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Ergodic and chaotic properties of
Lipschitz maps on smooth surfaces

Sue Goodman and Jane Hawkins

Abstract. We construct noninvertible maps on every compact surface
and study their chaotic properties from both the measure theoretic and
topological points of view. We use some topological techniques employed
by others for diffeomorphisms and extend to the noninvertible case.
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1. Introduction

In this paper we construct n-to-one dynamical systems on smooth sur-
faces; some of the maps are smooth and others are continuous but fail to
be differentiable on a set of measure zero (usually on finitely many one-
dimensional curves). These maps exhibit a variety of chaotic and mixing
behavior, both topological and measure theoretic with respect to a smooth
measure. There is a rich literature on the subject of dynamical systems on
surfaces; we outline it briefly.

The subject of noninvertible continuous and differentiable maps on smooth
manifolds goes back to 1969 when Shub extended many dynamical ideas and
examples from diffeomorphisms to this setting [25]. Shub’s paper contains
some fundamental results such as the theorem that any expanding smooth
map of Tn ∼= Rn/Zn, called an expanding endomorphism, is topologically
conjugate to an expanding linear map. An expanding endomorphism is
(by the definition used in [25]) differentiable at all points; however this no-
tion was weakened in the intervening years to prove that similar dynamical
properties hold for expanding and expansive maps on metric spaces (see for
example, work of Coven and Reddy [6], and the book by Mañé [16]). All
examples that we construct in this paper are made from simple piecewise
expanding and piecewise differentiable maps, so we do not need to get into
the subtleties of these distinct but overlapping concepts. In fact we end up
with expansion and differentiability on a set of full measure but not at every
point, so results on expanding and expansive maps to do not directly apply
here.

Present in many dynamical settings is a natural measure class; on smooth
manifolds it is the class of measures coming from a Riemannian metric.
Bernoulli diffeomorphisms of smooth compact surfaces were constructed by
Katok in 1979 [13]; these maps preserve a finite smooth measure. Since that
paper many studies have been done on the dynamical properties of invertible
maps on smooth surfaces (see eg, [8] and [16] and the references in these).

The purpose of this paper is to use topological methods to construct
continuous and smooth noninvertible maps of surfaces that exhibit a variety
of measure theoretic behavior with respect to a natural measure on the
surface. We assume that every surface is smooth (C1) and the measure being
considered is absolutely continuous with respect to Lebesgue measure in
local coordinate charts. We obtain maps that are continuous and Lipschitz,
with Lipschitz constant strictly greater than one, but some of them fail to
be differentiable at isolated points or on smooth curves. Since many of
our constructions involve piecing together maps on surfaces with boundary,
our maps are generally not expansive [11]. However they exhibit enough
expansion in a piecewise way that we obtain chaos and ergodicity on the
nonwandering set. Further since expansive maps cannot occur on some
surfaces such as the projective plane (see [6, 12, 25]), piecewise expansion is
the best one can hope for.
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We study topological properties such as transitivity and chaos, and mea-
sure theoretic properties such as isomorphism to a one-sided Bernoulli shift,
exactness, and ergodicity. One-sided Bernoulli maps and their rigidity were
studied in [4]. We extend that study here to include a wider variety of man-
ifolds including some nonorientable surfaces, that admit piecewise smooth
maps that are one-sided Bernoulli.

In Section 2, we give definitions for the measurable and topological dy-
namical properties considered as well as a brief classification of surfaces up
to diffeomorphism. In Section 3 we use some basic and familiar one-sided
Bernoulli maps of the interval and circle to construct one-sided Bernoulli
maps on the Mobius strip, Klein bottle, and real projective plane. These
maps are continuous and Lipschitz. We also mention existing examples on
the torus and sphere. We then construct smooth noninvertible examples
on a two-fold symmetric product. This was defined in [5] and used in [14]
to extend topological dynamical properties. We use it to construct ergodic
and chaotic many-to-one maps on nonorientable surfaces of any genus ≥ 2
in Section 4. We give a few generalizations, and then turn to arbitrary
orientable surfaces. The orientable case is harder than its nonorientable
counterpart because we need a method for constructing chaotic and ergodic
maps on T2 with a disk removed, with enough symmetry to glue several of
these together. In Section 5 we introduce maps that are chaotic on their
nonwandering set and ergodic with respect to a measure absolutely continu-
ous with respect to Lebesgue measure, but have a fixed point with only one
preimage. We use this to extend the technique of blowing up around a fixed
point of a diffeomorphism to the noninvertible case in Section 6, where we
construct chaotic and ergodic maps on orientable surfaces of any positive
genus.

2. Measure theoretic and topological preliminaries

We review some basic definitions in measurable and topological dynamics.
While the notions are standard, the same terminology is not always used,
so we present our vocabulary and notation here. A reader could skim this
section and refer back to it as needed.

2.1. Measurable properties. We assume throughout this paper that ev-
ery space (X,B, µ) is a locally compact metric space with metric δ, Borel σ-
algebra B on X, and µ a regular Borel probability measure on B. Moreover,
X usually has the structure of a smooth manifold. Infinite measures are al-
ways assumed to be σ-finite. We assume that f : X → X is nonsingular; i.e.,
f : X → X satisfies: µ(A) = 0 ⇐⇒ µ(f−1A) = 0 for every A ∈ B. We also
assume that every point in X has at most finitely many preimages under f .
Furthermore in all of our examples we will assume without loss of generality
that f is forward nonsingular as well; i.e., that µ(A) = 0 ⇐⇒ µ(fA) = 0
for all measurable sets A. For example, any C1 map of a manifold onto itself
whose differential is nonvanishing except at finitely many points is forward
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and backward nonsingular with respect to the Riemannian volume form (lo-
cally equivalent to Lebesgue measure). Let B+ ⊂ B denote the collection
of measurable sets of positive measure. To emphasize the presence of both
a topology and a Borel measurable structure, we will refer to (X,B, µ, f)
as a nonsingular dynamical system. If µ(f−1A) = µ(A) for all measurable
sets A, then we say (X,B, µ, f) is a measure preserving dynamical system,
or more simply, f is measure preserving. All of the examples in this paper
will be nonsingular with respect to some naturally occurring finite measure
and most of them will be measure-preserving.

Definition 2.1. Let (X1,B1, µ1, f1) and (X2,B2, µ2, f2) be two measure
preserving dynamical systems.

• A measurable map ϕ : X1 → X2 is a (measurable) factor map if
there exists a set Y1 ∈ B1 of full measure in X1 and a set Y2 ∈ B2 of
full measure in X2 such that ϕ maps Y1 onto Y2.
• If the factor map ϕ is such that f1(Y1) = Y1, f2(Y2) = Y2, ϕ ◦ f1 =
f2 ◦ ϕ on Y1, and µ2(A) = µ1(ϕ−1(A)) for all A ∈ B1, then f2 is
called a measurable factor of f1 with factor map ϕ.
• If the factor map ϕ is injective on Y1 we say it is an isomorphism.

