New York Journal of Mathematics
New York J. Math. 18 (2012) 139-199.

A global theory of algebras of generalized
functions. II. Tensor distributions

Michael Grosser, Michael Kunzinger,
Roland Steinbauer and James A. Vickers

ABSTRACT. We extend the construction of the authors’ paper of 2002
by introducing spaces of generalized tensor fields on smooth manifolds
that possess optimal embedding and consistency properties with spaces
of tensor distributions in the sense of L. Schwartz. We thereby obtain
a universal algebra of generalized tensor fields canonically containing
the space of distributional tensor fields. The canonical embedding of
distributional tensor fields also commutes with the Lie derivative. This
construction provides the basis for applications of algebras of generalized
functions in nonlinear distributional geometry and, in particular, to the
study of spacetimes of low differentiability in general relativity.
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1. Introduction

The classical theory of distributions has long proved to be a powerful
tool in the analysis of linear partial differential equations. The fact that
there can in principle be no general multiplication of distributions ([37]),
however, makes them of limited use in the context of nonlinear theories. On
the other hand, in the early 1980’s J. F. Colombeau ([4, 5, 6, 7]) constructed
algebras of generalized functions G(R™) on Euclidean space, containing the
vector space D'(R™) of distributions as a subspace and the space of smooth
functions as a subalgebra. Colombeau algebras combine a maximum of
favorable differential algebraic properties with a maximum of consistency
properties with respect to classical analysis in the light of Laurent Schwartz’
impossibility result ([37]). They have since found diverse applications in
analysis, in particular in linear and nonlinear PDE with non-smooth data
or coefficients (cf., e.g., [34, 24, 33, 20, 12, 32, 10, 35] and references therein)
and have increasingly been used in a geometrical context (e.g., [17, 27, 18,
19, 29, 30, 21]) and in general relativity (see, e.g., [3, 1, 43, 28, 13] and [39]
for a survey).

In this work we shall focus exclusively on so-called full Colombeau algebras
which possess a canonical embedding of distributions. Omne drawback of
the early approaches (given, e.g., in [5]) was that they made explicit use
of the linear structure of R™, obstructing the construction of an algebra
of generalized functions on differentiable manifolds. This is in contrast to
the situation with the so-called special algebras [18, Sec. 3.2] which are
diffeomorphism invariant but do not allow a canonical embedding. It was
only after a considerable effort that the full construction could be suitably
modified to obtain diffeomorphism invariance: Building on earlier works of
J. F. Colombeau and A. Meril ([8]) and J. Jelinek ([21]) a diffeomorphism
invariant (full) Colombeau algebra G%(2) on open subsets Q C R" was
constructed in [17]. In this work a complete classification of full Colombeau-
type algebras was given, resulting in two possible versions of the theory.
In [22, 23], J. Jelinek was then able to prove that these algebras are, in
fact, isomorphic, thereby providing a unique diffeomorphism invariant local
theory. We will frequently refer to this construction as the “local theory”.
Finally, the construction of a full Colombeau algebra G(M) on a manifold
M based on intrinsically defined building blocks was given in [19]. Note that
such an intrinsic construction is vital for applications in a geometric context:
the two main fields of applications we have in mind are general relativity
and Lie group analysis of differential equations. For applications in these
fields, however, a theory of generalized tensor fields extending the above
scalar construction is essential. In this paper we develop such a theory.

One might expect that going from generalized scalar fields to generalized
tensor fields is straightforward and could be accomplished by considering
generalized tensor fields as tensor fields with G(M )-functions as coefficients.
However, the Schwartz impossibility result excludes such a construction as
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will be demonstrated in Section 4. More generally, we derive a Schwartz-
type impossibility result for the tensorial case which applies to any natural
(in the sense specified below) algebra of generalized functions.

To circumvent this road block we introduce an additional geometric struc-
ture into the theory which allows us to maintain the maximal possible dif-
ferential algebraic properties and compatibility with the smooth case.

In more detail, the plan of this paper is as follows. We begin, in Section
2, by introducing some concepts and notation used throughout the paper.
In Section 3 we present a new geometric approach to the scalar construction
of [19] and point out some features which are essential in the context of
the present work. In particular, we lay the foundations for establishing the
impossibility results for the tensor case which are presented in Section 4.
Section 5 exemplifies the guiding ideas of the tensorial theory by the special
case of distributional vector fields and demonstrates the basic strategy for
circumventing the no-go results alluded to above. Sections 6 and 8 form the
core of our construction. The technically demanding proof of the fact that
the embedded image of a distributional tensor field is smooth in the sense
of [26] is given in Section 7. The concept of association—which provides
‘backwards compatibility’ of the new setting with the theory of distributional
tensor fields—is the topic of Section 9. In the appendices we collect material
on the key notion of transport operators (Appendix A) as well as some
fundamental results on calculus in convenient vector spaces in the sense of

[26] (Appendix B).

2. Notation

Here we fix some notation used throughout this article. I always stands
for the interval (0, 1]. Unless otherwise stated, M will denote an orientable,
paracompact smooth Hausdorff manifold of (finite) dimension n. For subsets
A, B of a topological space, we write A CC B if A is a compact subset of
the interior of B. Concerning locally convex vector spaces (which we always
assume to be Hausdorff) we use the terminology and the results of [36]. In
particular, “(F)-space” and “(F)-topology” abbreviate “Fréchet space” resp.
“Fréchet topology”. An (LF)-space is a strict inductive limit of an increasing
sequence of (F)-spaces. A bornological isomorphism between locally convex
spaces is a linear isomorphism respecting the families of bounded sets, in
both directions. For details on the notion of smoothness in the sense of [26],
see Appendix B.

For any vector bundle E over M, we denote by I'(M, E) resp. I'.(M, E) the
linear spaces of smooth sections of F resp. of smooth sections of E having
compact support. For K CC M, I'c x(M, E) stands for the subspace of
I'.(M, E) consisting of all sections having their support contained in K. On
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I'(M, E), we consider the standard system of seminorms

dim FE

(2.1) prop(u) = Y sup [9V(¢7 o (uly) oy (@),

where | € Ny, (V,¥) is a vector bundle chart with component functions
P, 3™ E over some chart (V1)) on M and L ccC ¥(V) (cf. [18, p.
229]). This leads to the usual (F)- resp. (LF)-topologies on I'(M, E) resp.
(M, E) if M is separable (i.e., second countable). For general M, I'(M, E)
becomes a product of (F)-spaces in this way, while the obvious inductive
limit topology renders I'c(M, E) a direct topological sum of (LF)-spaces.
By a slight abuse of language, we will speak of (F)- resp. of (LF)-topologies
also in the general case, being cautious when employing standard results on
(F)- resp. (LF)-spaces. When there is no question as to the base space we
will sometimes write I'(E) and I'c(E) rather than I'(M, E) resp. I'«(M, E).
Finally, for an open subset U of the manifold M, we denote by E|U the
restriction of the bundle E to U. For some relevant basic facts on pullback
bundles, two-point tensors and transport operators we refer to Appendix A.

Specializing to the tensor case, we denote by T, M the bundle of (r,s)-
tensors over M and by 7] (M) the linear space of smooth tensor fields of
type (r,s). Also we write X(M) resp. Q(M) for the space of smooth vector
fields resp. one-forms on M. By QU(M) we denote the space of compactly
supported (smooth) n-forms.

Following [31], we will view D’,(M), the space of distributional tensor
fields of type (r,s), as the dual of the space of compactly supported tensor
densities of type (s,r) where a tensor density of type (s,r) is a (smooth)
section of the bundle TSM ® Vol' (M) (cf. [18, 3.1.4]). In particular, for
r = s = 0, we define the vector space of (scalar) distributions on M by
D'(M) := (Te(Vol' (M)

For M orientable, every orientation induces a vector bundle isomorphism
between Vol' (M) and A" T*M which, in turn, yields a linear isomorphism
between I'c(Vol' (M)) and Q7 (M) which is even topological with respect to
the usual LF-topologies. Since n-forms are more familiar than densities we
have decided to confine our attention in this article to the case of M being
orientable, allowing us to write D'(M) := (Q2(M))’ resp.

!/

DL(M) = (T2 (M) @csear) (M) )

Note, however, that this restriction is not essential, in the sense that our
results can easily be reformulated for the case of general (i.e., not necessarily
orientable) manifolds using densities rather than n-forms.

We denote the action of the distributional tensor field v € D',,(M) on the
T M-valued n-form t ® w by (v, ® w).

Moreover, tensor distributions can be viewed as tensor fields with (scalar)
distributional coefficients via the C*°(M)-module isomorphism (cf., e.g., [18,
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Cor. 3.1.15))
(2.2) D'(M) = D'(M) ®co(ary TJ (M).

We also mention the following useful representation of D',(M) as space of
linear maps on dual tensor fields ([18, Th. 3.1.12)):

(2.3) D'§(M) = Lea () (775 (M), D' (M)).

For the natural pullback action of a diffeomorphism g on smooth or dis-
tributional sections of vector bundles we will write p*, the corresponding
push-forward (x~1)* will be denoted by p. If (and only if) u: M — N
preserves orientations given on M resp. N then the corresponding pullback
actions u* defined on T'.(Vol'(N)) resp. Q2(N) are compatible via the as-
sociated isomorphisms identifying densities and n-forms. Therefore, we will
always assume diffeomorphisms to preserve orientation. This property is
satisfied a priori by the flow Flf of a vector field X.

Altogether, the setting of n-forms allows a complete description of the
actions of orientation preserving diffeomorphisms and of Lie derivatives on
tensor valued distributions. In order to include also diffeomorphisms not
preserving orientation resp. acting on non-orientable manifolds, one would
have to resort to the more general density setting.

3. The scalar theory

To begin with we recall the following natural list of requirements for any
algebra of generalized functions A(M) on a manifold M (cf. [17] for a full
discussion of the local case): A(M) should be an associative, commutative
unital algebra satisfying:

(i) There exists a linear embedding ¢ : D'(M) — A(M) such that «(1)
is the unit in A(M).

(ii) For every smooth vector field X € X(M) there exists a Lie derivative
Lx : A(M) — A(M) which is linear and satisfies the Leibniz rule.

(iii) + commutes with Lie derivatives: +(Lxv) = Lx¢(v) for all v € D' (M)
and all X € X(M).

(iv) The restriction of the product in A(M) to C*°(M) coincides with
the pointwise product of functions: ¢(f - g) = ¢(f)i(g) for all f,g €
C™®(M).

In addition, for the purpose of utilizing such algebras of generalized functions
in non-smooth differential geometry we will assume the following equivari-
ance properties:

(v) There is a natural operation * of pullback under diffeomorphisms
on A(M) that commutes with the embedding: ¢(p*v) = i1*(¢(v)) for
all v € D/(M) and all diffeomorphisms p : M — M.
Due to (iv), A(M) becomes a C*>°(M)-module by setting f - u := ¢(f)u for
feC>®(M)and ue A(M).
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The celebrated impossibility result of L. Schwartz [37] states that there is
no algebra A(M) satisfying (i)—(iii) and (iv’), where (iv’) is a stronger version
of (iv) in which one requires compatibility with the pointwise product of
continuous (or C¥, for some finite k) functions.

We now begin by recalling the construction of the intrinsic full Colombeau
algebra G (M) of generalized functions of [19] which possesses the distinguish-
ing properties (i)—(v) above. We will put special emphasis on the geometric
nature of the construction and point out the naturality of our definitions
(see also [38])—as these are also essential features in the tensor case. The
construction basically consists of the following two steps:

(A) Definition of a basic space £(M) that is an algebra with unit, to-
gether with linear embeddings ¢ : D'(M) — £(M) and o : C*°(M) —
& (M) where o is an algebra homomorphism and both ¢ and ¢ com-
mute with the action of diffeomorphisms. Definition of Lie deriva-
tives Lx on & (M) that coincide with the usual Lie derivatives on
D'(M) (via ¢) resp. on C>*°(M) (via o).

(B) Definition of the spaces &y (M) of moderate and (M) of negligible
elements of the basic space £(M) such that &y, (M) is a subalgebra
of E(M) and N'(M) is an ideal in &y, (M) containing (1—o)(C>(M)).
Definition of the algebra as the quotient G(M) := En (M) /N (M).

Observe that step (A) serves to implement properties (i)—(iii) and (v) of
the above list while step (B) guarantees the validity of (iv). Since step
(A) describes the basic space underlying our construction of generalized
functions we refer to this step (by analogy with analytic mechanics) as giving
the “kinematics” of the construction, and since step (B) refers to additional
(asymptotic) conditions which we impose on the objects, we will refer to
this step as giving the “dynamics” of the construction.

To introduce the kinematics part of the theory we discuss the question
of the embeddings which will lead us to a natural choice of the basic space.
We wish to embed both the space of smooth functions C*°(M) and the
space of distributions D’(M). Since smooth functions depend upon points
p € M and distributions depend upon compactly supported n-forms it is
natural to take our space of generalized functions to depend upon both of
these. However, for technical reasons it is convenient to only use normalized
n-forms.

Definition 3.1.

(i) The space of compactly supported n-forms with unit integral is de-
noted by

Ao(M) := {w e QM) : / w = 1}.
M
(ii) The basic space of generalized scalar fields is given by

E(M) := C>®(Ao(M) x M).
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Here and throughout this paper, smoothness is understood in the sense
of calculus in convenient vector spaces ([26]), which provides a natural and
powerful setting for infinite-dimensional global analysis. A map between
locally convex spaces is defined to be smooth if it maps smooth curves to
smooth curves. For some facts on convenient calculus in the context of the
scalar theory we refer to [17, Sec. 4]. More specific results pertaining to the
present paper are developed in Appendix B. Elements of the basic space will
be denoted by R and their arguments by w and p.

Definition 3.2. We define the embedding of smooth functions resp. distri-
butions into the basic space by

o(f)(w,p):=flp) and w(v)(w,p):= (v,w).

Note that we clearly have o(fg) = o(f)o(g).

The second ingredient of the kinematics part of the construction is the
definition of an appropriate Lie derivative. Given a complete vector field
X, the Lie derivative of a geometric object defined on a natural bundle on
a manifold M may be given in terms of the pullback of the induced flow
(Appendix A and [25]). This geometric approach has the further advantage
that in every instance the Leibniz rule is an immediate consequence of the
chain rule. In order to define the Lie derivative of an element R € £ (M) we
therefore first need to specify the action of diffeomorphisms on & (M).

Given a diffeomorphism p : M — M we have the following pullback
actions of © on the spaces of smooth functions resp. of distributions:

w' f(p) = f(pp) and (u v,w) = (v, psw),

where pp := p(p) and p.w denotes the push-forward of the n-form w. Hence
the natural choice of definitions is the following.

Definition 3.3.
(i) The action of a diffeomorphism g of M on elements of (M) is given
by
(A" R)(w,p) == R(psw, pp).
(ii) The Lie derivative on E(M ) with respect to a complete smooth vector
field X on M is

A d -
LyR:= —| (FIX)*R,
dr 7=0
where F1X denotes the flow induced by X at time 7.
It is now readily shown that
jffooc=copu* and [p*or=ropu”

which immediately implies

Lyoo=0coLxy and Lxo:t=t10Lx.
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Moreover, an explicit calculation gives
LxR(w,p) = —diR(w,p) Lxw + LxR(w,.) |,

which is precisely the definition of the Lie derivative in the general case
given in equation (14) of [19].

Having established (i)—(iii) and (v) we now turn to step (B), i.e., the
dynamics part of our construction. The key idea in establishing (iv) is to
identify, via a quotient construction, the images of smooth functions under
both the embeddings: For smooth f one has o(f)(w,p) = f(p), whereas
regarding f as a distribution, one has ¢(f)(w,p) = [ f(¢)w(g). In order to
identify these two expressions we would like to set w(q) = dp(g). Clearly
this is not possible in a strict sense, but replacing the n-form w by a net of
n-forms ®(e,p) which tend to 6, appropriately as ¢ — 0 and using suitable
asymptotic estimates shows the right way to proceed.

We begin by defining an appropriate space of delta nets (see [19] for
details).

Definition 3.4.

(1) An element ® € C>°(I x M, Ag(M)) is called a smoothing kernel if
it satisfies the following conditions
(i) VK CC M Feo,C > 0Vp € K Ve < gp: supp ®(e,p) C B:c(p)
(il) VK CC M Vk,l € Ng VXq,..., X, Y1,..., Y € X(M)
sup [|Ly, ... Ly, (L, +Lx,) ... (L, +Lx,)®(c,p)(q)] = O(e~ ()

peEK
qeM

where L'y is the Lie derivative of the map p — ®(e,p)(¢q) and Ly is
the Lie derivative of the map g — ®(e,p)(q). The space of smoothing
kernels on M is denoted by Ag(M). We will use the notations ®(e, p)
and ®. , interchangeably.

(2) For each m € N we denote by A,,,(M) the set of all ® € Ag(M) such
that for all f € C*°(M) and all K CC M

- [ f(q)<1>(6,p)(q)‘ — o)

The norms and metric balls in this definition are to be understood with
respect to some Riemannian metric, but the asymptotic estimates are inde-
pendent of the choice of metric.

We may now define the subspaces of moderate and negligible elements of
£ (M) and carry out the announced quotient construction.

Definition 3.5.
(i) R e £(M) is called moderate if

VK CCMVkeNg3INeNVY Xy,...,Xp e X(M) VY & € Ay(M)

sup [Ly, - L, (R(®(e. p). p)| = O(e™™).

sup
peK
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The subset of moderate elements of £(M) is denoted by & (M).
(ii) R € Em(M) is called negligible if

VK cC M Vk,leNgImeNVY Xy,..., X, € X(M) VP € A, (M)

sup ‘LXl oo LXk (R((I)(€7p)ap))| = O(gl)'
peEK
The subset of negligible elements of £y, (M) is denoted by N (M).
(iii) The Colombeau algebra of generalized functions on M is defined by

One now proves that (1 — ¢)(C>°(M)) € N (M) by recourse to the local
theory ([17]). So we obtain (iv) and since the properties obtained in step
(A) are not lost in the quotient construction we indeed have (i)—(v). Note,
however, the following subtlety: The fact that G (M) is a differential algebra
depends on the invariance of the tests for moderateness and negligibility
under the action of the generalized Lie derivative Lx. This, however, is
surprisingly hard to prove and has been done in [19] by recourse to the local
theory as well.

