
(σ, y, τ) ·

(
(A×B × C) ∩ P dP (x)

))
= λ

rP (x)
P

(
(σ, y, τ) ·

(
(A ∩ SdS(σ))× (B ∩ {z})× (C ∩ T dT (τ))

))
.

By the definition of P (2), (σ, y, τ)·
(
(A ∩ SdS(σ))× (B ∩ {z})× (C ∩ T dT (τ))

)
can be nonempty only when z = p(σ)−1yq(τ) ∈ B, in which case the middle
component of the product is {y}. Hence

=

{
λ
rP (x)
P

(
σ · (A ∩ SdS(σ))× {y} × τ · (C ∩ T dT (τ))

)
z ∈ B

λ
rP (x)
P (∅) z /∈ B
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=

{
λ
rS(σ)
S

(
σ · (A ∩ SdS(σ))

)
· δy({y}) · λrT (τ)

T

(
τ · (C ∩ T dT (τ))

)
z ∈ B

0 z /∈ B.

By the left invariance of λ•S and λ•T

=

{
λ
dS(σ)
S (A) · λdT (τ)

T (C) z ∈ B
0 z /∈ B

= λ
dS(σ)
S (A) · δz(B) · λdT (τ)

T (C).

Thus (3) holds for any set E of the form E = (A×B × C) ∩ P .
Fix x ∈ P , and for any Borel subset E of P define

µ(E) = λ
dP (x)
P (E) and ν(E) = λ

rP (x)
P

(
x · (E ∩ P dP (x))

)
.

We claim that µ and ν are both locally finite measures on P . Since λ•P is
a CSM, it is a locally finite BSM by Proposition 2.23 of [4]. Hence λuP is

a locally finite measure for any u ∈ P (0), and in particular µ = λ
dP (x)
P is a

locally finite measure.
We turn to ν. It is trivial that ν(∅) = 0. Let {Ei}∞i=1 be a countable

collection of disjoint Borel subsets of P .

ν

( ∞⋃
i=1

Ei

)
= λ

rP (x)
P

(
x ·

(( ∞⋃
i=1

Ei

)
∩ P dP (x)

))

= λ
rP (x)
P

(
x ·

( ∞⋃
i=1

(
Ei ∩ P dP (x)

)))

= λ
rP (x)
P

( ∞⋃
i=1

x ·
(
Ei ∩ P dP (x)

))

=

∞∑
i=1

λ
rP (x)
P

(
x ·
(
Ei ∩ P dP (x)

))
=

∞∑
i=1

ν(Ei).

Therefore ν is countably additive, and hence a measure. In order to prove
that ν is locally finite we need to show that every y ∈ P admits an open
neighborhood Uy such that ν(Uy) < ∞. In the case where y /∈ P dP (x),

the open set Uy = P \ P dP (x) satisfies ν(Uy) = λ
rP (x)
P

(
x · (Uy ∩ P dP (x))

)
=

λ
rP (x)
P (∅) = 0 <∞. Now assume that y ∈ P dP (x). In this case the product

z = xy is well defined, and since λ
rP (x)
P is a locally finite measure, there

exists an open neighborhood Uz of z such that λ
rP (x)
P (Uz) < ∞. The map

P dP (x) → P defined by w 7→ x · w is continuous, hence there exists an
open neighborhood Uy of y such that x ·

(
Uy ∩ P dP (x)

)
⊂ Uz. Consequently,

ν(Uy) = λ
rP (x)
P

(
x · (Uy ∩ P dP (x))

)
≤ λrP (x)

P (Uz) <∞.
Finally, let B be a countable basis for the topology of P consisting of

elementary open sets, as in Remark 3.2. As we have just shown, elementary
open sets satisfy (3), hence µ and ν agree on all finite intersections of sets in
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B. We can now invoke Lemma 2.24 of [4], which states that if µ and ν are
two locally finite measures on a space X, and there exists a countable basis
B for the topology of X such that µ(U1∩U2∩· · ·∩Un) = ν(U1∩U2∩· · ·∩Un)
for any {U1, U2, . . . , Un} ⊂ B, n ≥ 1, then µ(E) = ν(E) for any Borel subset
E ⊆ X. Applying Lemma 2.24 of [4] to µ, ν and B above completes the
proof. �

5. A measure on the unit space of the weak pullback

We return to the weak pullback diagram. Our next task is to construct a

measure µ
(0)
P on P (0), and for starters we will need to have certain systems

of measures γ•p and γ•q on the maps p and q, respectively. These systems of
measures arise via a disintegration theorem, as we explain below.

P

�� ��

λ•P

λ•S , µ
(0)
S S

p,γ•p ��

T

q,γ•q��

λ•T , µ
(0)
T

G λ•G, µ
(0)
G

Let (X,µ) and (Y, ν) be measure spaces, and let f : X → Y be a Borel
map. A system of measures γ• on f will be called a disintegration ([4],

Definition 6.2) of µ with respect to ν if µ(E) =

∫
Y
γy(E)dν(y) for every

Borel set E ⊆ X. A disintegration theorem gives sufficient conditions which
guarantee the existence of such a disintegration, and the version we will
use appears as Corollary 6.6 of [4]. It requires µ to be locally finite (and
σ-finite), ν to be σ-finite, and f : X → Y to be measure class preserving.
Under these conditions there exists a locally finite BSM γ• on f which is a
disintegration of µ with respect to ν.

Each of the Haar groupoids S, G and T is equipped with a Radon (hence
locally finite and σ-finite) measure on its unit spaces, which is quasi-invariant
with respect to its Haar system. The maps p and q are homomorphisms
of Haar groupoids, therefore p : S(0) → G(0) and q : T (0) → G(0) are
measure class preserving. These ingredients allow us to invoke Corollary 6.6
of [4], and to obtain locally finite BSMs γ•p on p : S(0) → G(0) which is a

disintegration of µ
(0)
S with respect to µ

(0)
G , and γ•q on q : T (0) → G(0) which

is a disintegration of µ
(0)
T with respect to µ

(0)
G .

The following requirement will be essential for our proof of Proposition 5.6

below, which states that the measure µ
(0)
P which we are constructing is locally

finite.