If f2 is a factor of f1 and ϕ is an isomorphism, then we say that the
dynamical systems f1 and f2 are isomorphic (also called measure
theoretically isomorphic).
• A nonsingular surjective measurable map f : (X,B, µ) → (X,B, µ)

is an automorphism of X if there exists Y ∈ B of full measure such
that the restriction of f to Y is bijective (and µf−1 ∼ µ, but they
are not necessarily equal). If f is not an automorphism, then we say
f is noninvertible.

It was shown in [4] that even in the case of piecewise smooth interval
maps, the notion of noninvertibility depends on the measure. We give the
definition of an n-to-one map here.

Assume that (X,B, µ, f) is a nonsingular dynamical system, not neces-
sarily preserving µ. A partition P is an ordered countable (possibly fi-
nite) disjoint collection of nonempty measurable sets, called atoms, whose
union is X (µ mod 0). By a result of Rohlin [23] we obtain a partition
P = {A1, A2, A3, . . . } of X into at most countably many atoms and satisfy-
ing:

(1) µ(Ai) > 0 for each i.
(2) The restriction of f to each Ai, which we will write as fi, is one-to-

one (µ mod 0).
(3) Each Ai is of maximal measure in X \

⋃
j<iAj with respect to prop-

erty (2).
(4) f1 is one-to-one and onto X (µ mod 0) by numbering the atoms so

that
µ(fAi) ≥ µ(fAi+1)

for i ∈ N.
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We call any partition P as defined above a Rohlin partition for f . When we
say that a nonsingular dynamical system f is n-to-one, we mean that every
Rohlin partition P = {A1, A2, A3, . . . } satisfying (1)–(4) contains precisely
n atoms and that fi is one-to-one and onto X (µ mod 0) for each i = 1, .., n.
If f is noninvertible then every Rohlin partition P contains at least two
atoms and generates a non trivial σ-algebra F such that f−1F ⊂ F , namely
the σ-algebra generated by

(2.1) F(P) ≡
∨
i≥0

f−i(P).

The Rohlin partition is a one-sided generating partition if F(P) = B up to
sets of µ measure 0.

We recall the definition of a Bernoulli shift. Because our emphasis is on
noninvertible mappings, we begin with the one-sided Bernoulli shift.

Definition 2.2. Fix an integer n ≥ 2 and let A = {1, . . . , n} denote a finite
state space with the discrete topology. Any vector p = {p1, . . . , pn} such that
pk > 0 and

∑
pk = 1 determines a measure on A, namely p({k}) = pk. Let

Ω =
∏∞
i=0A be the product space endowed with the product topology and

product measure ρ determined by A and p. The map σ is the one-sided shift
to the left, (σx)i = xi+1 for all x ∈ Ω. We say σ is a one-sided Bernoulli
shift and denote it by (Ω,D, ρ;σ), where D denotes the Borel σ-algebra
generated by the cylinder sets, completed with respect to ρ. The cylinder
sets of the form Ci = {x ∈ Ω : x0 = i} form an i.i.d. (independent identically
distributed) generating partition for the dynamical system (Ω,B, ρ, σ) in the
sense that for any k ∈ N,

ρ(Ci0 ∩ σ−1Ci1 · · · ∩ σ−kCik) = ρ(Ci0)ρ(Ci1) · · · ρ(Cik) = pi0pi1 · · · pik

for all ij ∈ A, and sets of this form generate B. Any dynamical system
isomorphic to a n-to-one Bernoulli shift has a one-sided i.i.d. generating
Rohlin partition containing n atoms.

Defining Ω+
− =

∏∞
i=−∞A, and leaving everything else the same (with ρ

the adjusted two-sided product measure), we say that (Ω+
−,D, ρ;σ), is an

invertible Bernoulli shift.

An n-to-one nonsingular dynamical system (X,B, µ, f) is said to be one-
sided Bernoulli if it is isomorphic to some n-state one-sided Bernoulli shift
dynamical system (Ω,D, ρ;σ). One-sided Bernoulli dynamical systems ex-
hibit well-known properties of Bernoulli shifts, such as ergodicity and exact-
ness (defined below).

A sub-σ-algebra Bo ⊂ B is f -invariant if f−1Bo ⊂ Bo. Every factor map
gives rise to an f -invariant sub-σ-algebra, {ϕ−1C}C∈B2 ⊂ B, and conversely.
We refer the reader to Rohlin [23] for details.
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2.1.1. Ergodicity and exactness. We adopt the usual convention that
for sets A,B ∈ B, A4B = (A \B) ∪ (B \A). The map f is ergodic if f has
a trivial field of invariant sets, or equivalently, if any measurable set B with
the property that µ(B4f−1B) = 0 has either zero or full measure. It follows
from the definitions that f is conservative and ergodic if and only if for all
sets A,B ∈ B+, there is a positive integer n such that µ(B ∩ f−nA) > 0.

A map is exact if it has a trivial tail field
⋂
n≥0 f

−nB ⊂ B, or equivalently,

if any set B with the property µ(f−n ◦ fn(B)4B) = 0 for all n has either
zero or full measure. For any set A ∈ B+, we define a tail set from it by:

Tail(A) :=
⋃
n∈N

f−n ◦ fn(A).

Denoting the tail sets (µ mod 0) by T ⊂ B, we have⋂
n≥0

f−nB = T (µ mod 0).

An equivalent characterization when µ(X) = 1 is that f is exact if and only
if for every A ∈ B+, limn→∞ µ(fn(A)) = 1 [24].

There is a natural map from (X,B) onto (X, T ) which commutes with f ,
called the exact decomposition (of f with respect to µ), and f acts as an
automorphism on the factor space. We denote the factor space by (Y, C, ν),
and the induced automorphism by S. Note that a point in Y is an atom of
the measurable partition generated by the relation x ∼ w ⇐⇒ fnx = fnw
for some n ∈ N and ν is the factor measure induced by µ. We call this factor
the maximal automorphic factor, because if there is a factor map ϕ : X → Y
with induced factor automorphism R, then R is a factor of S. We remark
that in general (Y, C, S, ν) is a nonsingular surjective map of a Lebesgue
space with no specified topology; details of this appear in [23].

2.2. Some dynamical conventions. We establish some notation for this
paper. For any nonsingular dynamical system (X,B, µ, f), by fk we mean
f ◦ f · · · ◦ f (k-fold composition). We use the notation f×k to denote the
Cartesian product of k copies of f , with Xk = X × · · · × X (k copies), so
f×k : Xk → Xk is defined by: f×k(x1, . . . , xk) = (f(x1), . . . , f(xk)), with
xi ∈ X, i = 1, . . . , k.

If X is endowed with a Borel structure and a Borel measure µ, then on
Xk we use the k-fold product measure, denoted µk, using the given measure
µ on each copy of X. With respect to the product topology on Xk, µk is a
Borel measure.