We conclude this section with a lemma which will turn out to be useful
for proving the analogue of (1 — o)(C®(M)) € N(M) in the tensor case
(Theorem 8.12(iii)).

Lemma 3.6. Let g € C>°(M x M) satisfy g(p,p) =0 for allp € M, and let
m € Ng. Then for every ® € A,,,(M) and every K CC M we have

(1) sup| [ st 02(e)(0)| =0
peK |JM

Proof. Without loss of generality we may assume that K is contained in

some open set W where (W, ) is a chart on M. Fixing L such that K CC

L cC W there is an €y > 0 such that for all ¢ < g9 and all p € K we have

supp ®(e,p) C L, by (1)(i) of Definition 3.4. Hence the integral in (3.1) may

be written in local coordinates as

/ 3z, y)e (e, ) (152) dvy
(W)

where § = go (¢ x )™t € C®(Y(W) x p(W)) and ¢ : D (C I x p(W)) —
Ap(R™) has the properties specified in [19, Lemma 4.2 (A)(i)(ii)]. In par-
ticular, D contains (0,e1] x ¥(K) for some £; < gq in its interior and we
have sup,e g | Jon 0(€,2)(y)yPd™y| = O(e™+1-181) for all multiindices 8 with
1 <|B] <m and all K" cC ¢(W). Now a Taylor argument (analogous to
the one in the proof of [17, Th. 7.4 (iii)], with « set equal to 0) establishes
(3.1). O

Note that for g(p,q) = f(p) — f(q) where f € C>®(M), the asymptotic
estimate (3.1) is nothing but the condition defining the space A,,(M).
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4. No-Go results in the tensorial setting

In this section we establish some general no-go results in the spirit of the
Schwartz impossibility theorem [37], valid for tensorial extensions of any
algebra A(M) of generalized functions satisfying the set of requirements
stated in Section 3. For a comprehensive discussion tailored to the special
case A(M) = G(M) we refer to [16]. The results of the present section are
in line with T. Todorov’s program of axiomatizing the theory of algebras of
generalized functions (cf. [41, 40]).

Throughout this section we suppose that A(M) is any associative, com-
mutative unital algebra with embedding ¢ : D'(M) — A(M) satistying con-
ditions (i)—(v) from Section 3.

We first note that such an ¢ cannot be C>°(M)-linear. In fact, let M = R.
Then supposing that ¢ is C*°(R)-linear we derive the following contradiction:

t(6) = ¢(1)e(d) = L(v.pé . x>L(5) = L(v.pé)b(xé) =0.

Clearly this calculation can be pulled back to any manifold. Thus, in general,

(4.1) L(fv) #u(f) - wlv) (f €C™(M), veD(M)),

or, t(fv) # f-(v), for any algebra A(M) of generalized functions as above.
As we shall demonstrate, this basic observation forecloses the most obvi-
ous way of extending a given scalar theory of algebras of generalized func-
tions to the tensorial setting.
To this end, we write the natural embedding p~ : 7" (M) — D'.(M) given
by

(ps(t),t@w) = [(t-Hw (te T (M), T€THM), we QM)
M

in a different manner: Recall from (2.2) that
D' (M) = D' (M) @coo(ar) TS (M)

Denoting by p the standard embedding of C*°(M) into D'(M), the fact that
p is C°°(M)-linear allows one to rewrite p} as

(4.2) pg = p®Coo(M) id : COO(M) ®C00(M) 7;T(M) — DI(M) ®Coo(M) 7;T(M)

Given A(M) as above it is therefore natural to define the space of tensor-
valued generalized functions as the C*° (M )-module of tensor fields with gen-
eralized coefficients from A(M), i.e.,

(4.3) AG(M) = A(M) ®coo(nr) Ts (M).

It is then tempting to mimic (4.2) and define an embedding of D', (M) into
AS(M) by

(4.4) L®id:D/(M) @eoo (M) 7-ST(M) —)A(M) ®coo(M)7;T(M).
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The following result, however, shows that this map is not well-defined (not

even in the scalar case r = s = 0) and therefore cannot serve as the desired
embedding of D', (M) into A%(M):

Proposition 4.1. Let A be a unital C*°(M)-module and ¢ : D'(M) — A
R-linear. Then the following are equivalent:
(i) ¢ is C°°(M)-linear.
(ii) t®id : D'(M) ®g C®(M) — A ®coo(ar) C(M) is C*°(M)-balanced,
i.e., t®@1d from (4.4) is well-defined.

Proof. Let v € D'(M) and f,g € C>(M).

()=(ii): t@id(fveg) = (fr)®g = fulv)@g =1(v)® fg = ®1d(v®fg)
(i)=@1): «(fr)®l=1®id(fr®]l)=1id(v® f) = 1(v) ® f = fulv) ®
Thus, since u ® f + fu is an isomorphism from A ®@cec(ar) C*(M) to A, (1)
follows. (]

It is instructive to take a look at the coordinate version of the impossibility
of (4.4). Indeed as we shall show below condition (i) of Proposition 4.1 is
equivalent to the statement that coordinate-wise embedding of distributional
tensor fields is independent of the choice of a local basis (cf. also [9]).

To this end, assume M can be described by a single chart. Then 7. (M)
has a C°>°(M)-basis consisting of (smooth) tensor fields, say, ei,..., e, €
Tr(M) with m = n"™5. By (2.2), every v € D',(M) can be written as
v = v’ ® e; (using summation convention) with v* € D'(M). Consider a
Change of basis given by e; = alé;, with a! smooth. Then v = ¥/ ® é; with
0 = al v'. Applying ¢ ® id to both representations of v, we obtain

(t®id)(v' @ e;) = 1(v)) ® (agéj) = (L(v’)ag) ®é; = (t(al)(v')) ® é;

i
resp.

(L ®id) (¥ @ &;) = 1(alv) ® ¢,
which are different in general due to (4.1). It follows that coordinate-wise

embedding is not feasible for obtaining an embedding of tensor distributions.
The following example gives an explicit contradiction for the case A(M)

= G(M).

Example 4.2. Set M = R, and let v € D'{(R) = D'(R) @coo(r) X(R) be
given by v = ¢’ ® 9. Then
1
_ 2\ </
and we note that (1+2?) is in fact the transition function of the underlying
vector bundle T'M yvith respect to the coordinate transformation  — z+x3.
With ¢ : D'(R) — G(R), suppose that

1
L((S,) ® 0y = L((l + $2)5/) & 1_1_73328.’17
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Then since 22§’ = 0 in D'(R), this would amount to (1 + z%)u(8") = ¢(&').
However, it is easily seen that 2 is not a zero-divisor in G(R) (adapt [18,
Ex. 1.2.40] by choosing an appropriate smoothing kernel), so we arrive at a

contradiction.

In order to circumvent the “domain obstruction” met in (4.4) (which
arose from ¢} ® id not being C*°(M)-balanced) one might try to switch
to isomorphic representations of the spaces involved: By (2.2) and (2.3),
we have D'(M) ®ceoary T3 (M) = Leco(any(T,5(M), D'(M)), and similarly
A(M) @coo(ary T (M) = Leoo () (T,° (M), A(M)) holds (the latter is proved
analogously to the corresponding statement in [18, Th. 3.1.12]). The most
plausible candidate for an embedding of Leeo(ar)(7,°(M),D'(M)) into the
space Leoo(pr)(7,7(M), A(M)) certainly is t«, that is, composition from the
left with ¢ : D'(M) — A(M). Indeed, this choice presents no difficulties
whatsoever with respect to the domain Lo (ar) (7,7 (M), D'(M)). However,
this time we encounter a “range obstruction” in the sense that we do end up
only in Lgr(7,*(M), A(M)), due to the fact that ¢ is only R-linear. Proposi-
tion 4.1 demonstrates that the domain and the range obstructions, though
of essentially different appearance, are in fact equivalent.

It is noteworthy that the range obstruction is encountered once more
when trying to write down plausible formulae for an embedding of tensor
distributions into a naively defined basic space for generalized tensor fields.
Aiming at minimal changes as compared to the scalar theory it is natural
to start out from scalar basic space members u : AO(M ) x M — R, to
replace the “scalar” range space R by the vector bundle T7M and to ask
for u(w,.) to be a member of T7 (M), for every w € Ag(M). Now when
looking for a “tensor embedding” ¢} we aim at guaranteeing ¢} (v)(w,.) (for
v € D'(M)) to be a member of T (M) by defining it via a C*°(M)-linear
action on ¢ € 7,°(M). Virtually the only formula making sense is (v, ® w),
forcing us to set

(4.5) (Lh(v)(w,.) - t)(p) := (v, t @ w).

At first glance, (4.5) displays a reassuring similarity to the scalar case defini-
tion ¢(v)(w, p) := (v,w). In particular, both right hand sides do not depend
on p. This, however, leads to failure in the tensor case: Choosing # with
(nontrivial) compact support, the left hand side also has compact support
with respect to p, so, being constant it has to vanish identically, making
(4.5) absurd. On top of this and, in fact, continuing our above discussion
we note that (4.5) also fails to provide C*°(M)-linearity of ¢} (v)(w,.) since
this would imply the contradictory relation (f € C*°(M))

(v, (F)@w) = ((0) @) (FD)B) = F() (50N, ) D) = £() (v, F0w).
Finally, (4.5) turns out to be nothing but a reformulation of the range
obstruction: The element ¥ of Leoo(ar) (75 (M), D'(M)) corresponding to
v € DL(M) by (8(t),w) = (v,t ®@w) satisfies ((¢09)(?))(w,p) = (¥(f),w) =
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(v,t ® w). Hence defining 7 (v) by (4.5) corresponds to composing ¥ with ¢
from the left which is the move leading straight into the range obstruction.

These considerations show that emulating the scalar case by naive ma-
nipulation of formulae has to be abandoned. In the next section we show
how the introduction of an additional geometric structure allows one to cir-
cumvent this problem. In particular, we will arrive at a formula for the
embedding of tensor distributions ((5.3)) which allows a clear view on the
failure of (4.5) and which, in fact, provides a remedy.

5. Previewing the construction

The obstructions to a component-wise embedding of distributional tensor
fields discussed in the preceding section are essentially algebraic in nature.
However, there is also a purely geometric reason for objecting to such an ap-
proach. We illustrate this below since it points the way toward the resolution
of the problem, the basic idea going back to [44].

Let us begin by reviewing the embedding of a (regular) scalar distribution
given by a continuous function g on M (see Definition 3.2). Pick some n-
form w viewed as approximating the Dirac measure 9, around p € M. Then

(Lg)(w,p) = (g,w) = /Mg(Q)w(Q)

may be seen as collecting values of g around p and forming a smooth average
(recall that [w = 1). Now, in case v is a continuous vector field, then its
values v(q) do not lie in the same tangent space for different ¢ and there is
in general no way of defining an embedding L(l) of continuous vector fields via
an integral of the form

(5.1) ) (w.p) = /Mv<q>w<q>

since there is no way of identifying T, M and T, M for p # q.

However, this observation also points the way to the remedy: we need
some additional geometric structure providing such an identification. One
possibility would be to use a (background) connection or Riemannian met-
ric. Let p,q lie within a geodesically convex neighborhood. Then paral-
lel transport along the unique geodesic connecting p and g defines a map
A(p,q) : T,M — T,M. In principle it would be possible to employ the
shrinking supports of the smoothing kernels to extend this locally defined
“transport operator” to the whole manifold using suitable cut-off functions.
However, to avoid technicalities we have chosen to work directly with com-
pactly supported transport operators A defined as compactly supported
smooth sections of the bundle TO(M, M) = Lyxp(TM,TM) (see Ap-
pendix A), i.e., A(p,q) being a linear map T,M — T,M. This map may
be used to “gather” at p the values of v (via A(g,p)v(q)) before averaging
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them, i.e., we may set

(52) B0 )= [ Alar)@la)
with the new mechanism becoming most visible by comparing (5.1) with
(5.2).

Observe, however, the following important fact: To maintain the spirit of
the full construction, i.e., to provide a canonical embedding independent of
additional choices we have to make the elements of our basic space depend
on an additional third slot containing A. Indeed, as one can show, 1$(v) as
defined in (5.2) above depends smoothly on w,p, A. (In fact, the proof of
this statement in the general case is one of the technically most demanding
parts of this paper and will be given in Section 7.) Thus for each fixed pair
(w, A) we have that

to(v)(w, A) = [p = 15(v)(w, p, A)]
defines a smooth vector field on M. This strongly suggests that we choose

our basic space é& (M) of generalized vector fields to explicitly include de-
pendence on the transport operators, i.e.,

EL(M) := {u € C®°(Ag(M)x MxT(TO(M, M)), TM) | u(w,p, A) € T,M}.

In particular, p — t(w, p, A) is a member of X(M) for any fixed w, A. Follow-
ing this strategy of course means that one also has to allow for dependence
of scalar fields on transport operators and one must therefore upgrade the
scalar theory from the old 2-slot version as presented in Section 3 to a new
3-slot version.

Finally, we may turn to embedding general distributional vector fields. By
definition of D/§(M), v takes (finite sums of) tensors @ @ w with @ € Q' (M)
as arguments. Hence the most convenient way of defining 1}(v)(w,p, A) is
to let the prospective smooth vector field 1f(v)(w, A) act on a one-form .
In fact, we may write for continuous v

1p(v)(w, p, A) - i(p) = (1p(v)(w, A) - @) (p)
:/ A(g,p)v(q) - u(p) w(q)
M

:/ v(q) - A(g, p)™a(p) w(q)
M

= (v(.), A(.,p)*a(p) @ w(.)).
In the last expression above, we are now free to replace the regular distri-

butional vector field v by any v € D’ (l)(M ). This leads to our definition of
1
ty by

(5:3) 16(0)(w, p, A) - a(p) == (19(v)(w, A) - ) (p)

(v() A(,p)*a(p) ® w(.) ).
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Observe the shift of focus in the above formulas as compared to (5.2):
rather than thinking of the transport operator as “gathering” at p the values
of the vector field v it (more precisely, its flipped and adjoint version) serves
to “spread” the value of the “test one-form” u(p) at p to the neighboring
points q.

Connecting to Section 4 we point out that the embedding (5.3) may be
viewed as a correction of the flawed formula (4.5). Comparison reveals that
the introduction of the transport operator, i.e., the replacement of @(.) by
A(.,p)*™(p), removes both failures of (4.5): the right hand side now does
depend on p and, moreover, defines a C>°(M)-linear mapping on Q*(M).

The case of general (r, s)-tensor fields can be dealt with by using appropri-
ate tensor products of the transport operators. The details of this are given
in Section 6 on the kinematics part of our construction. In particular, this
includes the definition of a basic space for generalized tensor fields of type
(r,s) which depend on transport operators and the general definition of the
embeddings o7, of smooth and ¢ of distributional tensor fields. Furthermore
we define the pullback action as well as the Lie derivative with respect to
smooth vector fields for elements of the basic space in such a way that they
commute with the embeddings. An added complication as compared to the
scalar case is the fact that the transport operators are two-point objects
so that the action of diffeomorphisms needs to be treated with some care.
Some basic material on this topic is collected in Appendix A.

As already indicated above the proof that the embedded image ¢%(v) of a
distributional tensor field v is smooth with respect to all its three variables
(hence belongs to the basic space) is rather involved. It builds on some re-
sults on calculus in (infinite-dimensional) convenient vector spaces which are
nontrivial to derive for the following reason: We have to carefully distinguish
(and bridge the gap) between the standard locally convex topologies defined
on the respective spaces of sections and their convenient structures on which
the calculus according to [26] rests. We provide the proof of smoothness of
t5(v) in Section 7 and have deferred some useful results on the calculus to
Appendix B.

The dynamics part of our construction is carried out in Section 8. The
heart of this part is the quotient construction that allows one to identify
th(v) and ol (v) for smooth tensor fields v. The introduction of the trans-
port operator as a variable means that the “scalar” space c‘fg (M) has to
be refined as compared to £(M) from [19] by introducing a third argument.
However we can connect the present scalar theory to that in [19] by using an
appropriate reduction principle (Proposition 8.6). Since generalized tensor
fields depend on transport operators, derivatives with respect to these have
to be taken into account as well. Fortunately, due to a reduction principle
(Lemma 8.6) these derivatives decouple from the others. This fact allows to
directly utilize results from [19] without having to rework the local theory
from [17] in the present context.



154 M. GROSSER, M. KUNZINGER, R. STEINBAUER AND J. A. VICKERS

An important feature of the Colombeau algebras in the scalar case is an
equivalence relation known as “association” which coarse grains the alge-
bra. As we remarked earlier the Schwartz impossibility result means that
one cannot expect that for general continuous functions the pointwise prod-
uct commutes with the embedding. However this result is true at the level of
association. Furthermore in many situations of practical relevance elements
of the algebra are associated to conventional distributions. In applications,
this feature has the advantage that in many cases one may use the math-
ematical power of the differential algebra to perform calculations but then
use the notion of association to give a physical interpretation to the answer.
In Section 9 we extend the definition of association from the scalar to the
tensor case and show in particular that the tensor product of continuous
tensor fields commutes with the embedding at the level of association.

6. Kinematics

In this section we introduce the basic space for the forthcoming spaces
of generalized sections. We also define the embeddings of smooth and dis-
tributional sections as well as the action of diffeomorphisms and the Lie
derivative. The main result of this section is that the Lie derivative com-
mutes with the embedding of distributions already at the level of the basic
space.

We begin by collecting the ingredients for the definition of the basic space.
For the space Ay (M) we refer to Definition 3.1(i), and for details on the space
of transport operators I'(TO(M, N)) to Appendix A.

Definition 6.1. We define the space of compactly supported transport op-
erators on M by

B(M) :=To(TO(M, M)).
Elements of Ay (M) resp. B(M ) will generically be denoted by w resp. A.