Assumption 5.1. We will henceforth assume that the disintegration sys-
tems γ•p and γ•q can be taken to be locally bounded.
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Remark 5.2. By Lemma 2.11 of [4], a CSM is always locally bounded.
Therefore, an appropriate disintegration theorem that produces a system
which is either a CSM or at least locally bounded would have allowed us to
remove Assumption 5.1.

Continuous (hence locally bounded) disintegrations are abundant: Ex-
amples include disintegrations of Lebesgue measures along maps from Rn
to Rm, as well as fiber bundles that admit a continuous disintegration of
a measure on the total space with respect to a measure on the base space.
Seda shows that more general constructions of fiber spaces also host contin-
uous disintegrations, see Theorem 3.2 of [12]. In our context, a Haar system
is of course a continuous disintegration of the induced measure with respect
to the measure on the unit space. A very general result (see Theorem 5.43
of [7], which is a corollary of Theorem 3.3 of [3]) states that any continu-
ous and open map f : X → Y between second countable locally compact
Hausdorff spaces, admits a continuous system of measures γ•. In particular
this implies that if ν is a measure on Y and we define the measure µ on X

via γ• by µ(E) =

∫
Y
γy(E)dν(y), then γ• is a continuous disintegration of

µ with respect to ν.
The next step is to construct a BSM on the projection πG : P (0) → G,

using γ•p and γ•q .

Proposition 5.3. The projection πG : P (0) → G admits a locally finite
BSM η•, given by

ηx = γr(x)
p × δx × γd(x)

q .

Proof. We form the following fibred product diagram in the category Top,
with Diagram B as the front face and Diagram A as the back face. The
connecting maps are p : S(0) → G(0) and q : T (0) → G(0), equipped with
the locally finite BSMs γ•p and γ•q constructed above. The compatibility
conditions on the maps of the bottom and the right faces are easily seen to
be satisfied.

G(0) ∗G(0) G(0)

G(0) G

S(0) ∗ T (0) T (0)

S(0) G

//

//

//

//
[p]

�� ��

�� ��

[q]

??

p∗q

??

q γ•q

??

p γ•p

??
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We point out that the results we use from [4] throughout this proof do not
require spaces to be locally compact and Hausdorff. By Proposition 5.2 in
[4], we obtain from the above diagram the locally finite BSM (γp ∗ γq)• on

p ∗ q : S(0) ∗ T (0) → G(0) ∗G(0), where

(γp ∗ γq)(u,v) = γup × γvq .

Next, we consider the following pullback diagram in Top (this was Dia-
gram D in the proof of Theorem 4.2). We equip the map p∗q with the BSM
(γp ∗ γq)•:

P (0)

πG

��

// S(0) ∗ T (0)

(γp∗γq)•p∗q

��
G

(r,d) // G(0) ∗G(0)

We follow Section 4 of [4], where we studied lifting of systems of measures.
By Definition 4.1, Remark 4.2 and Proposition 4.4 of [4], we can lift the
locally finite BSM (γp∗γq)• and obtain a locally finite BSM ((r, d)∗(γp∗γq))•
on the projection πG : P (0) → G. We denote η• = ((r, d)∗(γp∗γq))•, and from

the definition of lifting it follows that for x ∈ G, ηx = δx×(γp∗γq)(r(x),d(x)) =

δx×γr(x)
p ×γd(x)

q , which we rewrite as ηx = γ
r(x)
p ×δx×γd(x)

q . This completes
the proof. �

Lemma 5.4. Let E ⊆ P (0) be a set of the form E = (A × B × C) ∩ P (0),

where A ⊆ S(0), B ⊆ G and C ⊆ T (0). For any x ∈ G,

ηx(E) = γr(x)
p (A)δx(B)γd(x)

q (C).

Proof. From the definition of η• in Proposition 5.3 above, we have that

ηx(E) = (γ
r(x)
p × δx × γd(x)

q )
(
(A×B × C) ∩ P (0)

)
. Clearly if x /∈ B then

ηx(E) = 0. If x ∈ B then, since δx is concentrated on {x}, we can write

ηx(E) = (γ
r(x)
p × δx× γd(x)

q )
(
(A× {x} × C) ∩ P (0)

)
. A point (s, x, t) ∈ P (0)

whose G component is x, satisfies s ∈ p−1(r(x)) and t ∈ q−1(d(x)), hence for

x ∈ B we have ηx(E)=γ
r(x)
p

(
A ∩ p−1(r(x))

)
·δx ({x})·γd(x)

q

(
C ∩ q−1(d(x))

)
.

Since supp(γ
r(x)
p ) = p−1(r(x)) and supp(γ

d(x)
q ) = q−1(d(x)), it follows that

for x ∈ B, ηx(E) = γ
r(x)
p (A)δx ({x}) γd(x)

q (C). We conclude that for any

x ∈ G, ηx(E) = γ
r(x)
p (A)δx(B)γ

d(x)
q (C). �

We can now cook up a measure µ
(0)
P on P (0). The ingredients will be the

induced measure µG from Definition 2.2, as well as η• which we have just
constructed.
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Definition 5.5. Let B ⊆ P (0) be a Borel subset. Define:

µ
(0)
P (B) :=

∫
G
ηx(B)dµG(x).

In fact, the measure µ
(0)
P can be written as

µ
(0)
P = µG ◦ [(r, d)∗(γp ∗ γq)],

as it was obtained by lifting the fibred product of the disintegrations γp and

γq to πG : P (0) → G and then composing with the induced measure of G.

In order for P to be a Haar groupoid, µ
(0)
P must be a Radon measure,

and in particular locally finite. This is guaranteed modulo our standing
Assumption 5.1.

Proposition 5.6. µ
(0)
P is a Radon measure on P (0).

Proof. It suffices to show that µ
(0)
P is locally finite. Let A ⊆ S(0), B ⊆ G

and C ⊆ T (0) be open subsets with compact closures and consider the set
E = (A×B×C)∩P (0), which is an open subset of P (0). Using the definition

of µ
(0)
P above along with Lemma 5.4, we get

µ
(0)
P (E) =

∫
G
ηx(E)dµG(x) =

∫
G
γr(x)
p (A)δx(B)γd(x)

q (C)dµG(x)

=

∫
B
γr(x)
p (A)γd(x)

q (C)dµG(x).

