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Natural maps between CAT(0)
boundaries

Stephen M. Buckley and Kurt Falk

Abstract. It is shown that certain natural maps between the ideal,
Gromov, and end boundaries of a complete CAT(0) space can fail to
be either injective or surjective. Additionally the natural map from the
Gromov boundary to the end boundary of a complete CAT(−1) space
can fail to be either injective or surjective.
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1. Introduction

In [2], a new class of metric spaces called rough CAT(0) spaces are intro-
duced, and their interior geometry is studied. The boundary geometry is
then defined and studied in [3]. By interior geometry, we mean the geom-
etry of the space itself, whereas we use the term boundary in the sense of
a boundary at infinity. Specifically we define a new notion of boundary at
infinity for such spaces X that we call the bouquet boundary ∂BX.

Rough CAT(0) spaces include both of the well-known classes of CAT(0)
spaces and Gromov hyperbolic spaces, and it is proved in [3] that ∂BX
coincides with the ideal boundary ∂IX if X is a complete CAT(0) space, and
it coincides with the Gromov boundary ∂GX if X is a Gromov hyperbolic
space. With a view to proving that ∂BX is nonempty when X is a reasonable
unbounded space, ∂BX is also related to the end boundary ∂EX, and in fact
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it is shown in [3] that we have the following commutative diagram of natural
maps between these notions of boundary at infinity:

∂IX
� � iI // ∂BX

η

��

µ
// ∂GX

φ
ww

∂EX

The results in [3] are mainly positive: it is shown that iI is injective, or
bijective if X is complete CAT(0), and that µ is bijective if X is Gromov
hyperbolic. Furthermore conditions for η to be surjective or injective are
also given.

In this note, we instead concentrate on negative results in the context of
complete CAT(0) spaces. In this context, iI is a natural bijection, so we will
not even define the bouquet boundary: instead we identify it with the well-
known ideal boundary and study ν := µ ◦ iI instead of µ. Writing ν := µ ◦ iI
and ε := η ◦ iI, and omitting the identification, we get the following simpler
commutative diagram:

∂IX

ε

��

ν // ∂GX

φ
ww

∂EX

It turns out that none of the natural maps in this last diagram are necessarily
bijective. In fact, we construct counterexamples in this note that allow us
to state the following theorem.

Theorem 1.1. There exists a complete CAT(0) space X such that:

(a) ν : ∂IX → ∂GX is neither injective nor surjective.
(b) φ : ∂GX → ∂EX is neither injective nor surjective.
(c) ε : ∂IX → ∂EX is neither injective nor surjective.

Lastly, ∂IY , ∂GY , and ∂EY may be empty even if Y is an unbounded com-
plete CAT(0) space.

Constructions were given in [4, Section 3] for spaces in which ν fails to be
injective or surjective. However those spaces were far from being CAT(0).
It is perhaps a little surprising that such counterexamples also exist in the
class of complete CAT(0) spaces.

By the results of [3], ∂IX, ∂BX, and ∂GX can all be identified if X is
both Gromov hyperbolic and complete CAT(0), and so in particular if X is
a complete CAT(−1) space. Thus ν is a bijection in this case. However the
map φ may still be badly behaved, as the following result indicates.
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Theorem 1.2. There exists a complete CAT(−1) space X such that

φ : ∂GX → ∂EX

is neither injective nor surjective. Also ∂GY and ∂EY may be empty even
if Y is an unbounded complete CAT(−1) space.

After some preliminaries in Section 2, we give counterexamples and prove
the above results in Section 3.

2. Preliminaries

Throughout this section, we suppose (X, d) is a metric space. We say
that X is proper if every closed ball in X is compact.

We write A ∧B for the minimum of two numbers A,B.
An h-short segment from x to y, x, y ∈ X, is a path of length at most

d(x, y) + h, h ≥ 0. A geodesic segment is a 0-short segment. X is a length
space if there is an h-short segment between each pair x, y ∈ X for every
h > 0, and a geodesic space if there is a geodesic segment between each pair
x, y ∈ X.