Definition 6.2. The basic space for generalized sections of type (r,s) on
the manifold M is defined as

EN(M) := {u € C®(Ag(M) x M x B(M), T"M) | u(w,p, A) € (T%),M}.

Here, both Ag(M) and B(M) are equipped with their natural (LF)-
topologies in the sense of Section 2. Recall that smoothness is to be un-
derstood in the sense of [26]. In particular, u(w, A) := p — u(w,p, A) is a
member of 7 (M) for w, A fixed.

We remark that the definition aimed at in [44] used two-point tensors
(“TP”, see Appendix A) rather than transport operators (“TO”). Of course,
it is always possible to switch from the “TO-picture” to the “TP-picture”
by means of the isomorphism given in (A.2).

Next we introduce a core technical device for embedding distributional
sections of T M into the basic space.



A GLOBAL THEORY OF ALGEBRAS OF GENERALIZED FUNCTIONS. II 155

Definition 6.3. Given A € B(M) we denote by A7 (p, q) the induced linear
map from (T%),M to (T%),M, i.e., for any {, = w1 ® - - QW;RB @ - €
(T5)pM we write

(6.1)  Ai(p.q)(tp) == Alp, Qw1 ® -+~ @ A(q,p)*'B" € (T})gM.

On the fibers of the trivial bundle, A)(p, q) sends (p, A) to (¢, \) (A € R).
Obviously, for all £ € T,*(M), the map q — A(p,q) {(p) == A (p,q)((p))
again defines an element of 7,°(M), for every fixed p € M. Moreover, given
a second manifold N, it should be clear how to generalize the definition
of A? to the case of A € I'(TO(M, N)). Assigning to (¢,, A) € (T$),M x
[(TO(M, N)) the (smooth) tensor field (q — A%(p,q)t,) € T,5(N) will be
referred to as “spreading fp over N via A”. Dually, assigning to (¢,p, A) €
TJ(N) x M x T(TO(M, N)) the map q — A:(p,q)* t(q) € (T7),M (being
defined on N) will be referred to as “gathering t at p via A” (compare also
Section 5).

Definition 6.4.

(i) We define the embedding o’ : 77 (M) — E7(M) of smooth sections
of T M into the basic space £; (M) by

oL(t)(w,A) =t

s

resp.

oy (t)(w,p, A) :=t(p).

(ii) We define the embedding ¢/ : D'5(M) — E7(M) of distributional
sections of T¢M into the basic space £; (M) via its action on sections
t e Ts(M) by

(ts(v)(w, A) - D)(p) = 15(v)(w,p, A) - {(p) == (v(.), (A (p, ) E(p)) @ w ().

In contrast to the case of o7 (t) where p € M can simply be plugged into
t € T/ (M), the variable p is not a natural ingredient of the argument of
a distribution v € D',(M). Consequently, it only occurs as a parameter in
the definition of ¢ (v). Therefore, a p-free version of the definition of ¢%(v)
giving meaning directly to ¢(v)(w, A) is not feasible. On the other hand,
the occurrence of ¢ € T,*(M) in the definition of ¢%(v) is essentially due to
the fact that v requires tensors f @ w with ¢ € T,*(M) and w € Q?(M) to be
fed in as arguments. A #-free version of the definition of /7, however, is in
fact feasible, cf. Remark 7.5 below.

It is clear that o7 is linear, taking elements of é’;" (M) as values. As to
Ly, the map A7 given by equation (6.1) together with t € T;5(M) produce
a smooth section A?(p,.)t(p) of TSM, with p as parameter. Hence the
action of v on A%(p,.)t(p) ® w(.) is defined, giving a complex number de-
pending on p. Since (%(v)(w, p, A) is linear in #(p) and #(p) was arbitrary,
15 (v)(w, p, A) € (T5)p,M. To prove the fact that ¢(v) is a smooth function
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of its three arguments (in the sense of [26]), hence in fact takes values in
é;‘ (M) is more delicate and will be postponed until Section 7. Moreover,
equipping D5 (M) and £7(M) with the respective topologies of pointwise
convergence (on 7,°(M) ®ceo(nr) 2 (M) resp. on Aog(M) x M x B(M)), the
embedding ¢} is linear and bounded, hence smooth by [26, 2.11]. By the
uniform boundedness principle stated in [26, 30.3], ¢, remains smooth when
the range space is equipped with the (C)-topology as defined in Appendix
B. By similar (in fact, easier) arguments, o is smooth in the same sense.
Finally, injectivity of (% is a consequence of Theorem 8.12(iv) below. A di-
rect proof, not involving the tools of Section 8, is possible, yet for the sake
of brevity we refrain from including it.

Next we turn to the action of diffeomorphisms on the basic space and the
diffeomorphism invariance of the embedding ;. To begin with we take a look
at the transformation behavior of the map A?(p, ¢) under diffeomorphisms.
In fact, as it turns out in the context of Lie derivatives (cf. the proof of
the key Proposition 6.8 below) it is necessary to use a concept allowing for
the simultaneous action of two different diffeomorphisms at either slot of
A. This corresponds to the natural action of pairs of diffeomorphisms' on
transport operators as defined in (A.3).

So let p,v: M — N be diffeomorphisms. By equation (A.3) we have the
following induced action on the factors of A%(p,q):

6.2) ()" A)(poq) = (Tyr) o A(ulp),v(q)) o Typu
(63) ((M? V)*A) (q,p)ad = (quu,)ad o 14([1/,(q)7 y(p))ad o (pr)fl,ad,

and the action on A7 is given by

(6.4) (1, )" (A2) (P, @) = ((1,v)*A) (p, @)

Definition 6.5. Let ¢ : M — N be a diffeomorphism. We define the
induced action of p on the basic space, * : E(N) — EL (M), by

(*u)(w,p, A) = u*(U(u*w,(u,u)*A))(p)
(Tuyn ™), wlpsw, up, (1, )4 A).

It is clear that ji*u assigns a member of (T}),M to every (w,p,A). In
order to obtain ji*u € £7(M), we have to establish smoothness in (w, p, A).
Observing support properties and (2.1) it follows that the linear maps w
pxw and A — (p, ). A are bounded (equivalently, smooth, by [26, 2.11])
with respect to the (LF)-topologies. Since u and the action of Tp~! on
T7M are also smooth, we see that indeed ji*u € £7(M) holds.

To facilitate the proof of the next proposition we introduce the following

notation: For A € T(TO(M,N)), t € T,*(M), p € M denote the spreading

1ye‘c not of arbitrary diffeomorphisms of p : M7 x N1 — Ms x Na, cf. the discussion
following (A.5) and (A.8)
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q > As(p,q) t(p) of t(p) via A by 0(A,t,p) € T,°(N). It is easy to check that
for y: M — N, t€ T*(N) and A € T(TO(N, N)),
(1, )" A7) (P, @) - (0*E) () = 1" (0(A, £, 1p)) ().
Moreover, using 6 we may write for A € [;’(M )

(t5()(w, A) - 1) (p) = (v, 0(A,f,p) @w) (v eDM)).
Proposition 6.6. The action of diffeomorphisms commutes with the em-
bedding (%, that is, we have for all v € D'.(N) and all diffeomorphisms
w:M— N
(6.5) () = ().

Proof. Let y : M — N be a diffeomorphism and let v € D';(N), w €
Ao(M), Ac B(M), t € T,*(M), and p € M. Then we have

(s (w, 4) - 7) ()

= (v() )1, ) (1) (1p)) @ g ()
= (v(.), 1 (0(A,1,0)) (1) ® paw(.)
= ((1™0)(..),0(A, £, p)(-.) @ w(..))

= (o), 4) - £) ). =

Next we turn to the Lie derivative on the basic space é;"(M ). To begin
with suppose that X is a smooth and complete vector field on M so that
the flow F1¥ is defined globally on R x M. Then we may use Definition 6.5
to define the Lie derivative of u € (M) via

. d
. L = —
(6.6) XU o

7=0

In the sequel, we will write 1315 instead of (the correct) F1X, for the sake
of line spacing. For (Lxu)(w,p, A) to exist (as an element of (T%),M) it
suffices to know that 7 — (F1X)*u(w, p, A) is smooth. However, for Lxu

to exist and to be a member of £7(M) (i.e., to be a smooth function of its
arguments (w,p, A)) we even need that

(r,w,p, A) = (FIX)*u) (w,p, A) = TTFIX

T

(u((FLX) 0, FIY p, (F1Y). 4))

is smooth on (—79, +70) X Ag(M) x M x B(M) for some 79 > 0. Indeed, by
Proposition A.2 (1), (1,w) — (F1X),w and (7, A) — (F1X), A are smooth, as
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is (1,p) — Fli( p. Moreover, a local argument shows that the action of F1X
on R x T7M sending (7,v) to TTF1* v is smooth (this in fact also secures
that the assumptions of Proposition A.2 (1) are satisfied). Together with
smoothness of u, we indeed obtain Lxu € ég(M ).

Note that in order to have (FAI;).( )*u defined as a member of £ (M) even for
only one particular value of 7 we need (F1X),w, FIXp and (FI1X),A) defined
for this 7 and for all w, p, A, irrespective of the size of the supports of w and
A (as to p, we could content ourselves with some open subset of M). This
exhibits the important role of completeness of X in the geometric approach
to the Lie derivative on the basic space taken by (6.6).

As a direct consequence of (6.6) and Proposition 6.6 we have that the Lie
derivative commutes with the embedding, i.e., we have for all smooth and
complete vector fields X and all v € D' (M)

(6.7) Lx:0(v) = 5 (Lxv).

The technical background of passing from (6.5) to (6.7) again involves cal-
culus in convenient vector spaces. For v € D'5(M), 7+ (F1X)*v is smooth
and Lyv = %’0 (Fli{)*v holds with respect to the weak topology, due to
(1)(ii) of Proposition A.2. Also, Lyu = %‘0 (FAlf_()*u for u = «}(v) with
respect to the topology of pointwise convergence. Applying the chain rule
[26, 3.18] to the function 7 — (¢} o (F1X)*)v, we obtain from (6.5):

Lxif(v) = gy (FL) (L)) = gh| ((FLE) ) = (G, (FIY) ™)
= LZ(L)(’U).

For the purpose of extending the definition of the Lie derivative to ar-
bitrary smooth vector fields, by an application of the chain rule we obtain
from (6.6)

(68) (fiXU)(wapv A)
= LX(U(W, A))(p) - dlu(vav A)(LXW) - d3u(w7p¢ A)(LXA)a

where we recall from Appendix A that Lx A is an abbreviation for Lx x A.

Note that we do not need full manifold versions of local results of infinite-
dimensional calculus as, e.g., the chain rule [26, 3.18] since we can replace
Ao(M) x M x B(M) by Ago(M) x W x B(M) when dealing with local issues
on M. Here, AOO(M ) denotes the linear subspace of Q7 (M) parallel to
Ao(M) and W is (diffeomorphic to) some open subset of R™. In this way,
diu(w, p, A)(n), for example, can be interpreted locally as du(w, p, A)(7, 0,0)
in the above sense or, equivalently, as d(u" (p, A))(w)(n) where u" (p, A)(w) =
u(w,p, A).

The scalar analogue of (6.8) first appeared in the local setting of [21, Rem.
22], where it arises as an operational consequence of Jelinek’s approach; see
also the discussion of the scalar case in [38, p. 4]. Here, however, it is a direct
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consequence of our natural choice of definitions, in case X is complete. In
the general case we turn equation (6.8) into a definition.

Deﬁnitioq 6.7. Given a smooth vector field X on M we define the Lie
derivative Lx with respect to X on the basic space by

(69) (I:Xu)(wapv A)
=Ly (u(w,A))(p) — dju(w,p, A)(Lxw) — dgu(w, p, A)(Lx A).

To see that the first term on the right hand side of (6.9) actually defines
an element of £7(M) we note that by Corollary B.11 (resp. Lemma 7.2 and
Remark B.3), £7(M) is linearly isomorphic to C®(Ag(M) x B(M), T (M))
where T (M) carries the (F)-topology. Since Lx is linear and bounded
(hence smooth) on 7. (M), the map (w, A) — Lx(u(w, A)) is smooth from
Ao(M) x B(M) into 77 (M). By smoothness of w — Lyw resp. A — LxA,
also the second and the third term define members of the basic space. Note
that in the scalar case r = s = 0, the first term takes the form of a directional
derivative as well, to wit, dau(w, p, A)(X).

For complete X € X(M), also the three individual terms at the right
hand side of (6.9) arise in a geometric way: By slightly generalizing the con-
structions of F\lf and Ly for complete X we can define, for given complete
XY, Z € (M), also (FIXYZ )y :=TTF1Y_(u((F1X),w, F1Y p, (F17), 4)) and

FX*2)

IAJX7Y7Z U= %’0 *u. From this we obtain, by the chain rule,

(6.10) Lxu = Lxo0u+ Lo x0u + Loo xu.

All the smoothness arguments referring to Lx equally apply to each indi-
vidual term of this decomposition. Moreover, it is clear that the three terms
occurring on the right hand side of (6.9) correspond to LO X,0 Ly 0,05 LO 0,X,
respectively. Therefore we will retain this notation also in the case of arbi-
trary vector fields. It is immediate that (Lo _x ou)(w,p, A) = Lx (u(w, A))(p)
where Lx denotes the classical Lie derivative on 7, (M). On the other hand,
in LL x,0,0u and Lg .0,xu the p-slot is fixed and the differentiation process in-
volves only the fiber (T7),M = (R™)"** as range space. At several places it
will be important to split Ly in the way just indicated (to wit, in 6.8, 6.9,
8.13, 8.14).

In the case of an arbitrary smooth vector field X some work is needed to
prove that the embedding commutes with the Lie derivative. In Appendix A
(see (A.6) and the remark following (A.8)) we have defined the Lie derivative
of A € I'(TO(M,N)) with respect to any smooth vector fields X,Y. We
now set

Lyy Al =LyyA®- @ (A 0fl) +-- -+ A® - @ Lyy(A* o fl),

where fl denotes the flip (p,q) — (¢,p). This conforms to viewing A? as
a section of the vector bundle over M x N with fiber L((T}),M, (T;)qN)
at (p,q) and the obvious transition functions. We will use the notation
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Lx.y(A%(p,q) t(p)) rather than (the more precise) Lx y (A%(p, ¢)(prit(p,q)))
for the Lie derivative of the section (p,q) — A%(p,q)t(p) of the pullback
bundle.

Proposition 6.8. The Lie derivative commutes with the embedding (7, i.e.,
we have, for all smooth vector fields X and all v € D',(M),

(6.11) Lx:5(v) = (Lxv).

Proof. By definition we have for all w € Ag(M), p e M and A € B(M)

(6.12) (Lxt5(v)) (w,p, A) = Ly (15(0)(w, A)) (p)
—d (L;f v)) (w,p, A)(Lxw)
—d3(L v)) w,p, A)(Lx A).

We proceed by applying each term individually to ¢ € 7,*(M). We find by
the chain rule

(6.13) L (2(v)(w, 4)) () - £(7)
X (5(0) (e, 4) - )<p> (4(0)(w, LXQ
i(p) @ w()) = (), A3(p, ) Lxi(p) & w(.))

= (u(.), LX0<A <p,.>f<p>) — A3(p, ) Lxi(p)) @ w(.))
= (0(.), (Lx0A3) (b, ) E(p) ® w(.).

To see that Ly ov = v o Ly in the above calculation, set w(p,q) =
A%(p,q)t(p). Then we have w € To(M x M,pr3TsM), with w" in the
space C>(M,T,?(M)) corresponding to w according to Lemma B.9. On
To(M x M,pryTiM) flow actions (F1, F1¥)* and Lie derivatives Ly y are
defined in complete analogy to the case of transport operators (Appendix A).
Since suppw C supp A there exists 79 > 0 such that (F1X, F1I¥)*w is defined
on M x M for all 7 with |7| < 7. By Proposition A.2(2), 7 — (FIX,F1Y )*w
is smooth into I'c(M x M, pr3T;M) and Lx yw = %‘0 (F1¥, FIY) w in the
(LF)-sense. Setting Y = 0, it follows that (Lx o w)"(p) = dr|o (F1Xp) in
the (LF)-sense in (7,°)c(M). From this we finally arrive at

Lx (v(.), A7(p, ) t(p) ® w(.)) = Lx (v, 0" (p) @ w)

= L, (v, w’(FLp) ®w)
= (’U, dT‘O V( 1,,).(])) ®w>
= (v, (Lxow)’(p) ® w)

= (v(.), Lx,0o(A3(p, ) 1(p)) ® w(.)).
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For the second term on the right hand side of equation (6.12) we obtain,
using the fact that v is linear and continuous.

(6.14)
di (¢5(0)) (w, p, A)(Lixw) - E(p)
= d[w = (v(.), A3(p, ) 1(p) ® w(.))] (Lxw)
= (v(.), A7(p, ) t(p) ® Lxw(.))
= (v(.),Lox (A3 (p, ) E(p) ® w(.))) — (v(.), Lo.x (A3(p, ) E(p)) ©
—(Lxv(.), A2 (p, ) H(p) @ w()) — (v(.), (Lo.x A7) (p, ) E(p) ® w ()>
= —1(Lxv)(w,p, A) E(p) — (v(.), (Lo,x A7) (p, ) E(p) @ w(.)).

Since A — A7 is the composition of a multilinear map with the diagonal
map, the third term on the right hand side of equation (6.12) gives

(6.15) ds (15(v)) (w, p, A)(Lx,x A) - {(p)
=d[A (v(.), A (p, ) H(p) ®w(.))] (Lx,x A)
= (v(.), (Lxx(47)) (p, ) E(p) @ w(.)).
Combining equations (6.13), (6.14), and (6.15) we obtain the result. O

w

Standard operations of tensor calculus carry over to elements of c‘f;"(M )
Thus, for uy € EL (M), ug € S;’,/(M) we define the tensor product u; ® ug by
(u1 ®@ ug)(w,p, A) = (u1(w, A) @ uz(w, A))(p).