For any x ∈ X, O+(x) = {fk(x)}k∈N denotes its (positive) orbit. We
say x0 ∈ X is a periodic point of f if there exists some m ∈ N such that
fm(x0) = x0. If m = 1, then f(x0) = x0 and we say x0 is a fixed point. The
minimum m for which fm(x0) = x0 is the period of x0.
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2.3. Topological dynamics. Throughout this section we assume (X, δ)
is a compact metric space and f : X → X is continuous (and hence Borel
measurable).

Definition 2.3. We say f is:

(1) topologically transitive if for any nonempty open sets U, V ⊆ X,
there exists an n ∈ N such that fn(U) ∩ V 6= ∅; equivalently, f
is topologically transitive if there exists a point x ∈ X such that
O+(x) = X;

(2) topologically weak mixing if f×2 is topologically transitive;
(3) topologically exact if for every nonempty open set U ⊂ X there exists

n ∈ N such that fn(U) = X.

It is easy to establish that (3)⇒ (2)⇒ (1), but none of the reverse impli-
cations holds. There are many notions of chaotic behavior for a continuous
map, but here we work with the following definition, usually known as chaos
or Devaney chaos ([7] and cf. [20]).

Definition 2.4. For (X, δ) a compact metric space, and D ⊂ X a closed
infinite set, a continuous map f : X → X is chaotic (on D) if f(D) ⊂ D
and the following hold:

(1) f |D is topologically transitive.
(2) Periodic points are dense in D.

Since we assume throughout that X and D are infinite, chaotic maps
also exhibit sensitive dependence on initial conditions, which is sometimes
included in the definition (see, e.g., [14] for discussion and references).

Definition 2.5. Let (X1,B1, µ1, f1) and (X2,B2, µ2, f2) be two dynamical
systems. If ϕ : X1 → X2 is a continuous surjective map such that f2◦ϕ(x) =
ϕ ◦ f1(x) for all x ∈ X1, we say f1 and f2 are (topologically) semi-conjugate.
If ϕ is a homeomorphism, then f1 and f2 are said to be (topologically)
conjugate. If X2 has the quotient topology, ϕ is called a quotient map or a
(topological) factor map.

If f : X → X is a dynamical system, a point x ∈ X is nonwandering if for
each neighborhood U of x there exists some n ≥ 1 such that fns (U)∩U 6= ∅.
The nonwandering set Ω(f) ⊂ X is the set of all nonwandering points. One
can see that Ω(f) is closed and f−1(Ω(f)) = Ω(f).

2.4. The classification of surfaces. Throughout this paper a surface
refers to a Hausdorff topological space X, such that each point x ∈ X has a
neighborhood U homeomorphic to an open disk in R2. We also assume X is
endowed with a Cr differential structure, for some r ≥ 1. We refer to X as
a smooth surface. We recall here the well-known classification theorem and
assume the reader has some familiarity with the terms used (see eg. [12] for
details).
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Figure 1. Construction of Ni in 4T

Theorem 2.6. Every compact connected smooth surface is diffeomorphic
to a sphere, a connected sum of n tori, or a connected sum of n projective
planes.

The smooth structure on a surface X defines a measure class which is
invariant under differentiable maps and maps that are differentiable on sets
of full measure. This follows from the fact that there is a collection of Borel
sets N ⊂ B such that for any smooth local chart (U,ϕ) on X, the set B ∈ N
satisfies: ϕ(U ∩ B) ⊂ R2 has Lebesgue measure 0. The sets in N are the
null sets. If (X,B) is a surface the σ-algebra of Borel sets, a measure µ is
absolutely continuous if in any smooth local chart µ is given by integrating a
non-negative density function. When the density function is strictly positive
we sometimes say µ is equivalent to Lebesgue measure by a slight abuse of
notation.

We review some common conventions used in the next sections. Letting
S1 denote the 1-dimensional circle, we set T2 = S1 × S1, which we also
frequently denote additively as T2 = R2/Z2. A disk always refers to a set
diffeomorphic to the open unit disk in R2.

The genus of T2 is one, (so T2 = 1T), and by nT we denote the compact
orientable surface of genus n; i.e., the connected sum of n tori. Let

N = T2 \ {disk}.
We can decompose nT into n copies of N , labeled N0, N1, . . . Nn−1 as shown
in Figure 1, glued together so that

⋂n−1
i=0 Ni = {A,B} (exactly two points).

We can also view nT as a branched covering of the torus T2 with branch
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points A and B (see [22] for its use to construct surface homeomorphisms),
but we take a different approach here. For each i = 0, . . . , n − 1, Ni is
diffeomorphic to N on its interior. Moreover, the boundary of Ni, ∂Ni is
homeomorphic to S1 via a map which is a diffeomorphism except at exactly
two points (see Figure 1).

After embedding the Ni’s in R3 we define some homeomorphisms ϕi :
N0 → Ni, i = 0, . . . , n, with ϕ0 = ϕn, to be rotations about the line in
R3 through the points A and B as shown in Figure 1. Clearly each ϕi is a
diffeomorphism except at A and B. Later on it becomes useful to define ϕk
for every k ∈ N by writing k ≡ i(modn), and defining ϕk : N0 → Ni by just
setting ϕk = ϕi.

A similar construction is used for nonorientable surfaces. We begin by
letting P denote the two-dimensional real projective plane. We let M denote
the Mobius band, the compact nonorientable surface diffeomorphic to P \
{disk}, with ∂M diffeomorphic to S1. If we write nP for the connected sum
of n projective planes, n ≥ 2, we can decompose nP into n homeomorphic
copies of M, labeled M0,M1, . . .Mn−1, with boundaries identified so that⋂n−1
i=0 Mi = {A,B}.
While the nonorientable surface nP does not embed in R3, we can adapt

the construction above to obtain analogs of the ϕi maps. Let U be a small
neighborhood of

⋃n−1
i=0 ∂Mi ⊂ nP . The neighborhood U can be imbedded in

R3 as illustrated in Figure 2, and we again define some maps ϕi : M0 →Mi,
i = 0, . . . , n − 1, and set ϕn = ϕ0. The ϕi’s restricted to U can be defined
by rotations about a line through A and B just as in the orientable case.
Each ϕi can then be extended in an obvious way to all of M0, and is a
diffeomorphism except at the points A and B.

Finally we note that the sphere S2 is frequently viewed as the Riemann
sphere, denoted C∞, giving S2 an analytic structure as well as a smooth one.

We endow every surface X with a Borel structure by letting open sets
generate the σ-algebra of measurable sets, and we use m to denote a measure
which is equivalent to Lebesgue measure in every coordinate chart. Since
the surface is at least C1 it has a Riemannian metric and the measure m
has a locally differentiable description.

3. The basic examples of one-sided Bernoulli maps

We begin with a list of examples of classical one-sided Bernoulli maps
of one and two-dimensional manifolds. In each case, the measure used is
equivalent to Lebesgue measure on X. These provide some of the basic
building blocks for constructing maps on surfaces later in this paper.

Examples 3.1. On each manifold we use a smooth measure determined by
the dimension of the manifold. Let d > 1 be an integer.

