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On Einstein metrics, normalized Ricci

flow and smooth structures on 3CP2#kCP2

Rafael Torres

Abstract. In this paper, first we consider the existence and nonexis-

tence of Einstein metrics on the topological 4-manifolds 3CP2#kCP2,
the connected sum of CP2 with both choices of orientation, by using the
idea of Răsdeaconu–Şuvaina, 2009, and the constructions in Park–Park–
Shin, 2013. Then, we study the existence or nonexistence of nonsingular
solutions of the normalized Ricci flow on the exotic smooth structures
of these topological manifolds by employing the obstruction developed
in Ishida, 2008.
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1. Introduction

Recent years have witnessed a drastic increase in our understanding of the
topology and geometry of 4-manifolds and complex surfaces. The newest
developments can be exemplified by the construction of simply connected
surfaces of general type with small topology [22, 23], by the unveiling of a
myriad of exotic smooth structures on small 4-manifolds [1], and by how
these manifolds have provided an adequate environment for the study of
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fundamental questions in Riemannian geometry that were previously out of
reach.

In particular, intriguing questions regarding Einstein metrics ([17, 24]),
and the relation between smooth and geometric structures (like the Yamabe
invariant and the normalized Ricci flow) on a given topological 4-manifold
([17, 13, 15]) have been immediate beneficiaries of the novel constructions. In
this paper we employ the procedure of R. Răsdeaconu and I. Şuvaina ([24])
to the constructions of H. Park, J. Park and D. Shin ([23]), and to those of
A. Akhmedov and B.D. Park ([1]) to study the (non)-existence of Einstein
metrics, and the (non)-existence of nonsingular solutions to the normalized
Ricci flow on manifolds with small topological invariants (although bigger
than those considered in [24]).

Our main results are the following.

Theorem 1. Let k ∈ {11, 13, 14, 15, 16, 17, 18}. Each of the topological 4-
manifolds

3CP2#kCP2

admits a smooth structure that has an Einstein metric of scalar curvature
s < 0, and infinitely many nondiffeomorphic smooth structures that do not
admit Einstein metrics.

Regarding the nonsingular solutions to the normalized Ricci flow on the
exotic smooth structures of the manifolds from Theorem 1 and in the spirit
of [15], the following result is proven.

Proposition 2. Let k ∈ {11, 13, 14, 15, 16, 17, 18}. The topological 4-mani-

fold M := 3CP2#kCP2 satisfies the following properties:

(1) M admits a smooth structure of negative Yamabe invariant on which
there exist nonsingular solutions to the normalized Ricci flow.

(2) M admits infinitely many smooth structures, all of which have neg-
ative Yamabe invariant, and on which there are no nonsingular so-
lutions to the normalized Ricci flow for any initial metric.

We are also able to prove that for k ≥ 9, each of the spaces of Theorem 1
have infinitely many reducible smooth structures that do not carry an Ein-
stein metric, all of which have negative Yamabe invariant, and on which the
only solutions to the normalized Ricci flow for any initial metric are all sin-
gular (Proposition 11). Moreover, for k ≥ 8, the manifolds of our theorem
do not admit anti-self-dual Einstein metrics (Lemma 12). Theorem 1 and
Proposition 2 extend the results in [24] and [15], and improve results of [14]
and [5].

The (non)-existence of Einstein metrics on different smooth structures on
3CP2 blown-up at a small number of points was previously considered by
V. Braungart and D. Kotschick in [5]. In that paper, the authors proved
instances k = 17 and k = 18 of Theorem 1. By a result of F. Catanese [8],
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in the case k = 18, the manifolds with Kähler–Einstein metrics in this paper
and in [5] are diffeomorphic.

The paper is organized as follows. In Section 2 we determine the home-
omorphism types of the complex surfaces built by H. Park, J. Park and D.
Shin; the second part of the section provides a description of their surfaces.
The third section contains the construction of an Einstein metric on each
of these surfaces of general type. The nonexistence of these metrics on the
topological prototypes is addressed in Section 4. The proof of Theorem 1 is
spread throughout the first four sections. In Section 5, we study the sign of
the Yamabe invariant and the solutions to the normalized Ricci flow on the
exotic smooth structures. That is, Proposition 2 is proven in the fifth and
last section.

2. Homeomorphism type

The following theorem was proven in [23].

Theorem 3 (H. Park–J.Park–D. Shin). There exist simply connected min-
imal surfaces of general type with pg = 1, q = 0 and K2 = 1, 2, 3, 4, 5, 6, 8.