Then clearly u; ® us € E;i'g (M). Moreover, if C;: CTT(M) — TIHM) is
any contraction then for u € £ (M) we define C]Z: (u) € E71(M) by

CHH)(w. . A) = Ci(t(w, A)(p).

Contraction u; - ug of dual fields u; € £/(M) and uy € £5(M) is then
defined as a composition of the above operations. Notationally suppressing
the embedding o7, we obtain the special case u € ET(M), t € T,5(M):

(u-8)(w,p, 4) = (u(w, A) - 1) (p).

Proposition 6.9. The Lie derivative Lx acting on tensor products of arbi-
trary fields and on contractions of dual fields satisfies the Leibniz rule, i.e.,
we have

fJX(ul & UQ) = (ﬁXul) Qua +u & (I:Xuz) (u1 € g;(M), U € ég/l(M))

L (ug - ug) = (Lxwr) -ug + ug - (Lxug)  (ug € EN(M), ug € E2(M)).
Proof. We consider the three Eleﬁning terms aAdding up to Ly accord-
ing to (6.10) separately. As to Lo x o, we have Lo x 0(u1 ® u2)(w,p, A) =
Lx((u1 ® u2)(w,A))(p) = Lx(ui(w,A) ® uz(w, A))(p); for the latter the

classical Leibniz rule of course holds. Concerning Lx o, we note that the
corresponding terms are but directional derivatives of the smooth functions
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U1 ® ug resp. ui resp. us. Since the first originates from the remaining
two by composition with a bounded bilinear (equivalently, smooth, by [26,
5.5]) map the Leibniz rule holds also in this case. Mutatis mutandis, the
same arguments apply to IAJO,O, x. The proof for the contraction of dual fields
proceeds along the same lines. O

For the proof that Ly respects moderateness resp. negligibility in Section
8 we will need an explicit expression for dz((w, p, A) — Lx (u(w, A))(p))(B),
which will imply that directional derivatives with respect to slots 1 resp. 3
can be interchanged with Lie derivatives with respect to slot 2. We consider
the case of slots 2 and 3; the argument for slots 1 and 2 is similar. To
this end, let ¢ : E7(M) — C®(Ag(M) x B(M),T7(M)) denote the linear
isomorphism given by Lemma 7.2. Using ¢, the map I:O, x,0 sending u €
E(M) to (w,p, A) = Lx(u(w, 4))(p)) can be written as Lo,xo = ¢~1 o
(Lx)s 0 ¢ where (Lx).(@) := Lx o @ for @ € C(Ag(M) x B(M),Tr(M)).
Recall that (Lx), maps C®(Ag(M) x B(M),T7(M)) linearly into itself,
due to the boundedness (equivalently, smoothness) of Lx on 7. (M), with
respect to the (F)-topology.

Lemma 6.10. For B € B(M) let dg : £1(M) — ET(M) denote the direc-
tional derivative defined by (dpu)(w,p, A) = dsu(w,p, A)(B). Then for any
X € X(M),

dgo iJO,X,O = TLox00ds,
hence, neglecting ¢,

ds((w,p, 4) = Lx (u(w, 4))(p)) (B) = Lx (dau(w, A)(B))(p)-
Proof. For B € B(M) let
dp : C(Ao(M) x B(M), TJ (M)) = C>(Ao(M) x B(M), T, (M))

denote the directional derivative defined by (dpi)(w,A) = daii(w, A)(B).
We will show the following two relations:

(6.16) dp o (Lx)s = (Lx)sodp

(6.17) podp =dpode.

Transferring (6.16) by means of (6.17) and the defining relation
(618) ¢O]:O,X,O = (Lx)* O¢

from C(Ao(M) x B(M), T (M)) to £F(M) will accomplish the proof.
(6.16) is a consequence of the chain rule [26, 3.18]: For
@ € C*(Ag(M) x B(M), T] (M)),

we obtain

(dp o (Lx))(@) =dp (Lx o @) = Lx o (dg @) = ((Lix)« o dp)(@).
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(6.17), on the other hand, follows from the continuity of point evaluations
on the (F)-space 7] (M): For u € EI (M), we have

(A 6 w)(w, A)(p) = lim L[(@0)(w, 4+ 7B) = (4u)(w, A)] (¢)
= lim L [(pu)(w, A+ 7B)(p) - (#0)(w, A)p)]

T—0

= (dB u)(vav A)
= (¢ dpu)(w, A)(p).

Note that the first limit above is in the (F)-space 7] (M) while the second
one refers to Euclidean topology in (T%),M = (R"™)"*5. O

Remark 6.11. To conclude this section we mention without proof some
further properties of &£ .

(i) Since elements of flo(M ) and B (M) are compactly supported, there
is an obvious notion of restriction of any u € £7(M) to open subsets
of M.

(i) For any v € D',,(M), ¢"(v) vanishes on the same open subsets of M
as v does, hence supp ¢} (v) is well-defined and equals supp v.

(iii) For coverings U of M directed by inclusion (Uy, Uz € U = 3Us €
U, Us O Uy UUs) the usual sheaf properties hold for é’g A local
geometrical definition of the Lie derivative on £7(M) with respect
to arbitrary smooth vector fields can be based on this.

7. Smoothness of embedded distributions

The seemingly innocuous statement of ¢ (v) being smooth is, in fact, a
deep result involving the entire range of results assembled in Appendix B.
The difficulties in proving it reflect the interplay between the apparatus
of (smooth as well as distributional) differential geometry and calculus on
(infinite-dimensional) locally convex spaces. Observe that in the scalar case
treated in [19], the question of smoothness of ¢(v) (for v € D'(M)) reduces
to the trivial statement that ¢(v) = v o pr, being linear and continuous
(hence bounded), is smooth on Ag(M) x M.

The main difficulty becomes clear from the fact that ¢ has to bridge the
“topology gap” between two worlds: Its argument v € D', (M) relates to the
domain of linear spaces carrying (F)- resp. (LF)-topologies and their dual
spaces whereas the relevant results on the basic space 7(M) (of which o/ (v)
is a member) hold with respect to the canonical convenient vector space
topology on spaces of smooth functions denoted by the term (C)-topology
in the sequel (cf. [26]).

One crucial step of the proof consists in getting a handle on the parame-
trized tensor field 0(A,#,p) : ¢ — A3(p,q) t(p) occurring in the definition of
1", the spreading of #(p) (over M) via A (cf. Section 6). Recall that § has
already been used in the proof of Proposition 6.6. Proving the smoothness
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of O(A,t,p) as a function of its three arguments will be accomplished by
Lemmata B.7 resp. B.8 and Corollary B.10 of Appendix B, providing the
necessary information on spaces of sections of vector bundles over (possibly
infinite-dimensional) manifolds. For decomposing 6 into manageable parts,
we introduce the following terminology:
e For manifolds B’ (possibly infinite-dimensional), B, a smooth map
f: B' — B and a vector bundle E = B let f*E denote the pullback
bundle of E under f (cf. Appendix A and the discussion following
Remark B.8). We define the pullback operator f* : I'(B,E) —
['(B', f*E) as follows: For u € I'(B, E) given, the pair (idg/,u o f)
induces the smooth section f*u: B' — f*E, f*u=pw— (p,u(f(p)))
of f*F
e For formalizing the spreading process based on the action of a trans-
port operator on tangent vectors we introduce the operator

evg : D(TO(M, N)) x D(pr(TM)) — T(pr3(TN))
by defining, for (p,q) € M x N,

(eva(A, &) (p.a) = ((p.q) , Alp.a)&(p,q))

where A € T'(TO(M, N)) and £ € T'(pr’(TM)) is of the form (p, q) —
((p,q),&(p, q)). By ev we denote the obvious extension of ev} to the
(s,)-case, with A® acting fiberwise on a section & € I'(priTsM).

e For manifolds M, N and a vector bundle E 5 N, we define the
operator ev : I'(M x N, pryE) x M — T'(N, E) by ev(u,p)(q) :=
pry’ (u(p, q)) where pry’ : priE — E denotes the canonical projection
of the pullback bundle priE (cf. Appendix A).

With this notational machinery available, we are able to factorize 6 as
(7.1) 0(A,1,p) = A (p,.) t(p) = &v(ev) (A, prit), p).

Proposition 7.1 (Smoothness of i (v)). For any v € D',(M) the function

"(v) introduced in Definition 6.4(ii) is smooth, hence a member of ET(M).

s

In addition to employing the factorization (7.1), the proof of Proposition
7.1 is based upon an equivalent representation of the basic space £ (M) as
a space of smooth four-slot functions taking w,p, A,t as arguments. The
benefit of such a representation should be clear from Definition 6.4. We
abbreviate the property of being “C°°(M)-linear in the k-th slot” as being
“Cp-linear”.

Lemma 7.2. The basic space é;(M) has the following equivalent represen-
tations which are mutually isomorphic as linear spaces:
(0) {u € C®(Ao(M) x M x B(M), TsM) | u(w,p, A) € (T5),M}
(1) T(Ag(M) x M x B(M), pr3T; M)
(2) CO"(Ao( ) x B(M), TJ'(M))
(3) {u e C®(Ag(M) x B(M), C®°(T,#(M),C>(M))) | u(w, A) Cy-linear}
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(4)
()

{u e COO(.,{lO(M) X Z’S’(M)Ax TE(M) x M, R)|u Cs-linear}
{u € C®(Ao(M) x M x B(M),C>®(T (M),R))|u(w,p, A) C1-linear}.

The relations between corresponding elements t' from space (i), respectively,
of the above list are given by

((w,p, A), u(w, p, A)) = ul! (w, p, A)
ul(w, p, A) = ul(w, A)(p)
u(w, A) - T = P (w, ) (@)

ull(w, A)(#)(p) = ul(w, A, 1, p) = ulN(w, p, A)(7)

where w € Ag(M), pe M, Ae B(M) and t € T5(M).
Remark 7.3.

(i)

(i)

(iii)

Note that, even for finite-dimensional M, (1) requires a theory of
vector bundles over infinite-dimensional smooth manifolds (in fact,
over Ag(M) x M x B(M) in the case at hand); see the remarks
preceding Lemma B.9 in Appendix B.
In order to give meaning to the various notions of smoothness oc-
curring in (0)—(5) of the preceding lemma, we have to specify ap-
propriate locally convex topologies resp. bornologies on the spaces
involved. To this end, we equip Ag(M) and B(M) with their respec-
tive (LF)-topologies and 7,°(M) with its usual (F)-topology (recall
our convention stated in Section 2 for M non-separable). On the
other hand, whenever a space of smooth functions such as C*>(., ..)
or TJ (M) appears at the second slot of some C*(...,....) it carries
the locally convex topology (C) defined in Appendix B. This is in-
dispensable for legitimizing the applications of [26, 27.17] resp. of
Lemma B.9 which are to follow. Whenever an explicit declaration
of the topology in question is needed we will use subscripts as, e.g.,
in C*°(M) p resp. C*(M).
In (4), Cs-linearity (resp. Ci-linearity in (5)), in fact, are to be un-
derstood as
resp. u(w, A, f-t,p) == u(w, A, t,p) - f(p)

u(w,p,A)(f ' f) = u(w,p, A)(ﬂ ' f(p)
with f € C>°(M), in order to guarantee compatibility with (3) which,
in turn could also be written as

C(Ao(M) x B(M) , L (1) (T (M), C(M)))

where Lgm(M)(., .) denotes the subspace of C*°(.,.) of C*>°(M )-linear
bounded (hence smooth, cf. [26, 2.11]) functions. [26, 5.3] shows
that this does not cause any ambiguity to the meaning of a sub-
set of LZOO(M) (T,5(M),C>*(M)) being (C)-bounded and, hence, of a
mapping into that space being smooth.
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(iv) (0) is precisely the expression for £7(M) given in Definition 6.2;
(2) corresponds to writing u(w, A)(p) = u(w,p, A), introduced after
Definition 6.2. As to the other items, cf. Remark 7.4.

Proof of Lemma 7.2. The form of the pullback bundle pr5T? M occurring
in (1) shows that its smooth sections are precisely given by maps as in (0)
(compare also the discussion preceding Corollary B.10), the correspondence
being as stated in the lemma. The equality of (1) and (2) as well as the
relation u(w,p, 4) = ((w,p, A),ul(w, A)(p)) are immediate from Lem-
ma B.9. Moving on to (2)-(5), it is clear from the given relations that
passing from ull to it resp. vice versa yields maps having appropriate
domains, ranges (disregarding smoothness) and algebraic properties for the
cases i = 3,4. From [26, 27.17] we conclude that u¥ is smooth if and
only if ub! is smooth and takes smooth functions on 7,*(M) as values on
triples (w,p, A), due to ul® = (u¥)Y in the terminology of [26, 3.12], with
respect to the variable t getting separated from the variables w,p, 4. A
twofold application of the same argument achieves the transfer of smoothness
between ul3 and w4,

It remains to discuss ¢ = 2. Observe that the assignment t — (£ +— t - £)
embeds 7] (M) into the space of C°>°(M)-linear bounded (hence smooth)
maps from 7,*(M)p into C>°(M) . (C) being weaker than the (F)-topology
on C*(M), we obtain smoothness from 7.°(M)r into C*(M), as required
for (3). Now we have the chain of inclusions

T3 (M) € Lgwo () (T2 (M), C(M) ) € Leoe (ar) (7,7 (M), € (M),

where Leoo(pr)(.,.) denotes the respective space of all C*°(M)-linear maps.
T, (M) being isomorphic to Leeo(ar)(7,°(M),C>(M)) via the assignment
specified above, all three spaces in the chain are, in fact, identical. Moreover,
by Theorem B.5 of Appendix B, the corresponding (C)-topologies on 7. (M)
and LZOO(M) (T,2(M),C>*(M)) have the same bounded sets, showing that also

the spaces given by (2) and (3) are identical. O

Remark 7.4. Observe that each of (0)—(5) serves a distinct yet prominent
purpose: (0) was used in introducing the basic space (cf. Definition 6.2),
with a view to representing best the intuitive picture of a (representative
of a) generalized tensor field as a section of T, M depending on additional
parameters w, A. The drawback of (0) consists in the fact that the range
space T7M is not a linear space, hence C*(Ag(M) x M x B(M), T7M) is
not a (convenient) vector space. Making up for this deficiency, (1) opens the
gates to applying the apparatus of infinite dimensional differential geometry
as provided by [26, Sec. 27-30]. In particular, it paves the way to (2)—(5):
(2) is optimal for defining o by o%(t)(w, A) :=t (cf. Definition 6.4(i)). (3)
provides the crucial intermediate step bringing £ into play. Concerning an
explicit definition of ¢}, (0)—(2) are flawed by not providing a slot for inserting
t. Among (3)-(5), (5) (which, indeed, was used in (ii) of Definition 6.4)
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seems to be the optimal choice due to having w, p, A as primary arguments
and t to be acted upon, yet also (3) and (4) are capable of doing the job.
As to proving smoothness of ¢;(v), finally, (0) resp. (1) resp. (4) are to be
preferred, relying exclusively on the well-known (F)- resp. (LF)-topologies.
Altogether, for establishing smoothness of ¢, (v), (4) turns out to be the best
choice.

Now, having Lemma 7.2 at our disposal, we shall demonstrate that ¢} (v)
is smooth.

Proof of Proposition 7.1. By Lemma 7.2 it suffices to show that for v €
D' (M), "(v) is a member of (4) as defined in Lemma 7.2. The crucial step
of the proof consists in establishing 0 : (A,#,p) — (¢ — A3(p,q) t(p)) to be
smooth as a map 60 : B(M)pr x T5(M)p x M — T,(M)p. Once this has
been achieved, it suffices to note that the bilinear map

TH(M)p x QM) 3 (fw) =t @ w € (TH(M) ®coo(ary (M) 17

is bounded, hence smooth (which is immediate from an inspection of the
seminorms defining the (F)- resp. (LF)-topologies on section spaces of vector
bundles, cf. (2.1)) to conclude, finally, that

()W w, A p) = (v,0(A,T,p) @ w)

is a smooth function on Ag(M)p x B(M)pp x T5(M)p x M, due to the
continuity (hence boundedness, hence smoothness) of v.
To see the smoothness of 6§, we write, using (7.1),

0(A,t,p) =ev(evy(A,prit), p).

By Lemmata B.7 and B.8 we obtain continuity (hence boundedness resp.

smoothness) of (A4,t) — (A, prit) — evi(A,prit) with respect to the (LF)-
resp. (F)-topologies, while Corollary B.10 yields smoothness of (evs (A, prit),
p) > ev(evi(A, prit), p) = 0(A, 1, p) with respect to the (C)-topologies on the
section spaces. (C) being weaker than (F), we can combine both smoothness
statements to obtain the smoothness of 6 with respect to the (C)-topology
on the target space 7,°(M). Finally, Corollary B.2 permits us to replace the

(C)-topology on 7,°(M) by the (F)-topology. O

Remark 7.5. Based upon a modification of the map 8 employed above, it
is possible to arrive at a definition of the embedding ¢} : D'5(M) — E7(M)
not explicitly containing ¢ € 7,°(M): Using results of [15], every distribution
v € D',(M) can be represented as a bounded resp. continuous C*°(M)-linear
map vV from Q7(M) into T5(M)’, the topological dual of the (F)-space
T,°(M). The relation between v and vV is given by v(f ® w) = (v¥(w), ),
for w € QP(M) and t € T,*(M). Introducing the spreading operator spr :
B(M) x M — LY(T(M), T (M)) by

spr(A, p)(t) == 0(A,1,p)
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we obtain ¢! (v)(w, p, A) = vV (w) ospr(A, p) (where /’(v) is to be understood
as ¢/(v)P)). Smoothness of spr follows from smoothness of @ (cf. the proof
of Proposition 7.1) via the exponential law in [26, 27.17].