It thus follows from Assumption 5.1 that

µ
(0)
P (E) ≤

(
sup
s
γsp(A)

)
·
(

sup
t
γtq(C)

)
· µG(B) <∞.

Since the open sets of the same form as E constitute a basis for the topology

of P (0), we conclude that µ
(0)
P is locally finite. �

Note that an alternative proof of Proposition 5.6 is obtained by arguing
that the system η• is locally bounded (modulo Assumption 5.1), and then
applying Corollary 3.7 of [4].

Proposition 5.7. The measure µ
(0)
P is independent of the choice of the

disintegrations γ•p and γ•q .

Proof. Let γ̃p
• and γ̃q

• be two other disintegrations on p and q respectively,

and let µ̃
(0)
P be the corresponding measure on P (0). By Corollary 6.6 in [4],

γ̃p
u = γup and γ̃q

u = γuq for µ
(0)
G -almost every u in G(0).

Let A ⊆ S(0), B ⊆ G and C ⊆ T (0) be open and let E = (A×B×C)∩P (0)

be the corresponding open subset of P (0). By the calculation in the proof of

Proposition 5.6 above, µ
(0)
P (E) =

∫
B γ

r(x)
p (A)γ

d(x)
q (C)dµG(x), and likewise
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µ̃
(0)
P (E) =

∫
B γ̃p

r(x)(A)γ̃q
d(x)(C)dµG(x). Using Lemma 2.4 and the fact that

supp(λuG) = r−1(u) we get

µ̃
(0)
P (E) =

∫
B
γ̃p
r(x)(A)γ̃q

d(x)(C)dµG(x)

=

∫
G(0)

(∫
B
γ̃p
r(x)(A)γ̃q

d(x)(C)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

γ̃p
u(A)

(∫
B
γ̃q
d(x)(C)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

γup (A)

(∫
B
γ̃q
d(x)(C)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

(∫
B
γr(x)
p (A)γ̃q

d(x)(C)dλuG(x)

)
dµ

(0)
G (u).

Justification for the next step is based on Formula (2) of Remark 2.7. The
remaining calculation retraces the previous arguments.

=

∫
G(0)

(∫
B
γd(x)
p (A)γ̃q

r(x)(C)∆−1
G (x)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

γ̃q
u(C)

(∫
B
γd(x)
p (A)∆−1

G (x)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

γuq (C)

(∫
B
γd(x)
p (A)∆−1

G (x)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

(∫
B
γd(x)
p (A)γr(x)

q (C)∆−1
G (x)dλuG(x)

)
dµ

(0)
G (u)

=

∫
G(0)

(∫
B
γr(x)
p (A)γd(x)

q (C)dλuG(x)

)
dµ

(0)
G (u) = µ

(0)
P (E).

Thus, µ̃
(0)
P (E) = µ

(0)
P (E) for any open set of the form E = (A×B×C)∩P (0).

These sets constitute a countable basis B(0) for the topology of P (0), in

analogy to Remark 3.2. Therefore, since µ
(0)
P is locally finite, it follows

that µ̃
(0)
P is locally finite as well. Moreover, µ

(0)
P and µ̃

(0)
P agree on finite

intersections of sets in B(0) as these sets are also in B(0), so we can now use
Lemma 2.24 of [4], as in the proof of Proposition 4.4, and conclude that

µ̃
(0)
P = µ

(0)
P . �

The following is a simple observation, whose proof is analogous to the
proof of Lemma 2.4, and thus omitted.

Lemma 5.8. For any Borel function f on P (0),∫
P (0)

f(u)dµ
(0)
P (u) =

∫
G

(∫
P (0)

f(u)dηy(u)

)
dµG(y).
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In §3 of [4] we defined the composition (β ◦ α)• of BSMs

X
p

α•
// Y

q

β•
// Z

which is characterized by

(4)

∫
X
f(x)d(β ◦ α)z(x) =

∫
Y

(∫
X
f(x)dαy(x)

)
dβz(y).

This will be essential for proving the following lemma.

Lemma 5.9. For any Borel function f(y, σ) on G ∗ S,∫
S(0)

∫
S

∫
G
f(y, σ)dλ

p(rS(σ))
G (y)dλsS(σ)dγup (s)

=

∫
G

∫
S(0)

∫
S
f(y, σ)dλsS(σ)dγrG(y)

p (s)dλuG(y).

Proof. Consider the composition (γp ◦ λS)• of the BSMs

S
rS

λ•S

// S(0) p

γ•p

// G(0)

We use this as the right edge in the pull-back diagram below. Following §4 of
[4], we lift the BSM λ•G to obtain a BSM ((p◦rS)∗λG)• on πS : G∗S → S, and
we lift the BSM (γp◦λS)• to obtain a BSM (r∗G(γp◦λS))• on πG : G∗S → G.

G ∗ S

πG (r∗G(γp◦λS))•

��

πS

((p◦rS)∗λG)•
// S

p◦rS (γp◦λS)•

��
G

rG

λ•G

// G(0)

By the definition of lifting,

((p ◦ rS)∗λG)σ = λ
p(rS(σ))
G × δσ, σ ∈ S

and
(rG
∗(γp ◦ λS))y = δy × (γp ◦ λS)rG(y), y ∈ G.

The above diagram gives rise to two compositions:

G ∗ S πS

((p◦rS)∗λG)•
// S

p◦rS
(γp◦λS)•

// G(0)

and

G ∗ S πG

(r∗G(γp◦λS))•
// G

rG

λ•G

// G(0) .

However, Proposition 4.8 of [4] states that the above diagram is a commu-
tative diagram of BSMs, and explicitly,

[(γp ◦ λS) ◦ ((p ◦ rS)∗λG)]• = [λG ◦ (rG
∗(γp ◦ λS)]•,
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as BSMs on G ∗ S → G(0). The above equality implies that for any Borel
function f(y, σ) on G ∗ S,∫

G∗S
f(y, σ)d((γp ◦ λS) ◦ ((p ◦ rS)∗λG))u(y, σ)

=

∫
G∗S

f(y, σ)d(λG ◦ (rG
∗(γp ◦ λS))u(y, σ).