(1) f1(x) = dx mod 1 on X = [0, 1) or X = [0, 1]/0 ∼ 1 ∼= R/Z. f1 is
d-to-1.
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Figure 2. The local picture of of Mi in 4P
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Figure 3. Two one-sided Bernoulli maps with extra symmetry

(2) f2(z) = zd on X = S1 = {z ∈ C : |z| = 1}. f2 is d-to-1.
(3) f3(x) = f×2

2 on X = T2 = S1 × S1. f3 is d2-to-one.
(4) Viewing the torus T2 as a 2-fold branched covering of C∞, for each f3

above we obtain a rational map f4 : C∞ → C∞, which is d2-to-one.
(5) For any d ∈ N, d ≥ 2, there exist d2-to-one and 2d2-to-one (one-

sided) Bernoulli rational maps of C∞ ∼= S2 [2].
(6) On X = [0, 1], we consider the map from the logistic family given

by: f6(x) = 4x(1− x). This gives a map with the property that for
all x ∈ X f6(x) = f6(1 − x); the full tent map f7, with slopes ±2
also has the same symmetry. f6 and f7 are 2-to-one and are shown
in Figure 3.

All of the maps fi above, i = 1, . . . , 7, share the following properties.
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Proposition 3.2. If m denotes smooth measure on X, with respect to some
invariant probability measure µ ∼ m, each (X,B, µ, fi) satisfies:

(a) fi is isomorphic to a one-sided (noninvertible) Bernoulli shift.

(b) f×ki is ergodic and exact on Xk for each k ∈ N.

(c) f×ki is one-sided Bernoulli on Xk.

Proof. Properties (a)–(c) of the examples in Examples 3.1 are well known,
but we give brief explanations here. For the map f1, using the base d
expansion of a number x ∈ [0, 1), and dividing the interval into intervals
Aj = [j/d, (j + 1)/d), for j = 1, 2, . . . , d gives a d-to-1 Rohlin partition
for f1. The map ϕ(x) = ϕ(.x0x1x2 . . .) = {x0, x1, x2, . . .} ∈ Ω implements
the isomorphism to the one-sided (1/d, 1/d, · · · , 1/d) Bernoulli shift using
Lebesgue measure. The map f2 is clearly conjugate to f1 via the map
exp : [0, 1]→ S1, exp(t) = e2πit since for d ∈ N, d ≥ 2,

exp(f1(t)) = e2πidt = (e2πit)d = f2(exp(t)).

The map f3 is implemented by the linear transformation A(x, y) =
(
d 0
0 d

)
,

which is well-known to be isomorphic to the (1/d2, 1/d2, . . . , 1/d2) one-sided
Bernoulli map. The maps in (5) come from classical Lattès examples, and
explicit isomorphisms to one-sided Bernoulli shifts are constructed in [2].
Finally the maps f6 and f7 are well-known to be isomorphic to f1 (see eg.,
[4, 7]).

Proof of (b): We first show that f×ki is ergodic. Let Bk denote the σ-

algebra of Borel sets on Xk. We fix an i and k, and set F = f×ki . fi is weak
mixing if and only if fi × fi is ergodic and weak mixing, and fi Bernoulli
implies it is mixing, which implies fi × g is ergodic for every measure pre-
serving transformation g of a measure space (Y,F , ν) (cf. also [9]). Using
induction on k, the ergodicity of F follows. The exactness follows from the
fact that fi is Bernoulli, so we turn to the proof of (c).

Assume fi = σ is an d-to-one Bernoulli shift, (Ω,D, ρ;σ), and set k = 2.
We consider the alphabet A2 on d2 symbols labeled by pairs with A2 =
{(1, 1), (1, 2), · · · , (1,d), (2, 1), (2, 2), · · · , (d, d)}. Given the generating par-
tition for D given by: Cj = {ω ∈ Ω : ω0 = j}, we now consider the sets
Cij = Ci × Cj ∈ Ω2, i, j = 1, . . . , d. We have µ2(Cij) = µ(Ci)µ(Cj) = pipj .
In this way we construct a generating i.i.d. partition for the Bernoulli mea-
sure with probability distribution: q = {qij}, with qij = pipj , i, j = 1, . . . , d.
The shift map σ × σ(ω, ζ) is the obvious shift map defined by:

[(σ × σ)(ω, ζ)]i = (ωi+1, ζi+1).

This makes the 2-fold product into a one-sided Bernoulli shift. To show the
result on the k-fold product, we use induction on k. For the inductive step
we take the 2-fold product of a dk−1 state one-sided Bernoulli shift with a
d-to-one Bernoulli shift and proceed as above. �
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The result above leads to a more general result, whose short proof we give
here.

Proposition 3.3. Let (X,B, µ, f) and (Y,F , ν, g) be finite measure preserv-
ing exact dynamical systems. Then (X × Y,B × F , µ× ν, f × g) is measure
theoretically exact as well, and hence ergodic.

Proof. If we consider any set of the form A×B, with µ(A) > 0 and ν(B) >
0, then it follows immediately that (µ×ν)(Tail(A×B)) = 1, because each of
f and g are exact. Let C = {C ∈ B×F : (µ×ν)(Tail(C)) = 1}. It is easy to
see that C is a monotone class, and contains finite unions of rectangles, which
generate B × F , so it follows from standard measure theoretic techniques
(see eg., [26]) that C = B × F . �

We also have a topological version of Proposition 3.2 whose proof is stan-
dard (see eg., [14]).

Proposition 3.4. Each (X,B, µ, fi) satisfies:

(a) fi is topologically exact and chaotic.

(b) f×ki is topologically exact and chaotic.
(c) If fi is j-to-one, then the topological entropy, htop(fi), is log j.

3.1. One-sided Bernoulli maps of some nonorientable surfaces. We
begin by constructing one-sided Bernoulli maps for a few basic nonorientable
surfaces.

3.1.1. The Mobius band M, Klein bottle K, and real projective
plane P. We begin with interval maps; on I = [0, 1], we consider the map
from the logistic family given by: g(x) := f6(x) = 4x(1 − x); we could just
as well use the tent map f7 in what follows. As is clear from the graph in
Figure 3 (or the equation), for all x ∈ I,

(3.1) g(x) = g(1− x).

On I × I we define G(x, y) = (g(x), g(y)), and we show it extends to a well-
defined map of each of M, K and P, using the identifications given below in
Figures 4 and 5. Using f6, differentiability fails at the point 0 = 1 on S1,
and f7 fails to be differentiable at x = 1

2 and x = 0 = 1. In each case we
have finitely many intersecting smooth curves on M, K and P where G fails
to be differentiable.

Using (3.1), we have for each x, y ∈ I,

G(0, y) = G(0, 1− y) = (0, g(y)) = G(1, y) = G(1, 1− y)(3.2)

G(x, 0) = G(1− x, 0) = (g(x), 0) = G(x, 1) = G(1− x, 1)(3.3)

G(0, y) = G(1, y) = (0, g(y)) and G(x, 0) = G(x, 1) = (g(x), 0).(3.4)

Now we identify points on the boundary of I×I in the classical way described
below to obtain these basic nonorientable surfaces:

(1) M: (0, y) ∼ (1, 1− y).
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Figure 4. The Mobius band

Figure 5. The real projective plane and Klein bottle

(2) P: (0, y) ∼ (1, 1− y) and (x, 0) ∼ (1− x, 1).
(3) K: (0, y) ∼ (1, 1− y), and (x, 0) ∼ (x, 1).