8. Dynamics

We now turn to the analytic core of our approach: the quotient construc-
tion of tensor algebras of generalized functions displaying maximal compat-
ibility properties with respect to smooth and distributional tensor fields. As
in the scalar case ([19], see Section 3) our approach is based on singling
out subspaces of moderate resp. negligible maps in the basic space é; (M)
by requiring asymptotic estimates of the derivatives of representatives when
evaluated along smoothing kernels (Definition 3.4). We thereby adhere to
the basic strategy ([17, Ch. 9]) of separating the basic definitions (the kine-
matics, in our current terminology) from the testing (of the asymptotic
estimates underlying the quotient construction of the space of generalized
tensor fields, or, for short, the dynamics). Since the representatives of gen-
eralized tensors depend not only on points p € M and n-forms w as in the
scalar case [19] but also on transport operators A, a new feature of the
following construction is that derivatives with respect to A will have to be
taken into account as well.

The notion of the core of a transport operator plays an important role in
our construction (in particular, in Lemma 8.6 below and its applications).
In what follows, for any U C M, U° denotes the interior of U.

Definition 8.1. For any transport operator A € B(M ) we define the core
of A by

core(A) :={p € M | A(p,p) = idz,m }°.

Remark 8.2. Given K CC M there always exists some A € B(M) with
K C core(A). Clearly such an A can be obtained by gluing together local
identity matrices. For a more geometrical approach, choose any Riemannian
metric g on M and denote by r(p) the injectivity radius at p with respect to
g- On the open neighborhood W := {(p,q) | ¢ € B,(,)(p)} of the diagonal
in M x M we define a transport operator A’ by letting A’(p, q) be parallel
transport along the unique radial geodesic in B, (p) from p to q. Now
choose some x € D(W) with x(p,p) = 1 for all p in a neighborhood of K.
Then we may set A := yA'.

Definition 8.3. For A € B(M) we define the kernel of A by
ker(A) := {p € M | A(p,p) = 0}.
If U C M we set
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Note that for any A € B(M), LxA e Bcore(A)(M) (which will be used in
Lemma 8.13). Based on these notions we are now ready to introduce the
basic building blocks of our construction:

Definition 8.4. An element u € é;(M ) is called moderate if it satisfies the
following asymptotic estimates:

VK cC M VA € B(M) with K CC core(A)
Vj € NVB,...,Bj € Beore(a)(M)
VIl € Ng AN € No VX1,...,X; € X(M) V& € Ay(M),

sup ILx, ... Ly, (&u(®. »,p, A)(By, . .., Bj)|ln = O(e™N) (e = 0).
pe

The space of moderate tensor fields is denoted by (£7)u (M).

In this definition, || ||, denotes the norm induced on the fibers of T%M
by any Riemannian metric (changing h does not affect the asymptotic esti-

mates). In the case r = s =0, || ||, is to be replaced by the absolute value
in R.

Definition 8.5. An element u € (£7),(M) is called negligible if
VK cC M VA € B(M) with K CC core(A)
Vj € NVB,...,Bj € Beore(a)(M)
Vi€ No Vm € Ng 3k € Ng VX1,..., X; € X(M) Vo € A, (M),

sup ILx, ... Ly, (du(®. 5, p, A) (B, ..., Bj)|lh = 0E™) (¢ —0).
peE

The space of negligible tensor fields is denoted by N7 (M).

The Lie derivatives in the asymptotic estimates in Definitions 8.4 and
8.5 are to be understood as Ly, ...Lx, acting on the smooth section p —
diu(®. p, p, A)(By, ..., Bj) of the vector bundle T, M. The fact that the B;
in Definitions 8.4 and 8.5 are supposed to belong to Bcore( 4)(M) signifies
their role as “tangent vectors” when differentiating with respect to A.

Our first aim is to explore the relation between the spaces of scalars
(EQm(M), NO(M) and their counterparts &y, (M) and N (M) from Defini-
tion 3.5. The following basic lemma introduces a reduction principle that
will be referred to repeatedly in what follows.

Lemma 8.6 (Reduction). Let u € E)(M). Then for each j € Ny and each
(A, By, ..., Bj) € B(M)*!, the map

(w,p) = Bu(w,p, A)(B, ..., B))

is a member of E(M). It is also an element of &(core(A)), when restricted
accordingly.
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Moreover, u € (ég)m(M) if and only if for all j € Ny, for all A € B(M) and
all By, ..., Bj € Begre(a)(M) we have

(w,p) — déu(w,p, A)(By,...,B;) € En(core(A)).
Analogous statements hold for NO(M) and N'(M).

Proof. This is immediate by inspecting Definitions 8.4, 8.5 above and the
corresponding Definitions 3.5(i) and (ii). O

As a first consequence we retain the important fact that negligibility for
elements of (£3)m(M) can be characterized without resorting to derivatives
with respect to slots 1 and 2:

Corollary 8.7. Let u € (£)m(M). Then u € NQ(M) if and only if

VK cC M VA € B(M) with K CC core(A)

Vj € NVBi, ..., Bj € Beore(a)

Vm € Ny 3k € Ny V& e A, (M),

sup [du(Pep.p, A)(Br... By)lla = OE™) (== 0)
Proof. This follows from Lemma 8.6 and [19, Cor. 4.5]. O

Next, in order to exploit these relations also for general r and s, we

introduce a “saturation principle” which characterizes moderateness and

negligibility of general tensor fields in terms of scalar fields obtained by
saturating (r, s)-tensor fields with dual (smooth) (s,r)-fields.

Proposition 8.8 (Saturation). Let u € £7(M). The following are equiva-
lent:

0 we @),
(i) For allt € T(M), u-t € (£J)m(M).
An analogous statement holds for NT(M) and N§(M).

Proof. It will suffice to prove the equivalence in the moderateness case.

(i)=(ii): Given u € (EN)wm(M) and T € T(M), let K CC core(A), A €
B(M), 1, j € No, and By,...,B; € Beore(a)(M). Let X1,...,X; € X(M),
® € Ag(M). Then

Lx, ...Lx,d&[(u - )(®:p, p, A)|(B1, - .., B;)
is a sum of terms of the form

Lx, - -Lx, du(®cp,p, A)(B1,...,B;) Lx,  ...Lx, ip).

k41
N

i1
Here (on K) the first factor is bounded by some ™, and the second is
bounded independently of €.

(ii)=(i): By induction over [, we deduce the following from (ii): For

given € T,(M), A € B(M) such that K CC core(4) and By,...,B; €
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~

Beore(a) (M), as well as | € Ny there exists some N (depending on t) such
that for all Xy,...,X; € X(M)

(81) s ‘ (Lx, ... Lx,du(®c p,p, A)(By, ..., By)) - E(p)] = 0(=N).
P

Indeed, for [ = 0 the assertion is immediate from (ii) and induction proceeds
by the Leibniz rule. We now note that in order to establish moderateness
of u, we may additionally suppose in the above that K is contained in
some chart neighborhood U. Choose some x € D(U) which equals 1 in a
neighborhood of K and let {f; | 1 < i < n"**} be a local basis of 7,5(U).
Then inserting each #; into (8.1) and choosing the maximum of the resulting

powers ¢ Vi, we obtain the desired moderateness estimate for v on K. O

The above saturation principle allows one to extend the validity of Corol-
lary 8.7 to general tensor fields:

Theorem 8.9. Let u € (EM)w(M). Then u e N7(M) if and only if

VK cC M YA € B(M) with K CC core(A)
Vj € NVBi,...,B; € Beore(ay(M)
Vm € Ny 3k € Ny V& € A,(M),

sSup Hd%u(q)&p,p, A)(Bla cee 7Bj)||h = O(gm) (5 - 0)

peEK
Proof. Suppose that u € (£7)nm(M) satisfies the above condition. By
Proposition 8.8, for all £ € T,5(M), u -1 is a member of (£J)m(M) and satis-
fies the negligibility estimates of order zero specified in Corollary 8.7. It is
therefore in Ng(M ) and the claim follows again from Proposition 8.8. [

The following result gives a local characterization of moderateness and
negligibility.

Proposition 8.10. Let u € é';’(M) and let U be an open cover of M. The
following are equivalent:

(i) u € (EDm(M). )
(ii) VU e UVK CC U VA € B(M) with K C core(A) Vj, IVB1,...,B; €
Bcore(A)(M) AN VXy,...,. X € X(U) VO € Ay(U):

sup ILx, ... Lyx,dju(®.p, p, A)(Bi, ..., Bj)|ln = O(e™Y) (e > 0).
peE

An analogous result holds for the estimates defining N;(M)

Proof. Again it will suffice to carry out the proof in the moderateness case.
(1)=(ii): Using suitable cut-off functions we may extend the X; to global
vector fields X; on M which coincide with X; on a neighborhood of K
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(1 < i < 1). Moreover, given ® € Ay(U), we pick any ¥ € Ag(M) and
X € D(U) with x =1 in a neighborhood of K, and set

®(e,p) == x(p)®(e,p) + (1 — x(p)¥(e,p).

Then ® € Ay(M) and ®(e,p) = ®(e, p) for all p in a neighborhood of K and
all € € (0,1]. The moderateness estimate of u with respect to K, X1,..., X
and ® then establishes (ii).

(i)=(i): Let K cC M, A € B(M), K C core(A), j, I, and By,...,B; €
l”;’core( 4)(M) be given. Without loss of generality we may suppose that K CC
U for some U € U. For this set of data we obtain N from (ii). Taking
X1,...,X; € X(M), we set X; :== X;|y for 1 < i < 1. Let ® € Ag(M).
Our aim is to construct ® € Ay(U) such that ®(e,p) = P(e,p) for p in
a neighborhood of K and e sufficiently small. Thus let W be a relatively
compact neighborhood of K in U and choose x € D(M) with suppyx C U
and y = 1 on W. Since ® is a smoothing kernel (Definition 3.4) there exist
C, &0 > 0 such that for all p € supp x and all & < &y we have supp ®(e, p) C
B.c(p) CU. Choose A € C®°(R, I) such that A = 1 on (—o00,£0/3] and A =0
on [g9/2, 00). Finally, pick any ®; € Ay(U) and set

d:IxU— Ay(M)
®(e,p) := (1 = x(P)A(€))1(e, p) + X (P)A(€)P(e, D).
It is then easily checked that in fact ® € Ag(U) and that for p € W and
e < £0/3 we have ®(¢,p) = ®(e,p). Thus the moderateness test (ii) with
data K, A, j, 1, By,...,Bj, X1,...,X; and ® gives the desired (£7)(M)-

estimate for the same data set, yet with Xq,..., X;, ® replacing X1, ..., X,
D, O

Remark 8.11. Note that in the previous result, the transport operators
employed in the local tests on the open sets U are supposed to be global
operators, defined on all of M. Nevertheless, if ¢/ is directed by inclusion as
in Remark 6.11(iii), then

u € (Em(M) & uly € (€])m(U) VU €U,
and analogously for NZ .

We are now in a position to establish the main properties of the embed-
dings ¢ and ol (cf. Definition 6.4). The following result corresponds to
(T1) in the general scheme of construction introduced in [17, Ch. 3].

Theorem 8.12.

(iv) If v e D'o(M) and % (v) EJ\A}’”(M), then v = 0.
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Proof. (i) Let v € D',(M). By saturation (Proposition 8.8) it suffices to
show that for each i € T,5(M), t2(v) - T € (£)m(M). In order to verify the
moderateness estimates from Definition 8.4, we first consider the case j =0
and [ = 1. For this, we have

Lx (¢5(v)(®(c, ). p, 4) - ()
=Lx (v, A%(p, .) {(p) ® ®(e,p)(.))
= (v, Lx (A5 (p, - ) {(p)) @ @(e,p)(. )+ (v, AX(p, .) 1(p) @ Lx,0® (e, p)(.))-

Here we are viewing ®(g,p)(.) as a smooth function of (p,.) on M x M
(legitimized by Lemma B.9), enabling us to apply L ¢ similar to the case of
AS(p, .)t(p) (cf. the proof of Proposition 6.8). The transition from Ly ov to
voLx g in the preceding calculation has been argued in detail in the proof
of Proposition 6.8. Note that L’y and Lx introduced in equations (7) resp.
(8) of [19] correspond to Ly ¢ resp. Lo x in the present setting.

For K CC M given, let K1 be some compact neighborhood of K. Since v
is a continuous linear form on 7,7 (M) ®ceo (ar) 2 (M), the seminorm estimate

for v on K7 shows that there exist smooth vector fields Yj(i) (i=1,...,k;
j=1,...,m;) and some C > 0 such that for any w € 7,°(M) ® Q2 (M) with
supp(w) C K7 we have

|<’U,’U)>| < C 'Inan ||LY1(7,') ce Lyrsf)wHoo

i=1,...,

For obtaining the moderateness estimates, it suffices to consider a single
term ||Ly, ... Ly, w||co. If € is sufficiently small, the arguments of v in the
expression above for Lx (:%(v)(®(e,p), p, A) - t(p)) both have support in K
with respect to (.). Furthermore, we obtain from the defining properties
of smoothing kernels (cf. Definition 3.4) that the supremum over p € K
of the first term is of order e~"~™. For the second, rewriting Lx o = L’y
as Lx,x — Lo,x (corresponding to (Lx + L'y) — Lx in [19]), we obtain an
estimate of order e ™ ™~!. Higher order Lie derivatives Lx,...Lx, can
clearly be treated in the same way, yielding estimates of order e "~™!
as can derivatives with respect to A: As a formal calculation shows, the
latter do not influence the order of € since only the boundedness of A and
By, ..., Bj on Kj is used. For interchanging the action of v with directional
derivatives dp in direction B with respect to A, we note that for p fixed, the
map ¢ : A — (A%(p,.) i(p)) ®w(.) is smooth from B(M) into T (M) ®coo (M)
QU (M) with respect to the respective (LF)-topologies, as is, by definition,
the linear map v. Hence by [26, 3.18], dp(v, ¢(A)) = (v,dp¢p(A)), and the
claim follows.

(ii) Since for t € T (M), ol(t)(w,p, A) = t(p) it is immediate that the
(E7)m-estimates hold for ¢” () on any compact set, with N = 0.
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(iii) Let t € T7(M), K cC M, A € B(M), K C core(A), and ® € Ag(M).
Then for any ¢ € 7,°(M) and any p € K

[(oF — D) (1) (®(e,p), A) - T](p) = (t- 1) (p) — /Mt(Q)A?(p, q) t(p)®(e, p)(q) dg.

By Proposition 8.8 and Corollary 8.7 it suffices to show the negligibility
estimates for this difference and its derivatives with respect to A. To this end

we introduce the notation fy,(q) := t(q)As(p, ¢)t(p). Then f € C*(M x M)
and the above expression reads

(82)  folp) - /M fo(@)® (. p) () dg = /Mup(p) — £o(@)®(e.p)(q) da.

Lemma 3.6 now yields that (8.2) vanishes of order e™*!, uniformly for p € K,
for ® € A,,(M). Next, we consider derivatives of (o —.%)(t) with respect to
A. Since o} (t) does not depend on A we have to show that all A-derivatives of
15 (t) of order greater or equal one are negligible. To fix ideas we first consider
the special case r =1, s = 0. Then for A, B € B(M) and i € T (M)

(i) @) AB)-10) = [ Ha)- BYp.0) 0) B(e.p) o) o
Now for B € Bcore(A)(M) and p € K CC core(A), B(p,p) = 0, so again
Lemma 3.6 gives the desired estimate. For general values of r and s, since
A — A7 is the composition of a multilinear map with the diagonal map, we
obtain a sum of terms each of which has the form

/ £o(@)®(e.p)(q) dg
M

with f smooth and f,(p) = 0 for all p, so the claim follows by a third appeal
to Lemma 3.6.

(iv) The (rather lengthy) direct proof would proceed along the lines of
proof of Proposition 9.10 (the latter actually making a stronger statement
than (iv) does). To minimize redundancy, we confine ourselves to noting
that (iv) follows from Proposition 9.10, via Proposition 8.8 and Corollary
8.7 (with m = 1). O

Our next aim is to establish stability of (7)), (M) and N7 (M) under the
Lie derivatives Lx from Definition 6.7. Again we first consider the case
r=s=0

Lemma 8.13. Let X € X(M) and u € (£9)m(M) resp. u € NY(M). Then
also Lxu € (EQ)m(M) resp. Lxu € NO(M).

Proof. The proof will be achieved by reduction (Lemma 8.6) to the setting
of [19]. Recall from Definition 6.7 that

(Lxu)(w,p, A) = Lx (u(w, A))(p) — dyu(w, p, A)(Lxw) — dzu(w, p, A)(Lx A).



A GLOBAL THEORY OF ALGEBRAS OF GENERALIZED FUNCTIONS. II 175

Since Ly A € Bcore( A)(M) for any A € B(M), the moderateness (resp. negli-
gibility) estimates for IAJO’(), XU, i.e., for dsu(w, p, A)(Lx A) follow directly from
the definitions. In order to show moderateness resp. negligibility of f407 X,0 U+
I;X7070 u, i.e., of ug := (w,p, A) — Lx(u(w, A))(p) — diu(w,p, A)(Lxw) we
employ Lemma 8.6. Fix j € Ng, A € B(M) and By, ... ,Bj € Bcore(A)(M).
Then

(8.3) dbug(w,p, A)(Bi,...,B;) =
Lx[d}u(w, A)(Bi, ..., Bj)|(p) — di[du(w, p, A)(By, . .., Bj)|(Lxw).

In fact, we may interchange ds with d; due to symmetry of higher differ-
entials ([26, 5.11]). Concerning d3 and Lx we can either use Lemma 6.10
or note that due to r = s = 0 the term Ly (u(w, A))(p) can be written as
dou(w, p, A)(X) which again permits to resort to symmetry of higher differ-

entials. (8.3) is precisely the Lie derivative in the sense of [19, Def. 3.8] of
the map (w,p) — dbu(w,p, A)(Bi,...,B;), hence is in &y (core(A)) (resp.

~

N (core(A))) by [19, Th. 4.6]. Again by Lemma 8.6, the claim follows. [

Theorem 8.14. (£7) (M) and NT(M) are stable under Lie derivatives Lx
where X € X(M).