We expand the left- and the right-hand sides of the above equality separately,
using repeatedly the characterization (4) of composition of BSMs above:

LHS =

∫
G∗S

f(y, σ)d((γp ◦ λS) ◦ ((p ◦ rS)∗λG))u(y, σ)

=

∫
S

(∫
G∗S

f(y, σ)d((p ◦ rS)∗λG)σ̃(y, σ)

)
d(γp ◦ λS)u(σ̃)

=

∫
S(0)

∫
S

(∫
G∗S

f(y, σ)d((p ◦ rS)∗λG)σ̃(y, σ)

)
dλsS(σ̃)dγup (s)

=

∫
S(0)

∫
S

(∫
G∗S

f(y, σ)d(λ
p(rS(σ̃))
G × δσ̃)(y, σ)

)
dλsS(σ̃)dγup (s)

=

∫
S(0)

∫
S

(∫
G∗S

f(y, σ)dλ
p(rS(σ̃))
G (y)dδσ̃(σ)

)
dλsS(σ̃)dγup (s)

=

∫
S(0)

∫
S

∫
G
f(y, σ)dλ

p(rS(σ))
G (y)dλsS(σ)dγup (s).

RHS =

∫
G∗S

f(y, σ)d(λG ◦ (rG
∗(γp ◦ λS))u(y, σ)

=

∫
G

(∫
G∗S

f(y, σ)d(rG
∗(γp ◦ λS))ỹ(y, σ)

)
dλuG(ỹ)

=

∫
G

(∫
G∗S

f(y, σ)d(δỹ × (γp ◦ λS)rG(ỹ))(y, σ)

)
dλuG(ỹ)

=

∫
G

(∫
G∗S

f(y, σ)dδỹ(y)d(γp ◦ λS)rG(ỹ)(σ)

)
dλuG(ỹ)

=

∫
G

(∫
S
f(y, σ)d(γp ◦ λS)rG(y)(σ)

)
dλuG(y)

=

∫
G

∫
S(0)

∫
S
f(y, σ)dλsS(σ)dγrG(y)

p (s)dλuG(y).

Since the above expressions are equal, this yields the desired formula. �

Lemma 5.10. Let f(σ, x, τ) be a Borel function on P . Then∫
P
f(σ, x, τ)dµP (σ, x, τ) =

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
f(σ, y, τ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).
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Proof. Using Lemma 2.4 followed by Lemma 5.8,∫
P
f(σ, x, τ)dµP (σ, x, τ)

=

∫
P (0)

∫
P
f(σ, x, τ)dλ

(s,g,t)
P (σ, x, τ)dµ

(0)
P (s, g, t)

=

∫
G

∫
P (0)

∫
P
f(σ, x, τ)dλ

(s,g,t)
P (σ, x, τ)dηy(s, g, t)dµG(y).

Rewriting ηy by Proposition 5.3, and then rewriting λ
(s,g,t)
P by Definition 4.1,

we get

=

∫
G

∫∫∫
S(0)×G×T (0)

∫
P
f(σ, x, τ)

dλ
(s,g,t)
P (σ, x, τ)dγr(y)

p (s)dδy(g)dγd(y)
q (t)dµG(y)

=

∫
G

∫∫∫
S(0)×G×T (0)

∫∫∫
S×G×T

f(σ, x, τ)

dλsS(σ)dδg(x)dλtT (τ)dγr(y)
p (s)dδy(g)dγd(y)

q (t)dµG(y)

=

∫
G

∫∫
S(0)×T (0)

∫∫
S×T

f(σ, y, τ)dλsS(σ)dλtT (τ)dγr(y)
p (s)dγd(y)

q (t)dµG(y).

Using Lemma 2.4 again, followed by Fubini’s theorem, we have

=

∫
G(0)

∫
G

∫∫
S(0)×T (0)

∫∫
S×T

f(σ, y, τ)

dλsS(σ)dλtT (τ)dγr(y)
p (s)dγd(y)

q (t)dλuG(y)dµ
(0)
G (u)

=

∫
G(0)

∫
G

∫
S(0)

∫
T (0)

∫
S

∫
T
f(σ, y, τ)

dλtT (τ)dλsS(σ)dγd(y)
q (t)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).

We now invoke Proposition 5.6 from [4], which asserts that for locally fi-
nite BSMs, fibred products commute with compositions. We apply this
theorem to the following diagram (it is straightforward to verify that the
conditions for the proposition indeed hold. In particular, λ•S and λ•T are
locally bounded). We obtain that (γq ∗γp) ◦ (λT ∗λS) = (γq ◦λT ) ∗ (γp ◦λS).
See Figure 1.

Therefore, returning to our main calculation, we get

=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
f(σ, y, τ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).

This completes the proof. �
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T ∗ S rT ∗rS
(λT ∗λS)•

//

}}

T (0) ∗ S(0) q∗p

(γq∗γp)•
//

||

G(0) ∗G(0)

��

}}
S

rS

λ•S

//

��

��

S(0) p

γ•p

//

��

��

G(0)

��

T
rT

λ•T

}}

// T (0) q

γ•q

||

// G(0)

}}
G

id // G
id // G

Figure 1.

Proposition 5.11. The measure µ
(0)
P is quasi-invariant with respect to λ•P .

Proof. By Definition 2.6, we need to show that µP and µ−1
P are mutually

absolutely continuous. We recall from Definition 2.2 that µP is the induced

measure, defined for any Borel set E ⊆ P by µP (E) =
∫
P (0) λvP (E)dµ

(0)
P (v),

and µ−1
P is its image under inversion, i.e., µ−1

P (E) = µP (E−1). We will
prove:

Claim.There exists a function Λ : P → R satisfying Λ(α) > 0 µP -a.e.,
such that for any Borel set E ⊆ P ,

µ−1
P (E) =

∫
P
χE (α)Λ(α)dµP (α).

It will then follow that µP ∼ µ−1
P , since µP (E) =

∫
P χE (α)dµP (α). In

fact, ∆ = Λ−1 will be the modular function of µP .
We first prove the claim for elementary open subsets of the form E =

(A × B × C) ∩ P , where A ⊆ S, B ⊆ G and C ⊆ T . Note that the
characteristic function χE is the restriction of the product χA ·χB ·χC to P .