Here K denotes the canonical divisor class of the complex surface. Our
enterprise starts by pinning down a homeomorphism type for each of these
complex surfaces. From now on, let S be one of such surfaces. Surfaces of
general type are Kähler (see, for example, [21, Lemma 2]). Thus, one has

b+2 (S) = 2pg + 1 = 3.

On the other hand, we have:

Lemma 4. b−2 (S) = 19− c21(S).

Proof. The Thom–Hirzebruch Index Theorem ([4, Theorem I 3.1, p.22])
states

σ(S) =
1

3
(c21(S)− 2c2(S)) =

1

3
(c21(S)− 2e(S)).

The claim follows by substituting σ(S) = b+2 − b
−
2 = 3 − b−2 and e(S) =

b+2 + b−2 + 2 = 5 + b−2 . �

From these computations we also observe

Corollary 5. These manifolds satisfy the Hitchin–Thorpe inequality [12,
Theorem 1].

Proof. The claim is 2χ+ 3σ > 0. Indeed, we have

2χ+ 3σ = 19− b−2 ,

which is always positive for the manifolds considered in this paper. �
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It follows from Rokhlin’s Theorem [25] that the manifolds built in [23] are
non-spin. We are now ready to conclude on the topological prototypes of the
minimal surfaces of general type in question by using Freedman’s Theorem
[10], and Donaldson’s results [9]. The possible homeomorphism types are
arranged in the following proposition.

Proposition 6. Let S be a simply connected surface of general type with
pg = 1, and q = 0. The homeomorphism type of S is given as follows:

• If K2
S = 1 : S ∼=C0 3CP2#18CP2.

• If K2
S = 2 : S ∼=C0 3CP2#17CP2.

• If K2
S = 3 : S ∼=C0 3CP2#16CP2.

• If K2
S = 4 : S ∼=C0 3CP2#15CP2.

• If K2
S = 5 : S ∼=C0 3CP2#14CP2.

• If K2
S = 6 : S ∼=C0 3CP2#13CP2.

• If K2
S = 8 : S ∼=C0 3CP2#11CP2.

Remark 1. In particular notice that the 4-manifolds of H. Park, J. Park and
D. Shin (Theorem 3) are exotic symplectic copies of the reducible manifolds
of Proposition 6.

2.1. Description of the minimal surfaces of general type built by H.
Park, J. Park and D. Shin. The minimal complex surfaces of Theorem 3
have a very similar nature. We proceed to give a sketch of the construction
for the example with K2 = 6. The reader is referred to the quoted papers
for details.

The starting manifold is a particular rational elliptic surface E(1), which
is obtained out of blowing up a well-chosen pencil of cubics in CP2. Take
the double cover of this rational elliptic surface E(1), and call it Y . The
complex surface Y is an elliptic K3 surface; this complex manifold Y is a
common material in all of the minimal surfaces produced in [23].

In particular for the surface with K2 = 6 we are describing in this section,
one considers (within Y ) two I8-singular fibers, two I2-singular fibers, one
nodal singular fiber, and three sections.

By blowing up Y 18 times at rightly selected points (see [23, Section 4.5,

Fig. 13]), one obtains a surface Z := Y#18CP2. The surface Z contains
five disjoint linear chains of CP1’s including the proper transforms of the
sections. The linear chains are denoted by the following dual graphs, which
have been labeled for the purposes in Section 3:

◦−2G1
− ◦−2G2

− ◦−3G3
− ◦−9G4

− ◦−2G5
− ◦−2G6

− ◦−2G7
− ◦−2G8

− ◦−3G9
− ◦−4G10

,

◦−2H1
− ◦−3H2

− ◦−7H3
− ◦−2H4

− ◦−2H5
− ◦−3H6

− ◦−3H7
,

◦−7I1
− ◦−2I2

− ◦−2I3
− ◦−2I4

,

◦−4J1
− ◦−3J2

− ◦−2J3
,

◦−4L
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One proceeds to contract these five chains of CP1’s from Z. Since Artin’s
criteria is satisfied ([2]), the contraction produces a projective surface with
special quotient singularities. Denote it by X. At this step, H. Park, J. Park
and D. Shin use Q-Gorenstein smoothings to deal with the singularities.
Each singularity admits a local Q-Gorenstein smoothing. In Section 3 of
[23], they prove that the local smoothings can actually be glued to a global
Q-smoothing of the entire singular surface by proving there is no obstruction
to do so. The surface of general type S with pg = 1, q = 0 and K2 = 6 is a
general fiber of the smoothing of X; in the papers of H. Park, J. Park and
D. Shin, S is denoted by Xt.