Proof. It will suffice to treat the case of moderateness. Thus let u €
(EN)m(M) and X € X(M). Picking any  from 7,;*(M), saturation (Proposi-
tion 8.8) yields u-f € (£§)m(M). By Lemma 8.13, also Ly (u-f) € (£9)m(M).
However, Ly (u-1) = (Lxu)-i+u-(Lxt) due to Proposition 6.9. The second
term being a member of ()., (M), again by Proposition 8.8, we infer that
(ﬁ xu)-tis moderate. Since { was arbitrary, a third appeal to Proposition 8.8
establishes the moderateness of L. X U. O
Thus we finally arrive at:

Definition 8.15. The space of generalized (r, s)-tensor fields is defined as
GL(M) := (ED)m(M)/NT (M).

G7(M) is both a C>°(M)- and a G(M)-module. For u € (E7)m(M) we
denote by [u] its equivalence class in G7(M). We note that the scalar space
G(M) from Definition 3.5 is injectively contained in G§(M). From Theo-
rem 8.12 it follows that 7 and o” induce maps from D’ (M) resp. T, (M)
into G7(M). These maps will be denoted by the same letters. We collect
the main properties of G7(M) in the following result.

Theorem 8.16. The map
vf: DI(M) = GL(M)
is a linear embedding whose restriction to T, (M) coincides with

o T (M) = GL(M).
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For any smooth vector field X on M, the Lie derivative
Lx:GL(M) — Gi(M)
Lx(lu]) = [Lxu]
is a well-defined operation commuting with the embedding, i.e., for any v €
D'(M), v5(Lxv) = Lx5(v).

Proof. All the claimed properties of ¢ and o follow from Theorem 8.12.
Lx is well-defined by Theorem 8.14. Finally, that Lie derivatives commute
with the embedding was already established in Proposition 6.8. O

Summing up, we obtain the following commutative diagram:

Lx

T (M) Tg (M)
& Ps

o D'L(M) D'i(M) oy

. / fy .

G (M) Go(M).

As was highlighted in Section 4, the properties included in this diagram
are optimal in light of Schwartz’ impossibility result.

To extend these results to the universal tensor algebra over M, we first
note that

(EDm(M) ® (€7 )m(M) € (EL77)m(M)
(E)m(M) & N/ (M) € NFL (M),
Thus we obtain the algebra 7z (M) := €D, (E7)m(M) containing the ideal
T (M) := @, NI (M).

Definition 8.17. The universal algebra of generalized tensor fields is defined
as

To(M) =T, (M)/ Ty (M) = @ (EDm(M) /N7 (M @gr

The operations of tensor product, contraction and Lie derivative with
respect to smooth vector fields naturally extend to 7'g(M ) and we have, by
Proposition 6.9,

fJX(Ul X UQ) = (]:Xul) X ug +ur X (ﬂxug).

Furthermore, the embeddings vy and o extend to Tp/ (M) := @, , D's(M)
resp. T(M) =D, , T, (M). We will denote the respective maps by ¢ resp.
. From Theorem 8.16 we obtain:
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Corollary 8.18. The mapping
L:Tpr (M) — 7;;(M)

is a linear embedding whose restriction to T (M) coincides with the algebra
homomorphism

o:T(M) = Tg(M),
thereby rendering T (M) a subalgebra of Tg(M). For any smooth vector field
X on M, the Lie derwatives Lx : To(M) — Tg(M) resp. Lx : T(M) —
T (M) intertwine with the embedding ¢.

To conclude this section, we give the following characterization of G7 (M)
as a C>°(M )-module.

Theorem 8.19. The following chain of C*°(M)-module isomorphisms holds:
GL(M) = GJ(M) @coo(ar) Ty (M) 2 Lese (ary (T (M), G (M)).

Proof. The C*>°(M)-module 7. (M) is projective and finitely generated (cf.
[14, 2.23], applied to each connected (hence second countable) component
of M). Thus by [2, Ch. II, §4, 2], it follows that

Leso(ar) (T2 (M), G (M) = GJ(M) ®ceo(ar) Lo (ar) (T2 (M), C(M))
= GO(M) ®coe(ary Ty (M).

We establish the theorem by showing G7 (M) = Leoo (ar) (7,7 (M), GY(M)). By
the exponential law in [26, 27.17], it is immediate from Lemma 7.2(4) (or
(3)) that

ET(M) 2 Lo 31y (T (M), €% (Ao (M) x B(M), C(M)))
= Lo ) (T7 (M), E2(0)).

holds. Here, the boundedness assumption in the last term can be formally
dropped, i.e., LZO@( M) can safely be replaced by L¢eo(pr): Since all the spaces
involved are convenient, a C*°(M)-linear map F : T,°(M) — EJ(M) is
bounded if and only if for all w € Ag(M), A € B(M), the maps F,, 4 :
t = F(t)(w, A) (for t € T,(M)) are bounded, due to the uniform bound-
edness principle [26, 5.26]. Being a member of Leeo(ap) (7,7 (M), C*°(M)),
however, the map F,, 4 is of the form ¢ + ¢ - for some ¢t € 7,"(M) and thus
even continuous with respect to the Fréchet topologies. Using saturation
(Proposition 8.8), it is straightforward to check that

EL(M) = Leoo () (T2 (M), £9(M)

induces an isomorphism from G’ (M) onto Leoo (ar)(T,5 (M) GY(M)), thereby
finishing the proof. O
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9. Association

In all versions of Colombeau’s construction the Schwartz impossibility re-
sult is circumvented by introducing a very narrow concept of equality, more
precisely, by introducing a very strict equivalence relation on the space of
moderate elements. In particular, this equivalence is finer than distribu-
tional equality. Nevertheless, raising the latter to the level of the algebra by
introducing an equivalence relation called association one can take advan-
tage of using both notions of equality in the so-called “coupled calculus”.
For example, tensor products of continuous or C*-fields are not preserved
in the algebra 7; in the sense that the embedding is not a homomorphism
with respect to the tensor product. It will, however, turn out to to be a
homomorphism at the level of association.

In many situations of practical relevance, elements of the algebra are
associated to distributions. This feature has the advantage that often one
may use the mathematical power of the differential algebra to perform the
calculations but then invoke the notion of association to give a physical
interpretation to the result obtained. This is especially useful when it comes
to modelling source terms in nonlinear partial differential equations and,
consequently, one often wants to consider such equations in the sense of
association rather than equality (cf., e.g., [7, 34]). One of the applications we
have in mind is Einstein’s equations where we seek generalized metrics which
have an Einstein tensor associated to a distributional energy-momentum
tensor representing, e.g., a cosmic string or a shell of matter (cf. [3, 42, 39]
and the references therein).

In this section we introduce an appropriate concept of association for
generalized tensor fields.

Note that as an exception to our standard notation, in this section we will
use capitals for generalized scalar and tensor fields. This will permit us to
distinguish notationally between elements u1, uy etc. of (£7)m(M) and their
respective classes Uy = [uy], Us = [ug] ete. in G7(M). We start by briefly
considering the scalar case (touched upon in [19]).

Definition 9.1. We say that a generalized scalar field F = [f] € G(M) is
associated with 0 (denoted F' = 0), if for some (and hence any) representa-
tive f € Em(M) of F and for each w € Q7(M) there exists some m > 0 such
that V& € A,, (M)

lim [ f(®(e,p),p)w(p) = 0.
E—> M

We say that two generalized functions F, G are associated and write F' ~ G
if F—G=0.

At the level of association we regain the usual results for multiplication
of distributions ([19, Prop. 6.2]).
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Proposition 9.2.
(i) If f € C>°(M) and v € D'(M) then
(f)e(v) = o(fo).
(ii) If f,g € C(M) then
u(felg) =~ u(fg)-

It is also useful to introduce the concept of associated distribution or
“distributional shadow” of a generalized function.

Definition 9.3. We say that F' € G(M) admits v € D'(M) as an associated
distribution if F' =~ «(v).

The notion of associated distribution can be expressed through the fol-
lowing concept of convergence.

Definition 9.4. We say that F € G(M) converges weakly to v € D'(M),

D'(M X
and write F 2, 4 if for some (hence any) representative f € &y, (M) of

F and for each w € Q7(M) there exists some m > 0 so that Y® € A,, (M)

hm/f (6.0, P)o(p) = (v,0).

e—0

In fact the following proposition states that weak convergence to v is
equivalent to having v as an associated distribution.

Proposition 9.5. An element F = [f] of G(M) possesses v € D'(M) as an

associated distribution if and only if F L) .

The proof of Proposition 9.5 is a slimmed-down version of that of Propo-
sition 9.10, compare Corollary 9.11. Note that not all generalized functions
have a distributional shadow. However, if v € D'(M) and ¢(v) ~ 0 then
v = 0, so that provided the distributional shadow exists it is unique.

We now extend this circle of ideas to the tensor case. We start by defining
association for generalized tensor fields.

Definition 9.6. A generalized tensor field U = [u] € G7(M) is called asso-
ciated with 0, U = 0, if for one (hence any) representative u, we have:

Vw e (M) YA € B(M) Vi € TF(M) Im > 0Y® € A, (M),
tim [ u(®(,p).p, A) E(p) (p) = 0.
Uy, Us € ,C’;;"(M) are called associated, Uy ~ Us, if U; — Uy = 0.

Definition 9.7. A generalized tensor field U € G7(M) is said to admit
v € D'5(M) as an associated distribution and v is called the distributional
shadow of U, if U ~ 1}(v).

Employing the localization techniques from the proof of Proposition 8.10
we obtain:
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Lemma 9.8. The following statements are equivalent for any U = [u] €
Gr(M):
(i) U~ 0 in GI(M).
(i) V&€ T (M), U-E=0 in GJ(M).
(iii) VIV C M open: Yw € QW) VA € B(M) Vi € TF(W) Im > 0 :
Vo € A, (W),

lim [ w(®(e,p),p, A)#(p) w(p) = 0.

e—0

Definition 9.9. We say that a generalized tensor field U € ,C’;;'(M ) con-

D' (M
verges weakly to v € D', (M), and write U DM, 4 if for some (hence any)

representative u € (1) (M) of U we have
Vw € QH(M) YA € B(M) Vi e T5(M) 3Im > 0Yd € A, (M),
lim [ u(@(e,p), . 4) 1) wlp) = (v, 7@ ).

In the proof of the following result we will make use of a refined version
of (the technical core of) Theorem 16.5 of [17]: For W an open subset of
R™ let ¢ : D(C I x W) — R denote a smooth function in the sense of (5)
and (6) of [19] (with the range space Ap(R™) resp. D(R™) replaced by R).
Moreover, let K, L be compact subsets of W such that K cC L cC W and
(0,e0) x L is contained in the interior of D. Finally, let ¢ > 0, n > 0. If
sup,ey e(e,2)] = O(g9) then it follows that sup,ej |0%c(e,z)] = O(e97)
for every 8 € Ny . This can be established along the lines of the proof of
Theorem 16.5 of [17].

Proposition 9.10. Let v € D'y(M), firn > 0. Then
(9.1) Vw e Q(M) VA € B(M) Vi e TP (M) Y® € Ay (M),

/Li(v)@(ap),p, A)t(p)w(p) — (v, @w) = O(E™ 1) (¢ —0).

For m = 0, the estimate even holds with O(e). In particular, i}(v) satisfies
the conditions of Definition 9.9 with m = 0, so

T

th(v) B .

Proof. Let w, A, t and ® be given. Since both sides of (9.1) are linear in
w we may assume that suppw CC W where (W, 1)) is a chart on M. Let us
fix compact subsets L', L of W with suppw cC L' cc L cc W. We may
suppose without loss of generality that the images of W, L', L under v are
balls in R™. By the defining properties of a smoothing kernel there exists
g0 > 0 such that for e < g and p € L’ we have supp ®(e,p) CC L. Thus
we may further assume without loss of generality that also suppv CC W.
Passing to coordinates we may therefore suppose that W is an (open) ball in
R", with ¢ and A defined on W resp. W x W and w, v compactly supported in
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W. Finally, by Lemma 4.2 of [19], the place of ® is taken by e™"¢(e, z)(¥=F)
where ¢ € Cp%, (1 x W, Aop(R™)) is defined by

$le,z)(y) d"y = " (V™) @(e, 9™ (2)))(ey + ).

Writing z, y for p, g and ¢ d"x for w, we obtain that for € < g9, the expression
[ h(0)(@(e,p), p, A)t(p)w(p) — (v,t @ w) locally takes the form

S

[ (o). 43w i) 0(e,0) (52) Yola) '~ (o). F)ew)
= <v(y),/ (A%(y — ez, )ty — e2)p(y — e2)e(e,y — £2)(2)

- A W)Wl n)(2) '),

Since ¢ : (0,g9) x (L')® = Ap(R") is smooth with supp ¢(e,z)(-Z*) C L
for all ,2 and the evaluation map ev : Ag(R"™) x R®™ — R is smooth by
26, 3.13 (i)], the expression J(z,y) := Af(z, y)i(x)e "d(e, x)(X=5)p(z) rep-
resents a member of D(R™ x R”)"HS (for € < gp) with supp J C supp ¢ x L.
Therefore, the combined action of v and integration with respect to x can
be viewed as the action of the distribution 1(x) ® v(y) on J, allowing to in-
terchange v with the integral. Since ¢ € Aq%,w(W) by Lemma 4.2(A) of [19],
we have supgey |c(e,€)| = O™ for c(e,2) == [, dle, 2)(2)2% A"z
and 1 < o] < m. From the analogue of Theorem 16.5 of [17] discussed
above we infer, for every 5 € N,

sup |07c(e, §)| = sup / 0Pp(e,6)(2)2* d"z| = O(g™FHlol=m),

3% geL

Now, applying Taylor expansion of order m to every tensor component of
Ve(2,y) == ALy — e2,y) ty — e2)p(y—e2)d(e, y — £2)(2)
— Ay, YY) e(y)d(e, y)(2)

and integrating with respect to z we obtain estimates of order e™*1=7 for
the terms of the Taylor polynomials and of order ™! for the respective
remainder terms, uniformly for y € L’. For m = 0, the Taylor expansions
consist of the remainder terms solely, allowing overall estimates even by
g™+l Moreover, 9-(z,y) vanishes for y ¢ L’. On the basis of analogous

asymptotics for f(?yﬁwa(z, y) d"z it follows that e~ (1= . [4_(z,y)d"z is
bounded in D(R™)™ ™. Altogether, we obtain (v(.), [ ¥e(z,.)d"z) being of
order ™17 resp. e™*! (for m = 0), thereby establishing our claim. O
Corollary 9.11. An element U of G'(M) possesses v € D''(M) as an
associated distribution if and only if U B .

It follows from Corollary 9.11 and Proposition 9.10 that the distributional
shadow of a generalized tensor field is unique (if it exists).
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For continuous tensor fields we obtain stronger (locally uniform) conver-
gence properties:

Proposition 9.12. Let t be a continuous (r, s)-tensor field on M. Then

VK cC M VA e B(M) Vi € TF(M) Y& € Ay(M),
lim sup |25 ()(®(e, p), p, A)t(p) — t(p) - {(p)| = 0.

e—0 peK
As a consequence of this result and the proof of Proposition 9.10 we obtain
compatibility of the embedding ¢ with the standard products on C x C and
C*> x D' in the sense of association:

Corollary 9.13.
(i) Lett € T/*, v € D'2. Then (51 (t) @ 112 (v) ~ 1 (t @ v).

s1 7 T2+52
(ii) Let ty, to be continuous tensor fields of order (ri,s1) resp. (ra, s2).

Then (71 (t1) ® 12 (t2) ~ 2 15 (11 @ ta).

T2+52

Remark 9.14. Guided by the notion of convergence given in Proposi-
tion 9.12, we may introduce the concept of C%-association: U = [u] € G (M)
is called C%-associated with 0, U = 0, if for one (hence any) representative
u, we have:

VK cC M YA€ B(M)Vie T(M) Im >0V e A, (M),

lim sup |u(®(e, p), p, A)t(p)| = 0.

U, Uy € G'(M) are called C-associated, Uy ~o Us, if U — Uy =~ 0.
Moreover, for ¢ a continuous (r, s)-tensor field we write U =~ t if U = 15 (t).

Analogously we may introduce the concept of CF-association by con-
sidering C*-convergence instead of C’-convergence in the above definition
(k € Ng). With this notion, Corollary 9.13(ii) can be strengthened: if ¢1, to
are C*-tensor fields then ¢[! (t1) @ 122 (t2) ~, (i 151 (¢ ® t2). In fact, for any
CF-(r, s)-tensor field t, (7 (t) ~ t.

Appendix A. Transport operators and two-point tensors

In this appendix we collect the main definitions, notations and properties
of transport operators resp. two-point tensors.
Let M, N be smooth paracompact Hausdorff manifolds of (finite) dimen-
sions n and m, respectively. We consider the vector bundle
TO(M,N) :=Lyxny(TM,TN) := U {(p,q)} x L(T,M,TyN)
(p,g)EM XN

of transport operators on M x N. For charts

(U’sz(xl,__"xn))’ (V7¢=(y17---7il/m))7
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of M resp. N, a typical vector bundle chart (or vb-chart, for short) of
TO(M, N) is given by

Uy | {0} x L(TM, TyN) = o(U) x (V) x R™"
(p,q)€UXV

(2 q), A) = ((2(p), (), (dy' (A0s,))is)

Setting 91 := w9 0 gpfl and analogously for 1, the transition functions for
TO(M, N) are given by

Uy 0 UL ((2,9), ) = ((p21(2), 21 (), DYoo (y) - @ - Depan () 1) .

Elements of I'(TO(M, N)), i.e., smooth sections of TO(M, N), are also called
transport operators.