We denote α = (σ, x, τ) ∈ P and v = (s, g, t) ∈ P (0). By Lemma 5.10,

µ−1
P (E) = µP (E−1) =

∫
P
χ

E−1 (σ, x, τ)dµP (σ, x, τ)

=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χ

E−1 (σ, y, τ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u)

=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χE (σ−1, p(σ)−1yq(τ), τ−1)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u)
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=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χA(σ−1)χB (p(σ)−1yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).

Using Lemma 5.9, we obtain

=

∫
G(0)

∫
S(0)

∫
S

∫
G

∫
T (0)

∫
T
χA(σ−1)χB (p(σ)−1yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(r(σ))
G (y)dλsS(σ)dγup (s)dµ

(0)
G (u)

=

∫
G(0)

∫
S(0)

∫
S
χA(σ−1)

∫
G

∫
T (0)

∫
T
χB (p(σ)−1yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(r(σ))
G (y)dλsS(σ)dγup (s)dµ

(0)
G (u).

Let f1 be a function on G, defined by the formula

f1(y) =

∫
T (0)

∫
T
χB (yq(τ))χC (τ−1)dλtT (τ)dγd(y)

q (t).

From Lemma 7.3 of [4] we know that a system of measures λ• on a groupoid
G is left invariant if and only if for any x ∈ G and every nonnegative Borel
function f on G,

(5)

∫
f(xy)dλd(x)(y) =

∫
f(y)dλr(x)(y).

This implies, using x = p(σ)−1 and the above f1, that∫
G
f1(p(σ)−1y)dλ

p(r(σ))
G =

∫
G
f1(y)dλ

p(d(σ))
G .

Therefore, returning to our main calculation and noting that d(p(σ)−1y) =
d(y), we have

µ−1
P (E) =

∫
G(0)

∫
S(0)

∫
S
χA(σ−1)

∫
G

∫
T (0)

∫
T
χB (yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(d(σ))
G (y)dλsS(σ)dγup (s)dµ

(0)
G (u).

Using the fact that γ•p is a disintegration of µ
(0)
S with respect to µ

(0)
G , followed

by Lemma 2.4, we get

=

∫
S(0)

∫
S
χA(σ−1)

∫
G

∫
T (0)

∫
T
χB (yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(d(σ))
G (y)dλsS(σ)dµ

(0)
S (s)

=

∫
S
χA(σ−1)

∫
G

∫
T (0)

∫
T
χB (yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(d(σ))
G (y)dµS(σ)



WEAK PULLBACKS OF TOPOLOGICAL GROUPOIDS 825

=

∫
S

∫
G

∫
T (0)

∫
T
χA(σ−1)χB (yq(τ))χC (τ−1)

dλtT (τ)dγd(y)
q (t)dλ

p(d(σ))
G (y)dµS(σ).

The measure µ
(0)
S is quasi-invariant. Therefore, Formula (2) of Remark 2.7

permits us to replace σ−1 by σ at the price of inserting ∆−1
S (σ):

=

∫
S

∫
G

∫
T (0)

∫
T
χA(σ)χB (yq(τ))χC (τ−1)∆−1

S (σ)

dλtT (τ)dγd(y)
q (t)dλ

p(r(σ))
G (y)dµS(σ).

Re-expanding dµS and then using Lemma 5.9 again, followed by Lemma 2.4,
we have

=

∫
G(0)

∫
S(0)

∫
S

∫
G

∫
T (0)

∫
T
χA(σ)χB (yq(τ))χC (τ−1)∆−1

S (σ)

dλtT (τ)dγd(y)
q (t)dλ

p(r(σ))
G (y)dλsS(σ)dγup (s)dµ

(0)
G (u)

=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χA(σ)χB (yq(τ))χC (τ−1)∆−1

S (σ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u)

=

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χA(σ)χB (yq(τ))χC (τ−1)∆−1

S (σ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dµG(y).

We now use the quasi-invariance of µ
(0)
G and Formula (2) of Remark 2.7 to

write

=

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χA(σ)χB (y−1q(τ))χC (τ−1)∆−1

S (σ)∆−1
G (y)

dλtT (τ)dγr(y)
q (t)dλsS(σ)dγd(y)

p (s)dµG(y).

Next, we apply the characterization (4) preceding Lemma 5.9 above to the
compositions

S
rS

λ•S

// S(0) p

γ•p

// G(0)

and

T
rT

λ•T

// T (0) q

γ•q

// G(0).

We obtain

=

∫
G

∫
S

∫
T
χA(σ)χB (y−1q(τ))χC (τ−1)∆−1

S (σ)∆−1
G (y)

d(γq ◦ λT )r(y)(τ)d(γp ◦ λS)d(y)(σ)dµG(y).
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We can now use Fubini’s theorem, after which we reexpand the compositions
as well as µG:

=

∫
G

∫
T

∫
S
χA(σ)χB (y−1q(τ))χC (τ−1)∆−1

S (σ)∆−1
G (y)

d(γp ◦ λS)d(y)(σ)d(γq ◦ λT )r(y)(τ)dµG(y)

=

∫
G(0)

∫
G

∫
T (0)

∫
T

∫
S(0)

∫
S
χA(σ)χB (y−1q(τ))χC (τ−1)∆−1

S (σ)∆−1
G (y)

dλsS(σ)dγd(y)
p (s)dλtT (τ)dγr(y)

q (t)dλuG(y)dµ
(0)
G (u).

By Lemma 5.9 with T, t, τ and q in place of S, s, σ and p, we get

=

∫
G(0)

∫
T (0)

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χB (y−1q(τ))χC (τ−1)∆−1

S (σ)∆−1
G (y)

dλsS(σ)dγd(y)
p (s)dλ

q(r(τ))
G (y)dλtT (τ)dγuq (t)dµ

(0)
G (u)

=

∫
G(0)

∫
T (0)

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (q(τ)−1y)χC (τ−1)∆−1
S (σ)∆−1

G (y)

dλsS(σ)dγd(y)
p (s)dλ

q(r(τ))
G (y)dλtT (τ)dγuq (t)dµ

(0)
G (u).

Let f2 be a function on G, defined by the formula

f2(y) =

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ−1)∆−1
S (σ)∆−1

G (q(τ))∆−1
G (y)

dλsS(σ)dγd(y)
p (s).

Using x = q(τ)−1 and f2 in Equation (5) above, we obtain that∫
G
f2(q(τ)−1y)dλ

q(r(τ))
G =

∫
G
f2(y)dλ

q(d(τ))
G .