We then have the following result.

Theorem 3.5. There exist Lipschitz one-sided Bernoulli maps of M, P, and
K, which are smooth except on one smooth curve on M, and on P and K,
on two smooth curves intersecting in one point.

Proof. We use Equation (3.2) to see that G is well-defined on the quotient
space M, and Equations (3.2) and (3.3) to see that G is well-defined on
P; we use Equations (3.2) and (3.4) to see that G is well-defined on K.
Since we have only made identifications on a set of measure 0, we have not
changed properties of the maps, and Proposition 3.2 holds. The maps are
smooth on the interior of I × I, and one-sided limits exist for g′(x) as x
approach the boundaries of I. However the one-sided limits do not agree,
so differentiability fails at the identified sides. �

3.2. Maps of symmetric products. Our goal is to extend maps of sim-
ple surfaces to other surfaces retaining as much of the chaotic behavior
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as possible, both topological and measure theoretic. To move to arbitrary
nonorientable surfaces, we need to construct one-sided Bernoulli maps of M
with some additional symmetry needed for our topological construction.

We extend an idea to use symmetric products from [14], modified for
the measurable setting. We note that there are two distinct but related
topological constructions called symmetric products. In dimension 2 the
definitions agree so we provide only the definition used in [14],which was
introduced by Borsuk and Ulam in 1931 [5]; the other definition appears in
[21].

Assume (X, δ) is a bounded and connected metric space, and define the
hyperspace of X, denoted 2X , to be the collection of all nonempty compact
subsets of X. The space 2X inherits a metric from X as follows. Given
A ∈ 2X , and ε > 0, we define the ε-neighborhood of A, denoted Nε(A) by:

Nε(A) = {x ∈ X : inf{δ(x, y) : y ∈ A} < ε},

which gives rise to the Hausdorff metric:

δH(A,B) = inf{ε ≥ 0 : A ⊂ Nε(B) andB ⊂ Nε(A)}

for all A,B ⊂ 2X . If X is compact and connected, this makes (2X , δH) into
a compact connected metric space.

Definition 3.6. The k-fold symmetric product, denoted X∗k is the subset
of 2X consisting of all nonempty subsets of X containing at most k points.

Clearly X ⊂ X∗1 ⊂ X∗k for k ≥ 2 since each x ∈ X forms a one-point
subset. A point in X∗2 consists of either an unordered pair {x, y} with
x, y ∈ X, x 6= y, or a single point x ∈ X. For any continuous map f : X → X
we can define a map f∗k in a natural way. Namely for A ⊂ X∗k, define
f∗k(A) = f(A) (this is just the map f applied to a set in X). Clearly f∗k is a
topological factor (quotient map) of the map f×k, and each fiber in the factor
map π contains finitely many points in X×k. In particular we can define a
continuous map π : Xk → X∗k via π(x1, x2, . . . , xk) = {x1, x2, . . . , xk}, such
that the following diagram commutes:

(3.5) Xk

π

��

f×k

// Xk

π

��
X∗k

f∗k // X∗k.

Moreover if we put a Borel measure µk on X×k then we have an induced
measure structure on X∗k and the measure µ∗k is preserved by f∗k if f
preserves µ on X; i.e., f∗k is a measurable factor.

Given any integer d ≥ 1, we consider the map f(z) = zd on S1, which
induces a one-sided Bernoulli map on f∗2 on (S1)∗2, with d2 distinct preim-
ages for m∗2 a.e. x ∈ M. The smooth structure on (S1)×2 induces one on
(S1)∗2, which makes it diffeomorphic to M (see [14]). In Figure 6 we show
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Figure 6. A Bernoulli partition for f∗2 on M if f(z) = z2.
Dotted lines map onto the solid lines of corresponding color.

the Mobius band realized as (S1)∗2 (we actually show I∗2 so the identifica-
tion of the sides as shown is needed to get M). Take f(z) = z2, so that f∗2

is 4-to-one; in Figure 6 we show four fundamental regions for the map f∗2;
the interior of each region maps injectively onto the interior of M. These
are atoms of a generating i.i.d. Rohlin partition. Moreover, the map f∗2 is
smooth on M and preserves the factor measure m∗2 induced by m×m.

The following proposition summarizes the properties of f∗2.

Proposition 3.7. If f(z) = zd for some integer d ≥ 2, then the dynamical
system (X∗2,B∗2,m∗2, f∗2) is:

(1) smooth,
(2) ergodic,
(3) chaotic,
(4) topologically exact,
(5) exact with respect to m∗2,
(6) one-sided Bernoulli on d2 states, and
(7) htop(f∗2) = 2 log d.

We now use these maps to construct Lebesgue ergodic and chaotic con-
tinuous maps of arbitrary nonorientable surfaces. If we define

g∗ = f∗2 : M→M,

then we have some symmetries worth noting. The one point sets (the di-
agonal in Figure 6) behave as follows: using additive notation on I (i.e.,
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identifying z = e2πiθ on S1 with θ ∈ I) to match what is shown in Figure 6,

(3.6) g∗({θ}) = g∗(θ, θ) = (f(θ), f(θ))

= (2θ, 2θ) mod 1 = −(f(−θ), f(−θ)) = −g∗({1− θ}).

4. Extending the examples to nonorientable surfaces

To construct ergodic and chaotic maps on nonorientable compact sur-
faces of genus > 1, as discussed in Section 2.4, it is equivalent to consider
connected sums of P.

We fix an integer d > 1 and consider g∗ : M0 → M0 to be the map
constructed in Section 3.2, coming from the map z 7→ zd on S1. The map
g∗ is d2-to-one on M0. Then the map defined for x ∈Mi by:

(4.1) G(x) = ϕi+1 ◦ g∗ ◦ ϕ−1
i (x), for i = 0, . . . , n− 1

is clearly well-defined away from ∂Mi, using ϕi as defined in Section 2.4.
It remains to check that if x ∈ nP satisfies x ∈ ∂Mi and x ∈ ∂Mi−1,
then G(x) is uniquely defined. Equivalently, we need to verify that for all
x ∈ ∂Mi−1 ∩ ∂Mi,

(4.2) ϕi+1 ◦ g∗ ◦ ϕ−1
i (x) = ϕi ◦ g∗ ◦ ϕ−1

i−1(x).