Alternatively, transport operators can be viewed as sections of a suitable
pullback bundle. To fix notations (following [11]), let E = B be a vector
bundle, B’ a manifold and f : B’ — B a smooth map. We denote by
E' = f*(FE) the pullback bundle of E under f. The total space of f*(E)
is the closed submanifold B’ xg E := {(V/,e) e B'x E | f(V) =7(e)} of
B’ x E, and the projection is ' = pri|p/x g, i.e., we have the following
diagram, where f’ := pry|p/« 4B

gL F

3 &

B/TB'

If (x=1(U), ) is a vb-chart for E with ¥ = (e — (TM(b), ¥ (ey))) and
if (V, ) is a chart in B’ such that V N f~1(U) # 0, then

exp U (VI (U) = o(V) xRN

(V€)= (), ¥ (e))
is a typical vb-chart for f*(F). To obtain the explicit form of the transition
functions of f*(E), let @1 := @2 0 ;' be a change of charts in B’ and
Uyo Ut (2,8) = (\Iféll) (z), \Ifgl) (z) - &) a change of vb-charts in E. Then the
corresponding change of vb-charts in f*(F) is given by

(p2 x5 W2) 0 (o1 x5 ¥1) (@', m) = (o (), W5 (W] 0 o 7 (")) - ):
For the particular case where f is of the form pr, : M x N — N for
manifolds M, N and a vector bundle E = N, there is a simplified way of
representing pri E as a vector bundle over M x N (a similar statement being
true for f = pr; and a vector bundle £ 5 M) which we will use freely
wherever convenient: Namely, pryE can be realized in this case as the (full)
product manifold M x E (rather than as (M x N) xy E), with projection
idy X 7 (p,v) = (p,m(v)).
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Now for M, N as above and pr; and pr, the projection maps of M x N
onto M resp. N, we apply the above constructions to obtain the bundle

TP(M,N) := (pri(T*M) @ pry(TN), M x N, mg)

of two-point tensors on M x N.
Sections of TP(M, N') will also be called two-point tensors. Note that any
element of I'(TP(M, N)) is a finite sum of sections of the form

(A1) (p,q) = f(p,q) n(p) ®&(q)

where n € QY(M), £ € X(N) and f € C*°(M x N). We will call two-point
tensors of this form generic.

We will use the following notation for the obvious connection between
transport operators and two-point tensors: For V, W finite dimensional
vector spaces we have the canonical isomorphism

o V'eW — L(V,W)

(@@w)e(v) = (a,v)w
which induces a strong vb-isomorphism (in the sense of [14, ch. II, §1])
(A.2) o : TP(M, N) — TO(M, N).

For a two-point tensor Y € I'(TP(M, N)) we denote by Y4 the correspond-
ing transport operator in I'(TO(M, N)). Viewing transport operators as
two-point tensors (as was done in [44]) has some advantages when doing ex-
plicit calculations (cf., e.g., the formula for the Lie derivative (A.7) below).
Moreover, we note that TP(M, N) is canonically isomorphic to the first jet
bundle J'(M, N) (cf. [25, 12.9]). TP(M, N) also appears as the particular
case T*M X TN of the so-called external tensor product E X F of vector
bundles E — M, F' — N in [14, Ch. II, Problem 4].

Given diffeomorphisms p : M7 — Ms and v : N1 — Na, we have a natural
pullback action

(,v)* : T(TO(Mz, N3)) — I'(TO(M1, N1)),
given (for a transport operator A € I'(TO(Ma, N2))) by
(A.3) (1, 1)*A)(p,@) = (Tqr) ™" 0 A(ul(p), ¥(q)) © Typr.
Similarly, we obtain a natural pullback action

(u,v)* : T(TP(Ma, Na)) — I'(TP (M, N1)),
defined on generic two-point tensors by
(A.4) ()" (fn® &) (p,q)

= (1(p), (@) (Tp) ™ (n(1(p))) @ (Tqr) "' (E(v(9)))

=((, )" f)(p, Y n(p) @ v*¢(q).

In case My = Ms, N1 = Ny and p = v we simply write p* instead of (u, p)*.
Note, however, that this special case is not sufficient for the purpose of this
article, cf. the respective remark preceding Definition 6.5.
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As can easily be checked, these pullback actions commute with the iso-
morphism (A.2): for any T € I'(TP(Ma, N2)) we have

(A5) (1,0)"(Ta) = (11,0)* D).

Although TO(M,N) is a vector bundle over M x N, it is important
to note that an arbitrary diffeomorphism p : M; x N1 — My x Ny does
not, in general, induce a natural pullback action p* : T'(TO(Ma, N2)) —
I'(TO(Mj, N1)) which reduces to (A.3) for the particular case p = p X v as
above. For a counterexample, consider the flip operator fl : M xN — N x M.
An analogous statement holds for the case of two-point tensors. This is the
reason why we use the notation (u,r)* for the above actions rather than
(1 x v)*, which would give the wrong impression of being the composition of
X v with the (non-existent) pullback operation for general diffeomorphisms
alluded to above. This underlines that TP and TO have to be treated as
genuine bifunctors and cannot be factorized via (M, N) — M x N composed
with a single-argument functor.

Before introducing the Lie derivative of transport operators let us recollect
some basic facts on the Lie derivative of smooth sections of a vector bundle
E over M with respect to a smooth vector field X € X(M).

Following [25, 6.14-15], we assume that a functor F' is given, assign-
ing a vector bundle F'(M) over M to every manifold M of dimension n.
Moreover, to every local diffeomorphism p : M — N, the functor F' as-
signs a vector bundle homomorphism F(u) : F(M) — F(N) over u, acting
as a linear isomorphism on each fiber. Given an arbitrary smooth vector
field X € X(M), we assume that the local action (7,v) — F(FIX)v is a
smooth function of (7,v), mapping some (—7y, +79) x F(M)|y into F(M),
where 79 > 0, U is an open subset of M and Flf_( : (=710, +70) X U — M.
Then for n € T'(F(M)), we define the pullback of 5 under F1¥ locally by
(F1X)*n := F(F1X)) o n o FIX. (F1X)*n being smooth on (-7, +79) x U,
we set (Lxn)(p) := (%—‘0 ((F1X)*n)(p). Smoothness in 7 (for p fixed) yields
existence of (Lxn)(p) while smoothness in (7,p) yields smoothness of the
local section Lxn of F/(M)|y. The family of all such local sections consis-
tently defines Lxn € I'(F(M)). All the preceding applies, in particular, to
F(M) :=T:M and F(M) := \" T*M.

In the following, we fix M and write E for F(M).

Remark A.1. Under specific assumptions, we can say more about the ac-
tion of flows resp. about Lie derivatives:

(i) If X is complete, we can take U = M in the above which renders
FIX, F(FIX) and (F1X)*5 (smooth and) defined globally on R x M
resp. R X E resp. R x I'(E). In this case, %[(Flf)*n — 1] tends to
Lxn as 7 — 0 in the linear space I'(E') with respect to the topology
of pointwise convergence on M.

(ii) If suppn is compact there exists 7y such that a local version of
(F1X)*n can be extended from (—79,4+79) x U to (=79, +710) x M
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by values 0. In this case, %[(Fli()*n — 1] tends to Lxn as 7 — 0
in the linear space I'c(E) with respect to the topology of pointwise
convergence on M.

In the sequel, T'(F) and T'¢(F) will always be equipped with the (F)- resp.
the (LF)-topology. The following Proposition strengthens the statements of
the preceding remark, making essential use of calculus in convenient vector
spaces (cf. Appendix B).

Proposition A.2. Let F' be a functor as specified above and let X € X(M).

(1) Assume X to be complete. Then:
() (1,m) — (FIX)*n is smooth from R x T'(E) into I'(E).
(ii) (7,w) — (FIX)*w is smooth from R x To(E) into T(E).
(ii) Lxn = lli)r(l) L(F1X)*n — ) in T(E), for every n € T(E).

(2) Let X be arbitrary, K CC M and 7o > 0 such that (F1X)*w is defined
for allw € T'¢ g (E) and all || < 19. Then:
(i) (r,w) = (FIX)*w is smooth from (—79,+70) % Tex(E) into
I'.(E).
(ii) Lxw = 71_1_)1% L(FIY)*w — w] in To(E), for every w € T g (E).

|T|<70

Proof. (1) (r,1,p) — n(F1Xp) = ev(n, F1Xp) is smooth, due to smoothness
of FI¥ and of ev : T'(E) x M — FE (the latter follows from the definition
of the (C)-topology on spaces of smooth sections, cf. [26, 30.1]). By our
assumptions on F, also ¢ : (7,n,p) — F(FX n(F1Xp) = ((FIX)*n)(p) is
smooth; ¢ can be viewed as a section of the vector bundle pril'(E) over
R x '(E) x M. Applying Corollary B.11 we obtain that ¢ is a smooth map
from RxT'(F) into I'(E), which is (i). (iii) now follows immediately by fixing
n. In order to establish (ii), replace n € I'(E) by w € I'c(E) in the proof of
(i), yielding smoothness of (7,w) + (F1X¥)*w into I'(E). Since F1* maps each
set of the form [—7p, +70] x K (with K CC M) onto some compact subset L
of M we see that ¢V ([—79, +70] X I'c k (E)) is contained in ¢ ,(E). A slight
generalization of [18, Th. 2.2.1] establishes smoothness of ¢" as a map from
RxT(F) into I'.(E). (An alternative argument completing the proof of (ii)
exploits linearity in w by passing to ¢¥" : I'c g (E) — C*((—70, +70), Lc(E))
via the exponential law from [26, 27.17]).

(2) The proof of (i) is similar to the proof of (ii) of part (1): Just replace
R by (=70, +70) and I'c(E) by I'c x(E) in the domain of the respective maps
(note that 79 depends on K, forcing us to restrict statements (i) and (ii) to
the subspace I'c x(E) of I'.(E)). (ii) again follows from (i). O

As the respective proofs show, “local” variants of (1)(i) and (1)(iii) of the
preceding result hold for arbitrary vector fields X, in the following sense:
Denoting by U, the (open) set {p € M | FIX(p) and FI*_(p) are defined},
the map (7,71) — (F1X)*n is smooth from (—7y, +79) x I'(E) into L(Elu,,)
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and Lxn exists as the respective limit in I'(E |UT0)7 both for 7y small enough
as to make U,, nonempty. However, there is no local variant of (1)(ii)
as a map from, say, (=70, +70) x Ic(E) into I'c(Ely,, ): For (FIX)*w to
have compact support in Uy, for all |7| < 79 we would have to assume
suppw € (7)<r F1X(U,,) which excludes (=79, +70) x T'c(FE) as domain of
the map envisaged above.

We will express statements (1)(iii) and (2)(ii) of Proposition A.2 by saying
that Lxn exists in the (F)-sense resp. that Lxw exists in the (LF)-sense.

Turning now to the definition of the Lie derivative for transport oper-
ators and two-point tensors we have to extend the setting of [25], capa-
ble of handling only single argument functors F' as outlined above, to bi-
functors G (such as TP and TO), assigning a vector bundle G(M, N) over
M x N to each pair M, N of manifolds and a vector bundle isomorphism
G(p,v) : G(M1,N1) — G(Msy, Na) over pu X v to every pair of local diffeo-
morphisms p : My — Moy, v : N1 — Na. Mutatis mutandis, all statements
of Remark A.1 and Proposition A.2 remain valid for bifunctors of that type.
Thus, let X € X(M), Y € X(N) be complete vector fields with flows FI¥
and F1¥, respectively. We then define the Lie derivative by differentiating
at 0 the pullback (under the flow of (X,Y")) of any given transport operator
A eT(TO(M,N)):

d .
(A.6) LxyA(p,q) = —| (FI,FI7) A(p,q).
=0

Analogously, for T = fn ® £ a generic element of I'(TP(M, N)) we set

LxyT(pa) = |y (FLXFI)*Y(p,q)
(A7) = (Lxof + Loy f)(p,q) n(p) ®&(q)
+f(p, 0)(Lxn(p) ® £(q) + n(p) ® Ly&(q)).
From (A.5), we obtain for any T € I'(TP(M, N)):

(A.8) Lxy(Ye) = (LxyY)e.

Resuming the discussion of the pullback action of pairs of diffeomorphism
started after (A.5) we see that also in order to implement a geometric ap-
proach to Lie derivatives via pullback action of flows, definitions (A.6) and
(A.7) had to be based on pairs of flows (FI1X, F1Y) on M resp. N rather than
on the flow of some single vector field Z on M x N. This is emphasized by
our notation Lx y rather than Lxxy, reflecting the fact that it is precisely
the vector fields of the form Z = (X,Y) from the subspace X(M)® X(N) of
X(M x N) that induce a pullback action and a Lie derivative on (sections
of) the bundle functors TO and TP. In this sense, our concept of Lie deriv-
ative is, in fact, a proper extension resp. refinement of the usual setting as
presented, e.g., in [25] where only single-argument (vector bundle valued)
functors are considered.
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Appendix B. Auxiliary results from calculus in convenient
vector spaces

The notion of a smooth curve ¢ : R — E where E is some locally convex
space is unambiguous. The space C®(R, F) of smooth curves in E will
always carry the topology of uniform convergence on compact intervals in
all derivatives separately. For locally convex spaces F/, F', amap f: E — F
is defined to be smooth if ¢ — f o ¢ takes smooth curves in E to smooth
curves in F. This notion of smoothness depends only on the respective
families of bounded sets, i.e., if the topologies of £ and F are changed in
such a way that in each space the family of bounded subsets is preserved
then the space C*°(E, F') of smooth mappings from E to F remains the
same ([26, 1.8]). As a rule, we endow C*°(E, F) with the “(C)-topology”
(“C” standing for “curve” resp. “C” resp. “convenient”), defined as the
initial (locally convex) topology with respect to the family of all mappings
¢ C®(E,F) = C®(R,F), for c € C*(R, E) ([26, 3.11]). The evaluation
map ev : C*(E,F) x E — F sending (f,z) to f(z) is smooth by [26, 3.13
(1)]. Consequently, evy : C*(E,F) > f+ f(x) € F is (linear and) smooth
(equivalently, bounded, due to [26, 2.11]) for every fixed z € E.

In the above, E can be replaced by some open (even ¢*-open, cf. [26,
2.12]) subset U of E resp. by some smooth and smoothly Hausdorff (cf. [26,
p. 265]) manifold M modelled over convenient vector spaces ([26, 27.17]; as
to the evaluation map, see the proof of Lemma B.9).

There are many equivalent ways how to define a convenient vector space,
cf. [26, 2.14, Th.]. We will use condition (6) of this theorem saying that a
locally convex space E is convenient if for each bounded absolutely convex
closed subset B, the normed space (Ep,pp) is complete. Every sequentially
complete locally convex vector space is convenient ([26, 2.2]); all the spaces
considered in this article are sequentially complete.

Note that, in general, smooth maps are not necessarily continuous. If,
however, E is metrizable then any f € C*°(E, F) is continuous, due to [26,
4.11, 2.12, and p. §].

If F and F have the property that smooth maps f : £ — F map compact
sets to bounded sets (in particular, if E is metrizable or an (LF)-space),
there is a second natural locally convex topology on C*(E, F') which will
be called (D)-topology: This is the topology of convergence of differentials
(hence “D”) of all orders I (separately), uniformly on sets of the form K x B!
where K is a compact and B a bounded subset of E. By the chain rule
([26, 3.18]), the (D)-topology is finer than the (C)-topology. In fact, even on
C*(R% R), an inspection of the form of the respective typical neighborhoods
of 0 reveals (D) to be strictly finer than (C). However, Theorem B.1 below
shows that (D) and (C) have the same bounded sets if F is an (F)-space or an
(LF)-space. Therefore, the notion of smoothness on C*°(E, F') with respect
to both topologies is the same in that case. On C®(R, E), the (D)-topology
coincides with the usual (F)-topology.
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For the proof of the theorem below, note the following: Calling a sequence
xn — x in a topological vector space fast converging if for each | € N, the
sequence n'(x, — ) tends to 0, then every convergent sequence in a metriz-
able topological vector space or an (LF)-space possesses a fast converging
subsequence. To see this, let (Vi)x be a decreasing neighborhood base of 0
consisting of circled sets and choose nx € N monotonically increasing such
that (v, — ) € k7kV;.

Theorem B.1. Let E be an (F)-space or an (LF)-space and F be an ar-
bitrary locally convex space. Then every (C)-bounded subset of C*°(E, F) is
(D)-bounded, hence (C) and (D) have the same bounded sets.

Proof. Let B be bounded with respect to the (C)-topology, i.e.,

Ve e C* (R, E) VKy CC R VI € Ny,
{(foe)D(r) |1 € Ky, fe B} is bounded in F.

Assume, by way of contradiction, B not to be bounded with respect to (D),
ie.,

JdK cC E 3D (bounded C F) 3l € Ny :
{dlf(p)(w,...,w) | f€ B, pe K, we D} is unbounded in F.

Here, we have already used polarization as, e.g., in [26, 7.13 (1)], to obtain
equal vector arguments (w, ..., w). Fix K, D,[ as above. By the preceding,
we can choose sequences fi € B, pr € K, wi € D such that

(B.1) ﬁdlfk(pk)(wk,...,wk) 50 (k= oo).

By passing to suitable subsequences we can assume that there is p € K such
that py, — p fast as k — oo. (Note that if F' is an (LF)-space, we are working
within one fixed Fréchet subspace of E, due to K and D being bounded.)
Setting v, := k~Fwj, we obtain v, — 0 fast, due to D being bounded. Now,
by [26, 2.10], there are a smoothly parametrized polygon ¢ : R — FE and
numbers 7, — 0 in R such that ¢(7x + 7) = pr + Ty, for 7 € (=0, +%), for
suitable 0, € (0,1) .

Recalling that B is (C)-bounded, choose a compact interval Ky CC R
containing all intervals (7, — 0, 7k + 0) and take [ and ¢ as above. Then
we conclude that {(f oc)V(r) |7 € Ko, f € B} is bounded in F. Defining
yr = (fr 0 )W (1) = d'fu(pr)(vk, - .., vz), we therefore have k=g, — 0.
Consequently,

1 1
m d fk(pk)(wk, ce ,wk) = m Y — 0,

contradicting (B.1). O

Note that the preceding theorem remains valid for C*°(U, F') where U is
an open subset of the (F)- resp. (LF)-space E: The relevant part of the
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polygon ¢ constructed in the proof can be assumed to be contained in some
given absolutely convex neighborhood of p.