A geodesic ray in X is a path γ : [0,∞) → X such that each initial
segment γ|[0,t] of γ is a geodesic segment. The ideal boundary ∂IX of X is
the set of equivalence classes of geodesic rays in X, where two geodesic rays
γ1, γ2 are said to be equivalent if d(γ̃1(t), γ̃2(t)) is uniformly bounded for all
t ≥ 0, where γ̃i is the unit speed reparametrization of γi, i = 1, 2.

We refer the reader to [1, Part II] for the theory of CAT(κ) spaces for
κ ∈ R. In particular, we note that a smooth Riemannian manifold is CAT(κ)
if and only if it is simply connected and has sectional curvature ≤ κ. Also
the ideal boundary ∂IX of a complete CAT(0) space can be identified with
the set of unit speed geodesic rays from some origin o ∈ X [1, II.8.2]: this
identification is independent of the choice of origin. If X is a simply con-
nected smooth Riemannian n-manifold of sectional curvature ≤ 0, then ∂IX
is homeomorphic to Sn−1.

As discussed in the introduction, we can identify the ideal boundary and
the bouquet boundary of [3] in the context of complete CAT(0) spaces.
The fact that these are not the same in rough CAT(0) spaces, or even in
incomplete CAT(0) spaces, and that the bouquet boundary is better behaved
than the ideal boundary, is discussed in detail in [3, Section 4], so we will
not discuss it further here. We simply identify these notions for complete
CAT(0) spaces.

We refer the reader to [7], [5], [9], or [1, Part III.H] for the theory of
Gromov hyperbolic spaces. We use the nongeodesic definition: a metric
space (X, d) is δ-hyperbolic, δ ≥ 0, if

〈x, z〉w ≥ 〈x, y〉w ∧ 〈y, z〉w − δ, x, y, z, w ∈ X,
where 〈x, z〉w is the Gromov product defined by

2 〈x, y〉w = d(x,w) + d(y, w)− d(x, y).
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A Gromov sequence in a metric space X is a sequence (xn) in X such
that 〈xm, xn〉o → ∞ as m,n → ∞. If x = (xn) and y = (yn) are two such
sequences, we write (x, y) ∈ E if 〈xm, yn〉o → ∞ as m,n → ∞. Then E is
a reflexive symmetric relation on the set of Gromov sequences in X, so its
transitive closure, which we denote by ∼, is an equivalence relation on the
set of Gromov sequences in X. The Gromov boundary ∂GX is the set of
equivalence classes [(xn)] of Gromov sequences.

The relation E above is an equivalence relation if X is Gromov hyperbolic,
but this is not true in general metric spaces [4, 1.5]. Gromov sequences and
the Gromov boundary have mainly been considered in Gromov hyperbolic
spaces, but they have also been defined as above in general metric spaces
[4]. The Gromov boundary is independent of the choice of basepoint o.

The natural map ν : ∂IX → ∂GX is induced by the map f(λ) = (xn) that
takes a geodesic ray λ parametrized by arclength to a sequence of points
(xn), where xn = λ(tn) and (tn) is any sequence of numbers tending to
infinity.

A CAT(−1) space is both CAT(0) and Gromov hyperbolic; see II.1.12 and
III.H.1.2 of [1]. Hence by Theorems 4.20 and 5.15 of [3], we can identify ∂IX
with ∂GX if X is a complete CAT(−1) space. A related result is Lemma
III.H.3.1 of [1], which says that we can identify ∂IX with ∂GX if X is a
proper geodesic Gromov hyperbolic space.

By an end of a metric space X (with basepoint o), we mean a sequence

(Un) of components of X \ B̄n, where B̄n = B(o, n) for fixed o ∈ X and
Un+1 ⊂ Un for all n ∈ N. We do not require B̄n to be compact. We denote
by ∂EX the collection of ends of X and call it the end boundary of X.