Recall that we take ∆G to be a groupoid homomorphism (see Remark 2.7).
Therefore,

∆−1
G (q(τ))∆−1

G (q(τ)−1y) = ∆−1
G (q(τ))∆−1

G (q(τ)−1)∆−1
G (y) = ∆−1

G (y).

Hence, noting also that d(q(τ)−1y) = d(y), the left-hand side of the above
equality gives precisely the last line of our main calculation. From the right-
hand side we then get

=

∫
G(0)

∫
T (0)

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ−1)∆−1
S (σ)

∆−1
G (q(τ))∆−1

G (y)dλsS(σ)dγd(y)
p (s)dλ

q(d(τ))
G (y)dλtT (τ)dγuq (t)dµ

(0)
G (u).

From the fact that γ•q is a disintegration of µ
(0)
T with respect to µ

(0)
G , followed

by Lemma 2.4, we get

=

∫
T (0)

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ−1)∆−1
S (σ)∆−1

G (q(τ))∆−1
G (y)

dλsS(σ)dγd(y)
p (s)dλ

q(d(τ))
G (y)dλtT (τ)dµ

(0)
T (t)
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=

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ−1)∆−1
S (σ)∆−1

G (q(τ))∆−1
G (y)

dλsS(σ)dγd(y)
p (s)dλ

q(d(τ))
G (y)dµT (τ).

Using the quasi-invariance of µ
(0)
T and Formula (2) of Remark 2.7 gives

=

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ)∆−1
S (σ)∆−1

G (q(τ)−1)∆−1
G (y)∆−1

T (τ)

dλsS(σ)dγd(y)
p (s)dλ

q(r(τ))
G (y)dµT (τ).

Re-expanding dµT we get:

=

∫
G(0)

∫
T (0)

∫
T

∫
G

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ)∆−1
S (σ)∆−1

G (q(τ)−1)

∆−1
G (y)∆−1

T (τ)dλsS(σ)dγd(y)
p (s)dλ

q(r(τ))
G (y)dλtT (τ)dγuq (t)dµ

(0)
G (u).

We invoke Lemma 5.9 once again, with T, t, τ and q in place of S, s, σ and
p. We obtain

=

∫
G(0)

∫
G

∫
T (0)

∫
T

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ)∆−1
S (σ)∆−1

G (q(τ)−1)

∆−1
G (y)∆−1

T (τ)dλsS(σ)dγd(y)
p (s)dλtT (τ)dγr(y)

q (t)dλuG(y)dµ
(0)
G (u).

By Lemma 2.4 this equals

=

∫
G

∫
T (0)

∫
T

∫
S(0)

∫
S
χA(σ)χ

B−1 (y)χC (τ)∆−1
S (σ)∆−1

G (q(τ)−1)

∆−1
G (y)∆−1

T (τ)dλsS(σ)dγd(y)
p (s)dλtT (τ)dγr(y)

q (t)dµG(y).

We once again now use the quasi-invariance of µ
(0)
G and Formula (2) of

Remark 2.7 to write

=

∫
G

∫
T (0)

∫
T

∫
S(0)

∫
S
χA(σ)χB (y)χC (τ)∆−1

S (σ)∆−1
G (q(τ)−1)∆−1

G (y−1)

∆−1
G (y)∆−1

T (τ)dλsS(σ)dγr(y)
p (s)dλtT (τ)dγd(y)

q (t)dµG(y).

Returning to χE and using Lemma 2.4, we get

=

∫
G(0)

∫
G

∫
T (0)

∫
T

∫
S(0)

∫
S
χE (σ, y, τ)∆−1

S (σ)∆−1
G (q(τ)−1)∆−1

T (τ)

dλsS(σ)dγr(y)
p (s)dλtT (τ)dγd(y)

q (t)dλuG(y)dµ
(0)
G (u).

As we argued earlier in this calculation, we can change the order of integra-
tion:

=

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χE (σ, y, τ)∆−1

S (σ)∆−1
G (q(τ)−1)∆−1

T (τ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).
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Finally, we define Λ(σ, y, τ) = ∆−1
S (σ)∆−1

G (q(τ)−1)∆−1
T (τ). We get:

µ−1
P (E) =

∫
G(0)

∫
G

∫
S(0)

∫
S

∫
T (0)

∫
T
χE (σ, y, τ)Λ(σ, y, τ)

dλtT (τ)dγd(y)
q (t)dλsS(σ)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).

By Lemma 5.10 this equals

∫
P
χE (σ, x, τ)Λ(σ, x, τ)dµP (σ, x, τ), proving the

claim for any elementary open set. In order to complete the proof, we need
to show that the claim holds for any Borel set E ⊆ P . For this, we will
invoke Lemma 2.24 of [4], as in the proof of Proposition 4.4. For any Borel
subset E, we define

µ(E) = µ−1
P (E) and ν(E) =

∫
P
χE (α)Λ(α)dµP (α).

As in Lemma 2.3, since µ
(0)
P is locally finite and λ•P is a continuous Haar

system, the induced measure µP is locally finite, hence so is the measure
µ. Thus ν is locally finite as well, since µ(E) = ν(E) for any elementary
open set E, and these sets constitute a basis B for the topology of P by
Remark 3.2. Finally, µ and ν agree on finite intersections of sets in B as
these are themselves elementary open sets, so Lemma 2.24 of [4] implies that
µ(E) = ν(E) for all Borel sets. The proof is complete. �

Remark 5.12. In particular, it follows from the above calculation that the
modular function of µP is given by ∆P (σ, x, τ) = ∆S(σ)∆T (τ)/∆G(q(τ)).

6. The weak pullback of Haar groupoids

We return to the weak pullback diagram, which we have now completed:

P

πS

��

πT

��

λ•P , µ
(0)
P

λ•S , µ
(0)
S S

p
��

T

q
��

λ•T , µ
(0)
T

G λ•G, µ
(0)
G

In order for (P, λ•P , µ
(0)
P ) to indeed be the weak pullback in the category

HG, it must be a Haar groupoid in the sense of Definition 2.8, and the maps
πS : P → S and πT : P → T need to be homomorphisms of Haar groupoids
in the sense of Definition 2.9. The first fact is an immediate corollary of
Theorem 4.2 and Proposition 5.11. The second fact is proved below.