The argument regarding the minimality of S goes as follows. Let f : Z →
X be the contraction map of the chains of CP1’s from Z to the singular
surface X. By using the technique in, for example, Section 5 in [22], one
sees that the pullback f∗KX of the canonical divisor KX of X is effective
and nef. Therefore, KX is nef as well, which implies the minimality of S.

3. Existence of Einstein metrics

The existence of an Einstein metric on a certain manifold is hard to prove.
In the case of interest of this paper, where the manifold is a minimal complex
surface of general type that does not contain any (−2)-curves, the following
criterion was found independently by T. Aubin and by S.T. Yau.

Theorem 7 (Aubin [3], Yau [26]). A compact complex manifold (M4, J)
admits a compatible Kähler–Einstein metric with s < 0 if and only if its
canonical line bundle KM is ample. When such a metric exists, it is unique,
up to an overall multiplicative constant.

In order to apply Theorem 7, the following result needs to be proven.

Proposition 8. There exist simply connected surfaces of general type with
pg = 1, q = 0, K2 = 1, 2, 3, 4, 5, 6 or 8, and ample canonical bundle.

The rest of the section is devoted to such endeavor. We carry out the
argument for the surface with K2 = 6. The other examples can be dealt
with in a similar fashion.

3.1. Proof of Proposition 8. The following proof follows closely the ar-
gument of R. Răsdeaconu and I. Şuvaina used to prove Theorem 1.1 in [24].

Proof. Theorem 3 settles the existence part of the proposition. According
to [23], in Z there are five disjoint linear chains. Using the labels we put

on their dual graphs in Section 2, let us denote them by G =
∑11

i=1Gi,

H =
∑7

i=1Hi, I =
∑4

i=1 Ii, J =
∑3

i=1 Ji, and let L be the chain of length
one. Name Fi, i = 1, . . . , 11 the eleven smooth curves of self-intersection
−1 represented by dotted lines labeled −1 in Fig 13 of [23]. We point out
that the Poincaré duals of the irreducible components of the five chains and
those of the curves Fi’s form a basis of H2(Z;Q).
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Let f : Z → X be the contraction map. Then, one has

f∗KX ≡Q

11∑
i=1

aiFi +
10∑
i=1

biGi +
7∑

i=1

ciHi +
4∑

i=1

diIi +
3∑

i=1

eiJi + l1L.

The coefficients that appear above can be computed explicitly (see [22]).
However, for our agenda it suffices to know that they are positive rational
numbers. In particular the pullback of the canonical divisor of the singular
variety to its minimal resolution is effective. Set the exceptional divisor of f
to be Exc(f) =

∑
Gi +

∑
Hi +

∑
Ii +

∑
Ji + L.

We wish to show that the canonical bundle KX of the Q-Gorenstein
smoothing is ample. This implies our claim: indeed, remember S is a general
fiber of the Q-Gorenstein smoothing X, and ampleness is an open property
([16]). Moreover, we know KX is nef. To show it is ample as well, we proceed
by contradiction.

Suppose KX is not ample. By its nefness and according to the Nakai–
Moishezon criterion ([16]), there exists an irreducible curve C ⊂ X such
that (KX · C) = 0.

The total transform of C in Z is

f∗C ≡Q C
′ +

10∑
i=1

wiGi +
7∑

i=1

xiHi +
4∑

i=1

yiIi +
3∑

i=1

ziJi + tL.

Here C ′ stands for the strict transform of C, and the coefficients wi, xi, yi,
zi, t are nonnegative rational numbers. It is straight-forward to see that C ′

is not numerically equivalent to 0 ([24]).
We compute

(KX · C) = (f∗KX · f∗C)

= (f∗KX · C ′)

=
11∑
i=1

ai(Fi · C ′) +
10∑
i=1

bi(Gi · C ′) +
7∑

i=1

ci(Hi · C ′)

+
4∑

i=1

di(Ii · C ′) +
3∑

i=1

ei(Ji · C ′) + l1(L · C ′).

The intersection number of the curve C ′ with any component of the ex-
ceptional divisor Exc(f) is greater or equal to zero. The equality is achieved
only in the case when C ′ is disjoint to all the irreducible components of
Exc(f); this is equivalent to the curve C missing the singular points of X.
This is

10∑
i=1

bi(Gi ·C ′)+
7∑

i=1

ci(Hi ·C ′)+
4∑

i=1

di(Ii ·C ′)+
3∑

i=1

ei(Ji ·C ′)+ l1(L ·C ′) ≥ 0.
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Thus, we have
11∑
i=1

ai(Fi · C ′) ≤ 0. At this point there are two possible

scenarios:

• There is an i0 ∈ {1, . . . , 11} such that (C ′ · Fi0) < 0.
• The equality (C ′ · Fi) = 0 holds for all i = 1, . . . , 11.