Ends with respect to different basepoints are compatible under set in-
clusion: defining Un, Vn for all n ∈ N to be components of X \ B(o, n) and

X \B(o′, n), respectively, it is clear that Un is a subset of a unique Vm when-
ever n − m > d(o, o′). This compatibility gives rise to a natural bijection
between ends with respect to different basepoints, allowing us to identify
them and treat the end boundary as being independent of the basepoint.

Suppose X is a complete CAT(0) space. If we map a geodesic ray λ from
o parametrized by arclength to the end (Un), where Un is the component
of X \ B̄n containing λ(n + 1), then this map induces the natural map
ε : ∂IX → ∂EX; see [3, Theorem 4.24]. The natural map φ : ∂GX → ∂EX
is also induced by the map taking a Gromov sequence (xn) to the unique
end “containing” it, in the sense that for each m ∈ N there exists N ∈ N
such that xn lies in some component Um of X \ B̄m for all n ≥ N ; see [3,
Proposition 5.19].

3. Examples

Euclidean Rn for n > 1 is all we need to consider to prove that ν and ε
can fail to be injective. As is well known, the ideal boundary of Rn (with
cone topology attached) is homeomorphic to Sn−1, the sphere of dimension
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n− 1. By contrast the end boundary of Rn is clearly a singleton set, and it
turns out that ∂GRn is also a singleton set.

Let us indicate how to prove this last fact. First since the natural map ν
exists, ∂GRn is nonempty. We now appeal to Theorem 2.2 of [4] which states
that ν is surjective if X is a proper geodesic space. In fact, as is clear from
the proof of that result, ν is induced by the map that takes a geodesic ray γ :
[0,∞)→ X parametrized by arclength to the Gromov sequence (γ(tn))∞n=1,
where (tn) is any sequence of nonnegative numbers with limit infinity. Since
the ideal boundary of a complete CAT(0) space can be viewed as the set of
geodesic rays from any fixed origin, it follows that we get representatives of
all points in ∂GR2 by considering only the Gromov sequences xt := (nat)

∞
n=1,

where at = (cos t, sin t) ∈ R2, t ∈ R. A straightforward calculation, or an
appeal to Lemma 3.2, shows that (xt, xs) ∈ E for all pairs t, s, except when
|t−s| is an odd multiple of π, i.e. except when xt and xs are tending to infinity

in opposite directions. But in the exceptional case, we have (xt, xt+π/2) ∈ E
and (xt+π/2, xs) ∈ E, so all Gromov sequences are equivalent.

The exceptional case Rn for n = 1 is easily analyzed: ν and ε are bijective,
and the cardinalities of ∂IX, ∂GX, and ∂EX are all 2.

We now generalize this result to arbitrary Hilbert spaces of dimension
greater than 1. Note that the above method of proof fails in this context
since infinite dimensional Hilbert spaces are not proper. Although these
infinite dimensional examples are not necessary ingredients in the proofs of
our main results, the method of proof will be useful for later examples that
are needed.

Proposition 3.1. Suppose first that X is a Hilbert space of dimension
greater than 1. Then ∂IX has cardinality at least that of the continuum,
while ∂GX and ∂EX are singleton sets. Thus the natural maps ν and ε are
not injective.

Before proving Proposition 3.1, we first prove a simple but useful lemma.
In this lemma, and in the proof of Proposition 3.1, (·, ·) is the inner product
in a Hilbert space X, | · | is the associated norm, and

∠(u, v) = cos−1 ((u, v)/|u| |v|)

is the angle between two nonzero vectors u, v in X.

Lemma 3.2. Suppose X is a Hilbert space, and that u, v ∈ X \{0} are such
that ∠(u, v) ≤ α for some 0 < α < π. Then 〈u, v〉0 ≥ k(|u| ∧ |v|), where
k = k(α) > 0.