Corollary 6.1. The groupoid (P, λ•P , µ
(0)
P ) is a Haar groupoid.

Proposition 6.2. The maps πS : P → S and πT : P → T are homomor-
phisms of Haar groupoids.



WEAK PULLBACKS OF TOPOLOGICAL GROUPOIDS 829

Proof. By lemma 3.8, the maps πS and πT are continuous groupoid homo-
morphisms. It remains to show that they are measure class preserving with
respect to the induced measures. We prove first that (πS)∗(µP ) ∼ µS .

Let Σ ⊆ S be a Borel subset. Using the definition of µP , we have

(πS)∗(µP )(Σ) = µP (π−1
S (Σ)) =

∫
P (0)

λ
(s,g,t)
P (π−1

S (Σ))dµ
(0)
P (s, g, t).

Observe that π−1
S (Σ) = {(σ, x, τ) ∈ P | σ ∈ Σ} = (Σ×G× T ) ∩ P . Substi-

tuting λ
(s,g,t)
P = λsS×δg×λtT according to Definition 4.1, noting that systems

of measures are concentrated on fibers, and using Lemma 3.7, we get:

λ
(s,g,t)
P (π−1

S (Σ)) = λ
(s,g,t)
P

(
(Σ×G× T ) ∩ P (s,g,t)

)
= (λsS × δg × λtT )

(
(Σ×G× T ) ∩ (Ss × {g} × T t)

)
= λsS(Σ) · δg({g}) · λtT (T )

= λsS(Σ)λtT (T ).

Therefore, using Lemma 5.10 and then rewriting ηy by Proposition 5.3, we
have

(πS)∗(µP )(Σ)

=

∫
G

∫
P (0)

λsS(Σ)λtT (T )dηy(s, g, t)dµG(y)

=

∫
G

∫∫∫
S(0)×G×T (0)

λsS(Σ)λtT (T )dγr(y)
p (s)dδy(g)dγd(y)

q (t)dµG(y)

=

∫
G

∫∫
S(0)×T (0)

λsS(Σ)λtT (T )dγr(y)
p (s)dγd(y)

q (t)dµG(y).

We use Fubini’s theorem, as well as Lemma 2.4, to obtain

=

∫
G(0)

∫
G

∫
S(0)

∫
T (0)

λsS(Σ)λtT (T )dγd(y)
q (t)dγr(y)

p (s)dλuG(y)dµ
(0)
G (u).

Furthermore, the fact that λuG is supported on Gu dictates that r(y) = u,
hence we get

=

∫
G(0)

∫
G

∫
S(0)

λsS(Σ)

∫
T (0)

λtT (T )dγd(y)
q (t)dγup (s)dλuG(y)dµ

(0)
G (u)

=

∫
G(0)

∫
S(0)

λsS(Σ)

∫
G

∫
T (0)

λtT (T )dγd(y)
q (t)dλuG(y)dγup (s)dµ

(0)
G (u).

We now define a function h1 on G(0) by

h1(u) =

∫
G

∫
T (0)

λtT (T )dγd(y)
q (t)dλuG(y).
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Since λtT (T ) > 0 for any t, the function h1(u) is strictly positive on G(0).
Returning to our main calculation, we have:

(πS)∗(µP )(Σ) =

∫
G(0)

∫
S(0)

λsS(Σ)h1(u)dγup (s)dµ
(0)
G (u)

=

∫
G(0)

∫
S(0)

λsS(Σ)h1(p(s))dγup (s)dµ
(0)
G (u)

since γup is concentrated on p−1(u). Finally, γ•p is a disintegration of µ
(0)
S

with respect to µ
(0)
G , hence

(πS)∗(µP )(Σ) =

∫
S(0)

λsS(Σ)h1(p(s))dµ
(0)
S (s).

On the other hand, µS(Σ) =

∫
S(0)

λsS(Σ)dµ
(0)
S (s). It follows that µS(Σ) = 0

if and only if (πS)∗(µP )(Σ) = 0.
We turn to πT . Proving that (πT )∗(µP ) ∼ µT will require a detour via

the quasi-invariance of µ
(0)
G . Let Ω ⊆ T be a Borel subset. Tracing the line

of arguments above, we have

(πT )∗(µP )(Ω) = µP (π−1
T (Ω)) =

∫
P (0)

λ
(s,g,t)
P (π−1

T (Ω))dµ
(0)
P (s, g, t),

where

λ
(s,g,t)
P (π−1

T (Ω)) = λ
(s,g,t)
P

(
(S ×G× Ω) ∩ P (s,g,t)

)
= (λsS × δg × λtT )

(
(S ×G× Ω) ∩ (Ss × {g} × T t)

)
= λsS(S)λtT (Ω).

Therefore,

(πT )∗(µP )(Ω)

=

∫
G

∫
P (0)

λsS(S)λtT (Ω)dηy(s, g, t)dµG(y)

=

∫
G

∫∫∫
S(0)×G×T (0)

λsS(S)λtT (Ω)dγr(y)
p (s)dδy(g)dγd(y)

q (t)dµG(y)

=

∫
G

∫
T (0)

∫
S(0)

λsS(S)λtT (Ω)dγr(y)
p (s)dγd(y)

q (t)dµG(y).

Using the quasi-invariance of µ
(0)
G and Formula (2) of Remark 2.7, we get

=

∫
G

∫
T (0)

∫
S(0)

λsS(S)λtT (Ω)∆−1
G (y)dγd(y)

p (s)dγr(y)
q (t)dµG(y).
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Replacing γ
r(y)
q by γuq as before, and using Lemma 2.4 and Fubini’s theorem,

we get

=

∫
G(0)

∫
G

∫
T (0)

λtT (Ω)

∫
S(0)

λsS(S)∆−1
G (y)dγd(y)

p (s)dγuq (t)dλuG(y)dµ
(0)
G (u)

=

∫
G(0)

∫
T (0)

λtT (Ω)

∫
G

∫
S(0)

λsS(S)∆−1
G (y)dγd(y)

p (s)dλuG(y)dγuq (t)dµ
(0)
G (u).