In order to use the decomposition illustrated in Figure 2, we label points
A = {0} = (0, 0) and B = {1/2} = (1/2, 1/2) on the model of Mi shown
in Figure 6. A point x ∈ ∂Mi is of the form θx = ϕ−1

i (x) ∈ ∂M0. This

corresponds to a point making an angle of θx with A; similarly ϕ−1
i−1(x) ∈

∂M0 corresponds to a point making an angle −θx with A. Then (3.6) shows
that g∗(ϕ−1

i (x)) and g∗(ϕ−1
i−1(x)) also have opposite angles since g∗(−θx) =

−g∗(θx) mod 1. Therefore G(x) = ϕi+1 ◦ g∗ ◦ ϕ−1
i (x) = ϕi ◦ g∗ ◦ ϕ−1

i−1(x) is
well-defined for every point x ∈ X. This is illustrated in Figure 7. We note
that the point A is fixed for G, and G(B) = A.

An easy inductive argument shows that to iterate G, if x ∈ Mi, then for
any k ∈ N we can write:

(4.3) Gk(x) = ϕi+k ◦ (g∗)k ◦ ϕ−1
i (x), for i = 0, . . . , n− 1

using the convention that ϕi+k = ϕi+k( mod n). Our construction leads to
the following result.

Theorem 4.1. Given any nonorientable compact surface X of genus ≥ 2,
and d ∈ N, d ≥ 2, there exists a map G : X → X which is locally Lipschitz
on X (Lipschitz in each coordinate chart), continuous, and smooth except
at two points, and satisfying:

(i) G preserves a smooth probability measure mn on X.
(ii) G is ergodic with respect to mn, but is not exact.

(iii) G is isomorphic to an n-point extension of a one-sided Bernoulli
shift.

(iv) G is transitive and chaotic, but not topologically exact.
(v) htop(G) = 2 log d.
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Figure 7. Using the symmetry of g∗ so G is well-defined

Proof. Without loss of generality we set X =
⋃n−1
i=0 Mi = nP, noting that

the union is not disjoint as shown in Figure 1. Since g∗ : M0 →M0 preserves
m∗2, for any measurable C ⊂Mi, we set

(4.4) m∗2i (C) = m∗2(ϕ−1
i C);

m∗2i is a probability measure supported on Mi. We now define a probability

measure mn = 1
n

∑n−1
i=0 m

∗2
i on X. Given an arbitrary Borel set B ⊂ X,

write B =
⋃n−1
i=0 Ci, where the Ci’s are disjoint and each Ci ⊂ Mi. Since

mn(Mi ∩Mj) = 0 if i 6= j, the decomposition of B is unique only up to sets
of measure 0 (because each Ci may contain points in ∂Mi∩∂Mj , for j = i−1
or i + 1, which could just as well belong to Cj). For any j = 0, . . . , n − 1,

given Cj ∈ B ∩Mj , mn(Cj) = 1
nm
∗2(ϕ−1

j Cj). We define the map G as in

(4.1), and therefore by definition we have that G−1(Cj+1) ⊂ Mj . Then by
(4.4),

mn(G−1Cj+1) =
1

n
m∗2(ϕ−1

j [ϕj ◦ (g∗2)−1 ◦ ϕj+1(Cj+1)])

=
1

n
m∗2((g∗2)−1(ϕj+1Cj+1)),

and since g∗2 preserves m∗2,

(4.5) mn(G−1Cj+1) =
1

n
m∗2(ϕj+1Cj+1) = mn(Cj+1).

Note that the modification for C0 ⊂ M0 is obvious since G−1C0 ⊂ Mn−1.
Since (4.5) holds for each Cj+1, mn(G−1B) = mn(B) for all B ∈ B.

This proves (i).
Assume G−1B = B, and mn(B) > 0; then for all k ∈ Z, Gk(B) = B, so

B∩Mi has positive measure for all i. Let Bj = B∩Mj ; since G−n(Bj) = Bj
and (g∗2)n is ergodic on M0, we have that mn(Bj) = 1

n ; i.e., Bj fills Mj up
to a set of measure 0. Since G(Bj) ⊂Mj+1, it follows that mn(B) = 1 and
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G is ergodic. Since for each j, mn(Mj) = 1/n and satisfies

Mj =
⋃
k∈N

G−k(Gk(Mj)),

we see that there are nontrivial tail sets, proving (ii).
To show (iii), consider the one-sided 4-state Bernoulli shift defined by g∗2

on M. We set Y = M×{0, 1, . . . , n−1}, and give Y the product measure ν,
using m∗2 and uniformly distributed point mass measure on {0, 1, . . . , n−1}.
consider the map: S(z, j) = (g∗2(z), j + 1(modn)). Clearly S : Y → Y ,
and S is an n-point extension over the Bernoulli map g∗2. We now define
η : X → Y by η(x) = (z, j) if x ∈ Mj and ϕ−1

j (x) = z ∈ M0. Then η is a

measure theoretic isomorphism, and η ◦G(x) = S ◦η(x) for mn almost every
x ∈ X. This proves (iii).

The proofs of (iv) and (v) are similar to some given in [14], but we give a
few details here in our setting. To show topological transitivity, it is enough
to consider open sets U ⊂ Mi and V ⊂ Mj . If we first project the sets
onto M, the topological exactness of g∗2 on M gives a k0 ∈ N such that
(g∗2)k0(U) = M. Now use any k ≥ k0 for G to take U onto Mj . To show
periodic points are dense, we use the corresponding property of g∗2 on M; if
for example an arbitrary open set U ⊂M0 has a periodic point x of period
p under g∗2, then for ϕi(x) ∈ ϕiU ∩Mi, satisfies Gnp(ϕi(x)) = ϕ(x) as well.
G fails to be topologically exact for the same reason it fails to be exact.

The map G has entropy at least as great as that of g∗2 since g∗2 is a
(topological) factor. But G is still only d2-to-one so we have not increased
the entropy.

Finally G is clearly continuous everywhere, and since g∗2 is smooth on
M, with constant derivative mapping (viewed in local additive coordinates
as
[
d 0
0 d

]
), we have only lost differentiability at the points A and B, so G is

Lipschitz and piecewise expanding. �

4.1. Generalizations of the construction. The construction of g∗ and
G on X is actually quite general and we mention a few extensions. First,
we note that a similar construction would work for maps of T2 \ {disk},
with the same symmetry required on the boundary. Since constructing an
ergodic or chaotic d-to-one map of T2\{disk} with the appropriate boundary
symmetry is difficult, we take a different approach for the orientable case in
Section 5.

Moreover the technique used leads to the following proposition.

Theorem 4.2. Suppose (S1,B,m, f) is any nonsingular d-to-one dynamical
system satisfying the following conditions:

(1) f is continuous on S1 and differentiable except at finitely many
points.

(2) f is topologically exact.
(3) f is weak mixing.
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(4) In additive coordinates, f(1− x) = −f(x) for all x ∈ [0, 1].

Then for any nonorientable compact surface X of genus > 1, f defines a
d2-to-one nonsingular map G on X with respect to a smooth measure µ, is
ergodic and chaotic, and G is continuous and differentiable µ-a.e.