Proof. Writing a := |u − v|, b := |u|, and c := |v|, we assume without loss
of generality that b ≤ c. By the cosine rule, a2 = b2 + c2 − 2bc cosα. Thus
2 〈u, v〉0 ≥ cf(t), where t = b/c and f(t) = t + 1 −

√
1 + t2 − 2t cosα. Now

t 7→
√

1 + t2 + rt is convex for all |r| ≤ 2, so it follows by calculus that
f(t) ≥ kt, where k = f(1) > 0. �
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Proof of Proposition 3.1. Since X is a complete CAT(0) space, its ideal
boundary can be identified with the set R of unit speed geodesic rays from
the origin. For a Hilbert space, this latter set is naturally bijective to the
sphere S := ∂B(0, 1) via the identification of γ ∈ R with γ(1). In particular,
the cardinality of ∂IX is at least that of the continuum.

Now (nu)∞n=1 is a Gromov sequence whenever u ∈ S, so certainly ∂GX
is nonempty. Suppose that x = (xn) and y = (yn) are Gromov sequences.
Pick u1, u2, u3 ∈ S so that ∠(ui, uj) ≥ 2π/3 for each pair of distinct indices
i, j; this can be even be done by picking these points on a single great circle
in S. For i = 1, 2, 3, let Ci be the cone of points u ∈ X \ {0} such that
∠(u, ui) < π/3, so that these three cones are pairwise disjoint. Thus, by
taking subsequences if necessary, we may assume that both of the sequences
x and y avoid one of these three cones Ci. Letting z = (−nui)∞n=1, and
applying Lemma 3.2 with α = 2π/3, we see that (x, z) and (z, y) both lie in
E, and so x ∼ y. Thus all Gromov sequences are equivalent, as required. �

Finding examples where ν and ε fail to be surjective appears to be more
difficult than finding examples where they fail to be injective. The key will
be to consider a suitable metric subspace of the infinite dimensional Hilbert
space `2 given by the following definition.

Definition 3.3. The Hilbert flying saucer is X :=
⋃∞
i=1 Yi ⊂ `2, where Yi is

the following closed disk of codimension i− 1 in `2:

Yi :=
{
x = (xj)

∞
j=1 : ‖x‖ ≤ i, xj = 0 for all j < i

}
.

We attach to X the induced length metric d. We next prove that ν can fail
to be surjective.

Theorem 3.4. The Hilbert flying saucer X is a complete CAT(0) space.
Moreover ∂IX is empty, while ∂GX and ∂EX are singleton sets. Thus the
natural maps ν and ε are not surjective.

Proof. We define o to be the origin in `2 so that o ∈ Yi for all i. Complete-
ness is easy, since each Yi is closed in `2 and a finite number of the sets Yi
cover any given compact set. To show that X is CAT(0), it suffices to show

that Xi :=
⋃i
j=1 Yj is CAT(0), where again we attach the induced length

metric. We establish this fact inductively. Since any ball in `2 is CAT(0), it
follows that Yi is CAT(0) for all i. In particular X1 is CAT(0). Suppose now
that Xi is CAT(0) for some i. Now Zi := Xi ∩ Yi+1 is a convex and closed
(hence complete) subset of `2, and Xi+1 is obtained by gluing Xi and Yi+1

along Zi. But gluing two CAT(0) spaces along a pair of isometric complete
convex spaces gives another CAT(0) space [1, II.11.1], so Xi+1 is CAT(0),
completing the inductive step. Thus X is CAT(0).

Suppose for the sake of contradiction that γ : [0,∞) → X is a geodesic
ray parametrized by arclength with γ(0) = o. Writing γ(1) = x = (xi), we
have xj 6= 0 for some j ∈ N. But ‖γ(j + 1)‖ = j + 1, where ‖ · ‖ is the
`2-norm, so γ(j + 1) = y = (yi), where yi = 0 for all i ≤ j. But, as a subset
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of `2, X is star-shaped with respect to o, so the `2 line segment is the unique
X-geodesic from o to y, and this does not pass through x.

Using o as the basepoint, it is clear that X has a single end, so it remains
to prove that ∂GX is a singleton set. Let us denote by ei the unit vector in
the ith coordinate direction. We denote distance in X by d(·, ·) and the `2

norm by | · |. Although in general we know only that d(u, v) ≥ |u − v|, the
`2 line segment from u to v is contained in X if either v = 0 or |v| = |u| (in
the latter case because points on the line segment have norm no larger than
|u|), and so d(u, v) = |u− v| in both of these cases.