The first scenario requires C ′ to coincide with Fi0 . This is not the case,
since given that f∗KX is nef, (f∗KX · Fi) > 0 holds for all i = 1, . . . , 11,
which is impossible by our assumption. Thus, the intersection number of
the curve C ′ with all the Fi’s and with all of the irreducible components
of Exc(f) must be zero. However, as it was remarked earlier, the Poincaré
duals of the Fi’s and those of the irreducible components of Exc(f) generate
H2(Z;Q). This implies that C ′ would have to be numerically trivial on Z.
This is a contradiction.

Thus, KX is ample. The proposition now follows from Aubin–Yau’s cri-
terion (Theorem 7). �

Corollary 9. There exist a minimal complex structure on 3CP2#kCP2, for
each k = 11, 13, 14, 15, 16, 17, 18, which admits a Kähler–Einstein metric of
negative scalar curvature.

4. Nonexistence of Einstein metrics: Exotic smooth
structures

Topologically there is no obstruction for the existence of an Einstein met-
ric on the surfaces of general type we are working with (cf. Corollary 5).
We now proceed to study the nonexistence of Einstein metrics with respect
to their exotic differential structures.

When one considers different smooth structures on 4-manifolds, the main
obstruction to the existence of an Einstein metric is the following result,
which generalizes work done by C. LeBrun in [18].

Theorem 10 (LeBrun, [20]). Let X be a compact oriented 4-manifold with
a nontrivial Seiberg–Witten invariant and with (2χ+ 3σ)(X) > 0. Then

M = X#rCP2

does not admit an Einstein metric if r ≥ 1
3(2χ+ 3σ)(X).

As a corollary we have:

Proposition 11. Let 9 ≤ k ≤ 18. The topological manifolds

3CP2#kCP2

support infinitely many smooth structures that do not admit an Einstein
metric. Moreover, each of these manifolds admits infinitely many smooth
structures, all of which have negative Yamabe invariant, and on which there
are no nonsingular solutions to the normalized Ricci flow for any initial
metric.
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Proof. We make use of the infinite family {Xn} of pairwise nondiffeomor-
phic 4-manifolds (with nontrivial SW) sharing the topological prototype

3CP2#4CP2 built in [1]. The first part of the lemma now follows by setting
r ≥ 5 in LeBrun’s result (Theorem 10); notice that the blow-up formula [11,
Theorem 1.4] allows us to conclude that the manifolds in the infinite family

{Xn#(4 + r)CP2} are pairwise nondiffeomorphic. For the claims regarding
the Yamabe invariant and the solutions to the normalized Ricci flow see
Section 5 below. �

4.1. Nonexistence of anti-self-dual Einstein metrics. Using another
obstruction theorem of LeBrun in [20, Theorem 3.8] we obtain the following
lemma.

Lemma 12. Let 8 ≤ k ≤ 18. The topological manifolds

3CP2#kCP2

support infinitely many smooth structures that do not admit an anti-self-dual
Einstein metric.

The reducible smooth structures on the spaces of Lemma 12 are obtained
by blowing up a number of points on each member of the infinite family
{Xn} of pairwise nondiffeomorphic manifolds that are homeomorphic to

3CP2#4CP2 [1] (cf. Proof of Proposition 11).

5. Proof of Proposition 2

The following argument is based on the proof of Theorem B in [15].

Proof. We start with the part of (1) concerning the sign of the Yamabe
invariant. Consider the smooth structure related to the minimal surfaces of
general type taken from [23]. By [19] their Yamabe invariant is negative.
The existence of nonsingular solutions to the normalized Ricci flow follows
from Cao’s theorem ([6], [7]) by taking as an initial metric the Kähler metric
with Kähler form the cohomology class of the canonical line bundle.

For Property (2), consider the smooth structures used in Theorem 1
that were built by A. Akhmedov and B.D. Park in [1]: the infinite fam-
ily {Xn} of pairwise nondiffeomorphic minimal manifolds homeomorphic to

3CP2#4CP2. These manifolds have nontrivial Seiberg–Witten invariants,
and for all of them c21 > 0 holds. Thus, by [18], their Yamabe invariant is
strictly negative. By a result of M. Ishida (Theorem B in [13]), there are
no solutions to the normalized Ricci flow on Xi for any i and any intial
metric. �
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