In order to carry over Theorem B.1 to spaces I'(M, E) of smooth sections
of vector bundles E = M, we need a suitable notion of (C)-topology on
section spaces I'(M, E), E having some convenient vector space Z as typical
fiber. It certainly would be tempting to proceed as follows ([26, p. 294]):
For any local trivialization (U, %) on E 5 M (¥ : 77U — U x Z) and
uwe (M, E), let U(u) € C™(U, Z) be given by

U(u) := pryo ¥o (u|y).

Now we could define the (C)-topology on I'(M, E) as the initial topology
with respect to the family of all maps {¥, | o € A} : T(M, E) — C>®(U,, Z)
where {(U,,¥,) | @ € A} is any vector bundle atlas? for E = M. Here,
C>®(Uy, Z), in turn, carries the (C)-topology in the sense of [26, 27.17]. This
construction, however, does depend on the atlas used: Already for the trivial
bundle R x Z with atlas {idrxz}, the (C)-topology on I'(R,R x Z) would
become strictly finer by adjoining the local trivialization idg x ¢ where ¢
is a discontinuous bornological isomorphism of Z. It is not hard to see
that the (C)-topology, as defined above, does not depend on the atlas if Z
is barreled and bornological. Thus, we could either accept this additional
condition or define the (C)-topology via the maximal vector bundle atlas.
For the present purposes, however, only the family of (C)-bounded subsets
is relevant which, fortunately, is independent of the atlas: It suffices to
note that for w € C*(Uyg, Z), the “change of vector bundle chart” w —
ev o (1ag X w) o A (where A : Uy, NUg =: Uy — Uyp x Uyp denotes the
diagonal map and 5 : Usg — GL(Z) the transition functions) is linear
and smooth by [26, 3.13 (1)(6)(7)], hence bounded (this substantiates and
extends the respective remarks preceding the proposition in [26, p. 294]).

Corollary B.2. Let E 5 M be a vector bundle over M (with dim M and
dim E finite). Then a subset of I'(M, E) is (C)-bounded if and only if it is
(F)-bounded.

Proof. We may assume that every local trivialization (U,, ¥,) as above is
defined over some chart (U, o) of M. Let B denote a subset of I'(M, E).
Then the following statements are equivalent (o € A as above):
(i) B is (C)-bounded.
(ii) @ ( ) is (C)-bounded in C**(Uy, Z), for every .
(iil) (¢5 ) a(B) is (C)-bounded in C*(¢o(Uy), Z), for every a.
(iv) (71 *Wo(B) is (D)-bounded in C® (o (Uy), Z), for every a.
(v) All seminorms generating the (F)-topology on I'(M, E) (cf. (2.1))
are bounded on B.

2The term vector bundle atlas denotes a compatible family {(Ua, V) | a € A} of local
trivializations on E = M with U Ua =M
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(vi) B is (F)-bounded.
The equivalences of (i)—(iv) are immediate from the definition of the (C)-
topologies on I'(M, E), resp. on C*°(U,, Z), resp. from Theorem B.1, in turn
(note that ¢, (U,) is an open subset of the (F)-space R¥™ M) Taking into
account ((¢5")* 0 Wa)(u) = pryoWao(uly,)ovy = (¥ao(uly,)ova )i,
(2.1) yields (iv)<(v). (v)<(vi), finally, holds by definition. O

Remark B.3. Corollary B.2 shows, in particular, that smoothness of mem-
bers of (2) resp. (3) in Lemma 7.2 is not affected by replacing the (C)- by
the (F)-topology on 7. (M) resp. on C*°(M). Due to Theorem B.1, a similar
statement is true for the (C)- and the (D)-topologies on C*°(7,*(M),C>(M))
resp. on C*(7.°(M),R) in (3) resp. (5) of Lemma 7.2, provided that M is
separable, hence 7,°(M) is an (F)-space.

In the proof of the following theorem, two applications of the uniform
boundedness principle as formulated in condition (2) of [26, 5.22] will occur.
One of the assumptions of this principle is that for the set B(C E) to be
demonstrated as being bounded, the normed subspace Ep = |J,,nB of £
(cf. [36, p. 63]) has to be a Banach space with respect to the Minkowski
functional pp of B. Lemma B.4 below makes sure that this condition is
available when needed below.

Lemma B.4. Let E, F be vector spaces, F (with A from some index set)
locally convex vector spaces, f : E — F linear and gy : F — F\ a family
of linear maps which is assumed to be point separating on F. If B is an
absolutely convex subset of E such that Eg is a Banach space, and for every
A the set (g o f)(B) is bounded in F) then also Fypy is a Banach space.

Proof. By standard methods, it follows that the Minkowski functional py(p)
of f(B) is the quotient semi-norm of pp on Fypy = Ep/ker(f|gy). Since
(gro f)(B) is bounded, ps(p) is even a norm (observe that for py(p)(x) = 0,
gx(x) is contained in the intersection of all neighborhoods of zero in F)).
Thus (Fygy,ps(B)), being a quotient of the Banach space (Ep,pp), is a
Banach space in its own right. O

One more technical remark is in order: Recall that a convenient vector
space is a locally convex vector space in which for each bounded absolutely
convex closed subset B, the normed space (Ep,pp) is complete ([26, Th.
2.14]). Now, if we are given a linear bijection between two convenient vector
spaces then, in order to show that the respective families of bounded sets
are corresponding to each other, i.e., that the given map is a bornological
isomorphism, it is sufficient to show that for every bounded absolutely con-
vex closed subset B’ of one of the spaces such that Ep/ is a Banach space,
B’ is bounded also as a subset of the other space: Indeed, if B is an arbi-
trary bounded subset of the first space then for its absolutely convex closed
hull B’ = T(B), Ep/ is Banach. By assumption, B’, hence a fortiori B, is
bounded when viewed as a subset of the second space. Recall further that by
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subscripts “F” resp. “C” we declare the respective space as being equipped
with the (F)- resp. the (C)-topology.

Theorem B.5. For every finite-dimensional mantfold M, the linear isomor-
phism ¢ : t — (t — t-t) mapping T, (M) onto LZOO(M)(ﬁS(M)F,C"O(M)C)
is a bornological isomorphism with respect to the (C)-topologies.

Proof. That ¢ indeed is a linear isomorphism was shown in the proof of
Lemma 7.2. Let B be a subset of 7 (M). The proof will be achieved by
showing (partially under a certain additional assumption on B, cf. below)
the mutual equivalence of the following statements, where always p € M
and t € T*(M):

(i) B is bounded with respect to the (C)-topology of T, (M).

( {t(p | t € B} is bounded in (T%),M, for every p.
-t(p) | t € B} is bounded in R, for every p, .
f) (p) | t € B} is bounded in R, for every p, .
~) t € B} is (C)-bounded in C°°( ), for every t.

|
is bounded with respect to the (C)-topology of the space
(T (M) p.Co(M)e).

Identifying (111) (iv) as a mere reformulation and discerning the chains
(i)=(ii)<(iii) and (iv)<(v)<(vi) as being obvious (evaluation at a partic-
ular argument always being smooth and linear, hence bounded, essentially
due to [26, 3.13 (1) and 2.11]), we are left with three non-trivial implica-
tions. Turning to (v)=-(vi), first of all note that the (C)-bounded subsets
of Lgoo(M)(ﬁs(M), C>(M)) (omitting from now on the subscripts “F” resp.
“C") can equivalently be viewed as those determined by the structures of
C®(T#(M),C>®(M)) resp. of LP(T,;2(M),C>(M)), due to [26, 5.3. Lemma]
(where the superscript “b” is omitted generally). Now an appeal to the uni-
form boundedness principle for spaces of (multi)linear mappings ([26, 5.18.
Th.]) yields (v)=-(vi).

Whereas the implications established so far are valid for any subset B of
TS (M), we will have to confine ourselves for (ii)=-(i) and (iv)=-(v) to subsets
B which are absolutely convex and for which 7] (M)p is a Banach space.
This being a purely algebraic matter, it is equivalent to saying that ¢(B) is
absolutely convex and LZOO(M) (T2(M),C>(M))g(p) is a Banach space. Un-
der this additional assumption (in its first form), we obtain (ii)=(i) from
a straightforward application of the uniform boundedness principle for sec-
tion spaces ([26, 30.1 Prop.]). For a similar argument in favor of (iv)=(v)
to be legitimate, however, we need to know that also C*°(M), g is a

Banach space, for every ¢t € 7,°(M). Yet this follows— assuming (iv) to
be true—from LCOO(M) (T,2(M),C>(M)) 4y being a Banach space by apply-
ing Lemma B.4 with E, F, Fy, f, g\ replaced by Lgoo(M) (T2 (M),C>®(M)),
C®(M), R, evy, evp, respectively. Now we are in a position to appeal to 26,
30.1 Prop.] once more, completing the proof of equivalence of (i)—(vi) for
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subsets B as specified. Keeping in mind the technical remark made before
the theorem, we conclude that, in fact, ¢ is a bornological isomorphism. [J

Remark B.6. By Corollary B.2, the bounded sets with respect to the
topologies (C) and (F) on 7] (M) are identical. Hence Theorem B.5 could
have been as well formulated for 7. (M )¢ replacing 7. (M) .

Lemma B.7. For a vector bundle E = B, a manifold B' and a smooth
map f : B' — B (B, B’ and E finite-dimensional), the pullback operator
f*:T(B,E) = T'(B, f*E) defined by f*(u)(p) := (p,u(f(p))) is continuous
with respect to the (F)-topologies.

Proof. This is clear from combining the seminorms (2.1) with the typical
form of charts on pullback bundles (cf. Appendix A): Given [ € Ny, a chart
(V,p) in B, a vector bundle chart (U, ¥) over (U,%) in E such that V' N
fHU) # 0 and L cC o(V N f7HU)), the values ps,x,w,r(f*(u)) are
dominated by ps w1, (u) where L1 = (¢ o f o o~ 1)(L). O

Also the following Lemma is immediate from the definition of the semi-
norms on spaces of sections:

Lemma B.8. For finite-dimensional manifolds M, N, the operator
evy : I'(TO(M,N)) x I'(priT; M) — I'(pr3T;N)
given by
(4,6) = ((p, q) = ((p.a), A (p. @) &(p, q)))

is continuous with respect to the (F)-topologies.

For our final lemma and its corollaries, we will have to include infinite-
dimensional manifolds modelled over convenient vector spaces into our con-
siderations, as well as bundles over such manifolds and respective spaces
of sections. Again we follow [26], this time Sections 27-30. Note that the
discussion concerning the (C)-topology following Theorem B.1 is equally
valid for M and F infinite-dimensional. The main examples of infinite-
dimensional manifolds occurring in the present context are Ag(M) x M x
B(M) and Ay(M) x B(M), where Ay(M) is a closed affine hyperplane in
the (LF)-space Q*(M) and B(M) is an (LF)-space itself. Note that (F)-
spaces, (LF)-spaces and closed hyperplanes thereof are convenient by [26,
2.2 and 2.14]. The construction of pullback bundles in [26, 29.6], pro-
ceeds in complete analogy to the finite-dimensional case: In particular, for
pry : Ag(M) x M x B(M) — M, the pullback bundle pryTSM can be real-
ized as a manifold by (Ag(M) x M x B(M)) x 5 TM, or—more simply—by
Ao(M) x B(M) x T¢M, with base point map (w, A,t) — (w,7(t), A) (the
version which we will exclusively use in what follows).

As a last prerequisite to the following lemma, we observe that the eval-
uation map ev : C*(M,E) x M — FE is smooth for any convenient vector
space E and for every manifold M. This result (which does not appear
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explicitly in [26]) can be obtained by an argument completely analogous to
that of the vector space case (where an open subset U of a locally convex
space E takes the place of M): Due to the proof of [26, 27.17], C*°(M, F)
can be viewed as a closed linear subspace of a product of spaces C*(R, F).
This statement replacing [26, 3.11 Lemma)] in the proof of [26, Th. 3.12], the
latter as well as Cor. 3.13 (1) (saying that ev : C*°(U, F') x U — F is smooth)
together with their proofs carry over to the manifold case. As a by-product,
we obtain a fact which will be tacitly used in the proof of the lemma be-
low: By continuity of the evaluation map and by the manifold analogue
of [26, 3.12] just mentioned, it follows that the obvious linear isomorphism
C®(M,I1, Ea) =1[,C*(M, E,) (for a manifold M and convenient vector
spaces FE,) is even a bornological isomorphism.

Lemma B.9 (A. Kriegl, personal communication). Let M, N be manifolds

and E 5 N a smooth vector bundle over N (M, N, E possibly infinite-
dimensional). Then we have a bornological isomorphism

¢ (M,T(N, E)) = (M x N, pt3E)

with respect to the (C)-topologies. Elements f, g corresponding to each other
by this isomorphism are related by (p, f(p)(q)) = g(p,q); we write g = f",
f =g"Y. Moreover, the evaluation mapping

ev:C®(M,T'(N,E)) x M - T'(N,E)
is smooth with respect to the (C)-topologies resp. the structure given on M.

Proof. For the proof, we will represent each of the two spaces as a closed
(with respect to the ¢™-topology, cf. [26, 2.12]) subspace of a respective
product space; these product spaces are then seen to be isomorphic by means
of the exponential law for spaces of type C*°(P, F') (P a manifold and F
convenient; [26, 27.17]). In all three steps, the families of bounded sets are
preserved. Finally, it is shown that under the isomorphism between the
product spaces in fact the subspaces C*°(M,I'(N, E)) and I'(M x N, prjFE)
correspond to each other.

Choose a vector bundle atlas for E 5 N consisting of local trivializations
Yo : T Y Uy) — U,y x Z where Z denotes the typical fiber of E. By [26,
30.1] we obtain a linear embedding

T(N,E) = [[¢*(Ua, 2)

((pr2 © wa)*)a U (pr2 0 g 0 U|Ua)o¢
having ¢*>°-closed image, the latter due to the fact that that it can be
characterized as the subspace consisting of all (fy), for which the maps
q — ¥;1(q, fo(q)) form a coherent family of local sections of E. For ¢>-
closedness, express coherence by the conditions ¢a5(fa) = ¢sa(fs) for all
a, B where

¢o¢,8 : COO(UCHZ) = fa = w(;l © (idUaa fOt)|Ua5 S F(Ua57E|UOé,3)
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and similarly for ¢g,. Now, it certainly would suffice to show smoothness
(hence ¢*°-continuity) of both ¢,s and ¢g,. Making things work for ¢ag
requires I'(Uyg, E|Uqyp) to be equipped with the topology induced by the
atlas Ao 1= {(Uag; Yalpjv,;)} on E|Uas whereas for ¢gq, the atlas Ag :=
{(Uaﬁﬂ/)ﬂ|E|Ua6)} would be appropriate.

However, due to the remarks preceding Corollary B.1, we can safely use
Ay U Ag on E|U,p (doing justice to both ¢np and ¢g, simultaneously this
way) without affecting boundedness in I'(Uyg, E|Uyg) resp. smoothness of
bap and @pq.

From the above, we get an embedding

(M, T(N, B)) = ¢ (M, ] ¢*(Ua, 2)) 2 [ €(M,C*(Ua, 2))

((pr2 © wa)**)a cfe (p = pry o Yo © f(p)’Ua)a,

again with ¢>-closed image, consisting of those elements (g4)o for which
¥ 1(q, 9a(p)(q)) forms a coherent family of local sections of E for every
fixed p € M.

On the other hand, noting the family of all (M x U,,idys X 14) to form
a vector bundle atlas for pr5 ' — M x N, we obtain a linear embedding

I'(M x N,prsE) <= [[C®(M x Uy, 2)

U — (pry o (ida X Vo) © Ul arxuv, )a

mapping I'(M x N, pr3E) onto the ¢®-closed subspace consisting of all (fy)a
for which (ldM X wa)_l(pv q, fOl(p7 Q)) = (p7 ¢;1<Q7 fOé (p7 Q))) forms a coher-
ent family of local sections of pr5E. Via the bornological isomorphisms
C®(M x Uy, Z) = C®(M,C*®(U,, Z)) given by the exponential law [26,
27.17], we obtain an isomorphism of the last two product spaces occurring
above. This, in turn, induces bornological isomorphisms of the two afore-
mentioned subspaces resp. of C*°(M,I'(N, E)) and I'(M x N, pr5E). Tracing
all the assignments involved in the construction shows the explicit form of
this last isomorphism to be the one given in the lemma.

Finally, replacing F by I'(N, E) in the remarks on smoothness of the evalu-
ation map preceding the lemma shows that also ev : C*(M,T'(N, E)) x M —
I'(N, E) is smooth with respect to the (C)-topologies resp. the structure
given on M. ([

Note that, using the notations of the preceding lemma, sections u of prj £/
are precisely given by smooth maps 4 : M x N — E with m o 4 = pry, i.e.,
u(p, q) having ¢ as base point, for all p, g. The section wu itself takes the form
u(p, q) = (p, u(p, q))-

For the corollary to follow, recall that pry : priE — E denotes the
canonical projection as defined in Appendix A.
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Corollary B.10. For manifolds M, N and a vector bundle E = N (M, N,
E as in Lemma B.9), the operator v : I'(M x N,prsE) x M — I'(N, E)
defined by ev(u, p)(q) := pry/ (u(p, q)) is smooth when both section spaces are
equipped with their (C)-topologies.

Proof. According to Lemma B.9, &V and ev correspond to each other via
the bornological isomorphism C*°(M,I'(N, E)) = I'(M x N,pr;E). By [26,
2.11}], this isomorphism and its inverse are smooth. Hence the smoothness
of ev follows from that of ev. ]

Corollary B.11. Let M and N be manifolds, and E = N a smooth vector
bundle over N (N and E finite-dimensional). Then for every

u€ (M x N,pryE)

the associated map u" : M — T'(N, E) is smooth with respect to the (F)-
topology on T'(N, E).

Proof. By Lemma B.9, v¥ € C®(M,T'(N, E)) where I'(N, E) carries the
(C)-topology. By Corollary B.2, the (C)- resp. the (F)-bounded subsets on
['(N, E) are the same. Therefore, u" is also smooth into I'(N, E) . O

If also M has finite dimension Corollary B.11 can be proved in the well-
known “classical” manner, using charts. However, we need the result in the
general case where M is of infinite dimension.
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