Proof. We use the symmetric product f∗2 to define an ergodic and chaotic
map on M. We then use the decomposition given in Section 2.4 to extend
f∗2 to G on X. �

We can also reduce the measure theoretic entropy of the maps constructed.
Given any p ∈ (0, 1), p 6= 1

2 , set q = 1 − p. Then we consider the following
piecewise affine map, defined in [4] that satisfies the hypotheses of Theo-
rem 4.2. Define Tp : S1 → S1 = R/Z as follows:

Tp(x) =



1
p x if x ∈ [0, p2),

1
1−p(x− p

2) + 1
2 if x ∈ [p2 ,

1
2),

1
1−p(x− 1

2) if x ∈ [1
2 , 1−

p
2),

1
p(x− (1− P

2 )) + 1
2 if x ∈ [1− p

2 , 1).

See Figure 8 for a graph of Tp.
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Figure 8. The graph of Tp with p ≈ 1
3

Then Tp preserves m and is mixing and chaotic (but not one-sided Ber-
noulli [4]), and the measure theoretic entropy

hm(Tp) = −p log p− (1− p) log(1− p)) < log 2.

Varying the choice of p gives maps Tp, hence T ∗2p and then the corresponding
Gp of arbitrarily small measure theoretic entropy.

5. Ergodic and chaotic dynamical systems on orientable
surfaces

In this section we use a technique called “blowing up a fixed point” to
construct explicit examples of expanding ergodic and chaotic maps on any
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compact orientable surface. The technique is defined for diffeomorphisms,
and we extend the ideas here to noninvertible continuous maps with some
differentiability. Our method allows us to construct maps with chaotic be-
havior on a set of measure 1 − ε, where ε > 0 can be made as small as we
want. However the resulting map is differentiable on a set of full measure.
In particular we construct explicit examples of continuous maps on nT, the
orientable surface of genus n for any n ≥ 1.

5.1. Fixed points of many-to-one maps. The blowup construction de-
scribed below depends on the existence of a fixed point only having itself as
its preimage, a condition which is often hard to satisfy in the many-to-one
setting. If a fixed point exists with no other preimages, this implies that
there is a point x whose grand orbit, O±(x) =

⋃∞
i=0

⋃∞
j=0 F

−j(F ix), is sim-

ply {x}. For a map exhibiting chaotic or ergodic behavior, this is rare, but
not impossible. For example, it is classical (see eg. [3]) that any rational
map of the sphere with a finite grand orbit is conjugate to R(z) = zd, d ≥ 2,
and the point is either 0 or ∞, and in either case is (super)attracting. In
the case of T2 = C/Λ for some lattice Λ, holomorphic maps of degree d ≥ 2
always have fixed points with d distinct preimages [18].

5.2. An expanding piecewise smooth circle map. We define the pa-
rametrized family of maps for each β ∈ (1

4 ,
1
2). We set s = 1 + 4β, and

α = β/s; note that with the given interval chosen for β, we have α ∈ (1
8 ,

1
6),

and s ∈ (2, 3). Then we define (S1,B,m; fs), where

fs(x) =



s x for x ∈ [0, α)

−s(x− 1/2)− 1/2 for x ∈ [α, 2α)

−s(x− 1/2) + 1/2 for x ∈ [2α, 1− 2α)

−s(x− 1/2) + 3/2 for x ∈ [1− 2α, 1− α)

s(x− 1) + 1 for x ∈ [1− α, 1]

with B the σ-algebra of Lebesgue measurable sets. Each map has constant
slope s and defines a circle map as shown in Figure 9.

Let Fs : R→ R denote the lift of fs. Since Fs(0) = 1, and Fs(1) = 0, we
have that deg(fs) = −1 as shown in Figure 10. It also has periodic orbits of
period 3; therefore by ([1], Thm 4.4.20) htop(fs) > 0. Since fs is expanding
with |f ′s(x)| = s, it follows that htop(fs) = log s [19].

We have the following properties of the map. Many of these properties
are classical properties of piecewise monotone interval maps (see eg. [17]).

Theorem 5.1. For each s ∈ (2, 3), or equivalently for each β ∈ (1
4 ,

1
2), the

following hold:

(1) fs(1−x) = 1−fs(x) for all x ∈ [0, 1/2]. In particular, fs(1/2) = 1/2,
so p = 1

2 is a repelling fixed point.
(2) The nonwandering set Ω(fs) = [0, 1] \ (β, 1− β).
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Figure 9. An expanding circle map with slope ±(1 + 4β)
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Figure 10. The lift to R of a degree −1 map with slope
s = ±(1 + 4β)

(3) On Ω(fs), fs is exactly 3-to-one except at the turning points (α, β)
and (1− α, 1− β).

(4) There exists an absolutely continuous invariant probability measure
µ� m, supported on Ω(fs).

(5) fs is ergodic with respect to m and µ, and weakly Bernoulli, hence
exact w.r.t. µ.
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(6) Writing f̃s = fs|Ω(fs), f̃s is transitive, topologically exact, and chao-
tic.

(7) f̃s is weakly Bernoulli but is not one-sided Bernoulli.

Proof. (1) is easy to verify. Each open interval in [0, α] and [α, 2α] is
mapped onto [0, β] after finitely many iterations of fs. Points in [2α, β] are
mapped by fs diffeomorphically into the interval [1−2α, 1]. By the symmetry
in (1), any interval in [1− 2α, 1] is mapped onto [1− β, 1]. The subinterval
[1−β, 1−α] is mapped diffeomorphically onto an interval in [0, α]. Therefore
any open interval containing a point in Ω(fs) = [0, β] ∪ [1− β, 1] is mapped
eventually onto Ω(fs). (3) and (4) follow from the Folklore Theorem for
expanding maps (see V. Thm 2.1 of [17]). Topological exactness follows from
the proof of (1); transitivity follows from topological exactness, and Devaney
chaos follows from transitivity [15], and also from the positive entropy of fs
[19]. (7) Since htop(f̃s) < log 3, it is not isomorphic to the {1/3, 1/3, 1/3}
one-sided Bernoulli shift. Then it would be a {p1, p2, p3} shift, and the fact

that the automorphism ϕ(x) = 1−x commutes with f̃s makes this impossible
([4], Cor. 2.23). �

Remarks 5.2. We can do a similar construction with a degree 1 circle map
by reflecting the graph of fs across the line x = 1

2 ,i.e., by using gs(x) =
fs(1− x) instead.

5.3. Moving the maps to T2. We now consider the two-dimensional
torus as T2 = S1 × S1 ∼= R2/Z2, with S1 = [0, 1]/0 ∼ 1. For each s ∈ (2, 3),
we consider the map gs = f×2

s , so gs : T2 → T2 is given by gs(x, y) =
(fs(x), fs(y)). The next result follows immediately.

Theorem 5.3. If m2 denotes normalized 2-dimensional Lebesgue measure
on T2, then for every s ∈ (2, 3) gs is Lipschitz, differentiable except on
finitely many smooth curves, not necessarily disjoint, and:

(1) Given any ε > 0, there exists an s0 ∈ (2, 3) and a probability measure
ν � m2 with m2(support (ν)) > 1− ε, and ν is preserved under gs0.

(2) The support of ν is the nonwandering set Ω(gs0).
(3) On Ω(gs0), gs0 is:

(a) topologically exact,
(b) chaotic,
(c) exact w.r.t. ν,
(d) weakly Bernoulli.