The function h2 on G(0) defined by

h2(u) =

∫
G

∫
S(0)

λsS(S)∆−1
G (y)dγd(y)

p (s)dλuG(y)

is positive since λsS(S) > 0 for any s and the modular function ∆G is positive.
Returning to our main calculation, we have:

(πT )∗(µP )(Ω) =

∫
G(0)

∫
T (0)

λtT (Ω)h2(u)dγuq (t)dµ
(0)
G (u)

=

∫
G(0)

∫
T (0)

λtT (Ω)h2(q(t))dγuq (t)dµ
(0)
G (u)

since γuq is concentrated on q−1(u). Finally, γ•q is a disintegration of µ
(0)
T

with respect to µ
(0)
G , hence

(πT )∗(µP )(Ω) =

∫
T (0)

λtT (Ω)h2(q(t))dµ
(0)
T (t).

On the other hand, µT (Ω) =

∫
T (0)

λtT (Ω)dµ
(0)
T (t). It follows that µT (Ω) = 0

if and only if (πT )∗(µP )(Ω) = 0. This completes the proof. �

Recall our standing Assumption 5.1, by which the maps p and q (restricted
to the unit spaces) admit disintegrations which are locally bounded. As we
show in the following proposition, the map πS will automatically inherit
this property. However, in order to guarantee that the map πT admits a
disintegration which is locally bounded, we will need another assumption.

Assumption 6.3. We will assume that the modular function ∆G is locally
bounded on G, in the sense that for every point x ∈ G there exist a neigh-
borhood Ux and positive constants cx and Cx such that cx < ∆G(y) < Cx
for every y ∈ Ux.

Note that ∆−1
G is locally bounded whenever ∆G is locally bounded.

Remark 6.4. If we assume that ∆S and ∆T are also locally bounded in the
above sense, then Remark 5.12 implies that ∆P is locally bounded as well.

Proposition 6.5. The maps πS : P (0) → S(0) and πT : P (0) → T (0) admit
disintegrations which are locally bounded.
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Proof. We start with the map πS . We shall use Proposition 6.8 from
[4], which provides a necessary and sufficient condition for admitting a

disintegration which is locally bounded: for any compact set K ⊆ P (0)

there must exist a constant CK such that for all Borel sets Σ ⊆ S(0),

µ
(0)
P (K ∩ π−1

S (Σ)) ≤ CK · µ
(0)
S (Σ).

Let K ⊆ P (0) be compact. Consider three increasing sequences {An},
{Bn} and {Cn} of open subsets with compact closures in S, G and T re-
spectively, such that S =

⋃∞
n=1An, G =

⋃∞
n=1Bn, and T =

⋃∞
n=1Cn (such

sequences exist in any locally compact second countable space). The ele-

mentary open sets En = (An×Bn×Cn)∩P (0) determine an increasing open

cover of P (0) and in particular of K. Since K is compact, K ⊆ Ei for some i.
DenotingK1 = Ai, K2 = Bi andK3 = Ci, we haveK ⊆ (K1×K2×K3)∩P (0)

where K1 ⊆ S, K2 ⊆ G and K3 ⊆ T are each compact.
For any Borel set Σ ⊆ S(0),

µ
(0)
P (K ∩ π−1

S (Σ))

≤ µ(0)
P ((K1×K2×K3) ∩ π−1

S (Σ))

= µ
(0)
P (((K1 ∩ Σ)×K2 ×K3) ∩ P (0))

=

∫
K2

γr(x)
p (K1 ∩ Σ)γd(x)

q (K3)dµG(x)

where the last equality follows from a calculation as in the proof of Propo-
sition 5.6. Expanding µG we get

=

∫
G(0)

∫
K2

γr(x)
p (K1 ∩ Σ)γd(x)

q (K3)dλuG(x)dµ
(0)
G (u)

≤
∫
G(0)

∫
K2

γr(x)
p (Σ)γd(x)

q (K3)dλuG(x)dµ
(0)
G (u).

Next, we note that r(x) = u since λuG is supported on r−1(u), and then
rewrite γup (Σ):

=

∫
G(0)

∫
K2

γup (Σ)γd(x)
q (K3)dλuG(x)dµ

(0)
G (u)

=

∫
G(0)

∫
K2

∫
S(0)

χΣ(s)γd(x)
q (K3)dγup (s)dλuG(x)dµ

(0)
G (u).

We use Fubini’s Theorem and note that p(s) = u since γup is supported on

p−1(u), after which we can collapse the outer two integrals, since γp is a
disintegration:

=

∫
G(0)

∫
S(0)

∫
K2

χΣ(s)γd(x)
q (K3)dλ

p(s)
G (x)dγup (s)dµ

(0)
G (u)
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=

∫
S(0)

∫
K2

χΣ(s)γd(x)
q (K3)dλ

p(s)
G (x)dµ

(0)
S (s) ≤ C · µ(0)

S (Σ),

where C =

(
sup
u
γuq (K3)

)
·
(

sup
v
λvG(K2)

)
. Both suprema exist since γ•q and

λ•G are locally bounded, hence bounded on compact sets.
We turn to the map πT . The proof will be analogous, but will require the

use of the function ∆−1
G , which is locally bounded by Assumption 6.3. Let

Ω ⊆ T (0).

µ
(0)
P (K ∩ π−1

T (Ω))

≤ µ(0)
P ((K1×K2×K3) ∩ π−1

T (Ω))

= µ
(0)
P ((K1 ×K2 × (K3 ∩ Ω)) ∩ P (0))

=

∫
K2

γr(x)
p (K1)γd(x)

q (K3 ∩ Ω)dµG(x)

=

∫
K−1

2

γd(x)
p (K1)γr(x)

q (K3 ∩ Ω)∆−1
G (x) dµG(x).

Skipping intermediate calculations which mimic the πS case, we get

≤
∫
T (0)

∫
K−1

2

χΩ(t)γd(x)
p (K1)∆−1

G (x)dλ
q(t)
G (x)dµ

(0)
T (t)

≤ D · µ(0)
T (Ω)

where D =

(
sup
u
γup (K1)

)
·

(
sup

x∈K−1
2

∆−1
G (x)

)
·
(

sup
v
λvG(K−1

2 )

)
. All suprema

exist since γ•p and λ•G are bounded on compact sets, and ∆−1
G is locally

bounded. �
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