Moreover, for each s ∈ (2, 3):

(4) gs is 9-to-one for all (x, y) ∈ Ω(gs) except at the turning points:
(α, β), (1− α, β), (α, 1− β), and (1− α, 1− β).

(5) gs has a fixed point P = (1
2 ,

1
2) with only one preimage (itself).

(6) htop(gs) = 2 log s.

Proof. To prove (1) we assume that ε ∈ (0, 1
2) is given. Using the dis-

cussion and notation preceding Theorem 5.1, and its proof, we have that
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m1(Ω(fs)) = 1− 2β = 3−s
2 on the circle, so m2(Ω(gs)) > 1− (3− s) = s− 2

on T2. Therefore choosing s0 > max{2, 3 − ε} (with s0 ∈ (2, 3)), we have
that m2(Ω(fs)) > 1 − ε. The rest of the properties follow from the con-
struction of gs and Theorem 5.1. Any nonempty open set of the Cartesian
product I × I contains a basic open set of the form U × V , where U and
V are open and nonempty in I. Hence there exist nonnegative integers m
and n such that fm(U) = S1 and fn(V ) = S1. Let N = max{m,n}. Then
(f×2)N = fN (U)× fN (V ) = S1× S1, and topological exactness follows. �

6. Higher genus constructions

We turn to a classical procedure of blowing up a map around a fixed
point of a diffeomorphism; there are many sources for this construction (for
example, [8]).

6.1. The blowup construction. Letting 0 ∈ R2 denote the origin, as-
sume that h is a homeomorphism of R2 with h(0) = 0, and h is differentiable
near 0. Let Dh0 denote the usual derivative mapping of h defined on T0R2,
the tangent space of R2 at 0.

Define Y = [0,∞) × S1 with polar coordinates on Y given by (r, θ) with
r ≥ 0 and θ ∈ [0, 2π). Let q : Y → R2 be the quotient map taking (r, θ) to
x = r cos θ and y = r sin θ. The boundary circle Σ = {x ∈ Y : r = 0} ⊂ Y
satisfies q(Σ) = 0 ∈ R2.

Let S1
0R2 = {u ∈ T0R2 : ||u|| = 1}. Since in polar coordinates u = (1, θ),

θ ∈ [0, 2π), clearly S1
0R2 ∼= S1 ∼= Σ via the map

(6.1) u = (1, θ) 7→ θ.

We define a map: D̂h0 : Σ→ Σ by D̂h0(θ) = ρ, if Dh0(u) = (t, ρ) in polar

coordinates. The map D̂h0 gives the angular part of Dh0 applied to a unit
vector.

Definition 6.1. The blowup ĥ of h about 0 is defined by ĥ : Y → Y ,

ĥ(r, θ) = h(r, θ) for r > 0,

and

ĥ(0, θ) = D̂h0(θ) when r = 0.

Remarks 6.2. We give an equivalent version of blowing up and some re-
marks.

(1) Letting S1 represent the unit vectors of R2 (as in (6.1)), we see that
(0,∞) × S1 is homeomorphic to R2 \ {0} via the correspondence
(t, u) 7→ tu. Then on [0,∞)× S1 we define the dynamical system:

ĥ(t, u) =


(
||h(tu)||, h(tu)

||h(tu)||

)
if t > 0,(

0, Dh0(u)
||Dh0(u)||

)
otherwise.
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Since in our examples, h is affine near P , on the boundary circle
Σ (corresponding to {0} × S1), either ĥ(0, θ) = (0, θ) or ĥ(0, θ) =
(0, θ + π).

(2) The map ĥ : Y → Y is continuous.

(3) The boundary circle Σ is invariant under the action of ĥ.
(4) The blowup map is local; in particular h does not need to be a

global homeomorphism since the construction only uses the fact that
it is a homeomorphism in a neighborhood of a fixed point. We
could have h : D → D for some open disk D ⊂ R2 of radius ρ,
h a homeomorphism onto its image, and for some point P ∈ D,
h(P ) = P . If we also assume that DhP exists, then ĥ is defined as
above by giving D local coordinates with the origin at p.

6.2. Dynamical systems on nT. From Theorem 5.3 for each s ∈ (2, 3)
we have a map gs on T2 with a fixed point P = (1

2 ,
1
2) which has only itself

as a preimage. We blow up gs at P to produce a map ĝs defined on N =

T2 \ {disk}. We note that using the notation from above, D̂gsP (θ) = θ+ π,
so ĝs|∂N is rotation by π (or equivalently -π). Hence the condition required
to produce a well-defined map on nT, equivalent to (4.2), is that

(6.2) D̂gsP (−θ) = −θ + π = −(θ − π) = −D̂gsP (θ)(mod2π),

and this is clearly satisfied.
Therefore ĝs extends to Gs : nT→ nT as follows, using the maps ϕi from

Section 2.4:

(6.3) Gs(x) = ϕi+1 ◦ ĥ ◦ ϕ−1
i , for i = 0, . . . , n− 1.

In this construction, using angular coordinates for the circle, we label
points A and B as shown in Figure 1, corresponding to the angles 0 and π
respectively (on Σi, i = 0, . . . n− 1).

Theorem 6.3. For any n ≥ 2, using m2 to denote normalized Lebesgue
measure on nT, for each s ∈ (2, 3), the map Gs satisfies the following prop-
erties:

(1) Gs is Lipschitz with respect to the Riemannian metric on nT, and
differentiable except on finitely many smooth curves (not necessarily
disjoint).

(2) The points A and B form a repelling period two orbit of Gs.
(3) There exists an absolutely continuous invariant probability measure

µs � m2, supported on Ωs.
(4) On Ωs, Gs is 9-to-one µs a.e.
(5) Gs is ergodic with respect to µs. Gs is not exact; there is an auto-

morphic factor isomorphic to rotation on n points.
(6) Gs|Ωs is transitive and chaotic.
(7) Gs is isomorphic to an n-point extension over a Bernoulli shift.
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(8) For any ε > 0, there is some s0 such that for all s in the interval
(s0, 3), m2(Ωs) > 1− ε.

Proof. To prove ergodicity, first suppose that C is a Borel measurable in-
variant subset of nT of positive measure. Then m(C ∩ Yi) > 0 for some i,

and since G−js C = C for all j ∈ N, we also have that m(C ∩ Yj) > 0 for all
j = 0, . . . , n − 1. Let Cj = C ∩ Yj ; then G−ns (Cj) = Cj , so m(Yj \ Cj) = 0
and Gs is ergodic. To prove (8), given ε we find fs so that the wandering
set of fs has measure less than ε/n.

The rest of the proof is almost identical to that of Theorem 4.1. �

Finally we note that this method allows for the construction of maps on
surfaces, orientable or not, satisfying the properties in Theorem 6.3, as long
as one one can blow up a fixed point to produce a map with the symmetry
of the boundary circle needed to satisfy (4.2). However Theorem 4.1 gives
a stronger result for nonorientable surfaces.
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