Let xn = 2n−1/2(e2n + e2n+1), and so |xn| = 2n, n ∈ N. Also ∠(xi, xj) =
π/2 for any pair of distinct indices i, j. It follows from Lemma 3.2 that
(xn) is a Gromov sequence in `2. In fact, it is also a Gromov sequence in

X. To see this, note that if i ≤ j and we write x′j = 2i−1/2(e2j + e2j+1),

then d(xi, x
′
j) = 2i+1/2 and so 〈xi, x′j〉0 = 2ik, where k := 1 − 1/

√
2.

Now d(xi, xj) ≤ d(xi, x
′
j) + d(x′j , xj) and d(0, xj) = d(0, x′j) + d(x′j , xj),

so 〈xi, xj〉0 ≥ 2ik for all i ≤ j. Thus x is a Gromov sequence in X, and ∂GX
is nonempty.

It remains to prove that all Gromov sequences are equivalent, so suppose
x = (xn) and y = (yn) are a pair of Gromov sequences. Without loss of
generality, we assume that xn, yn 6= 0 for all n ∈ N. The idea of this proof
is similar to that of Proposition 3.1: we pick a Gromov sequence z = (zn),
where zn = nun ∈ X and un lies in the unit sphere S of `2, such that the
sequences x and y avoid a cone around each of the points zn, and it will then
follow that both (x, z) and (z, y) are elements of the relation E. Unlike the
earlier proof, the requirement that zn ∈ X means that un must depend on n,
and this means that we will need to iterate a countable number of times the
process of taking subsequences of x and y. When taking subsequences for the
nth time, we will insist that the first n entries in the subsequences of stage
n − 1 are retained at stage n: this ensures that the diagonal subsequences
associated with this process for x and y are subsequences of the nth iterated
subsequences of x and y, respectively, for each n ∈ N.

For n ∈ N, let Sn be the intersection of S with the plane generated by
e2n−1 and e2n: thus (Sn) is a sequence of pairwise orthogonal great circles on
S. Pick five vectors v1,i, i = 1, . . . , 5, in S1 ∪S2 such that ∠(v1,i, v1,j) ≥ π/2
for all 1 ≤ i ≤ 5: we could for instance pick four such vectors in S1 and an
arbitrary vector in S2. Thus the cones C1,i of points w ∈ `2 \ {0} such that
∠(v1,i, w) < π/4 are pairwise disjoint, and so at least three of them must be
disjoint from the set {x1, y1}. Of these three, at least one contains infinitely
many xn and infinitely many yn. By taking subsequences x1 = (x1n), y1 =
(y1n), of x and y, respectively, and letting u1 be one of the vectors v1,i, we
get that ∠(u1, w) ≥ π/4 whenever w = x1n or w = y1n for any n ∈ N. We
assume, as we may, that x11 = x1 and y11 = y1.

For the second stage, we pick seven vectors v2,i, i = 1, . . . , 7, in S3 ∪ S4
such that ∠(v2,i, v2,j) ≥ π/2 for all 1 ≤ i < j ≤ 7: we could for instance
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pick four such vectors in S3 and three in S4. At least three of the seven
associated cones fail to intersect the set {x11, x22, y11, y12}. It follows that by
taking subsequences x2 = (x2n), y2 = (y2n), of x1 and y1, respectively, and
letting u2 be one of the vectors v2,i, we get that ∠(u2, w) ≥ π/4 whenever
w = x2n or w = y2n for any n ∈ N. We assume, as we may, that x2n = x1n and
y2n = y1n for n = 1, 2.

We proceed in this manner, picking vectors vm,i, i = 1, . . . , 2m + 3, at
the mth stage from the next few circles Sl that we have not used yet in this
construction, in such a way that ∠(vm,i, vm,j) ≥ π/2 for all 1 ≤ i < j ≤
2m + 3. We use as many circles as are needed to ensure that this can be
done: for m ∈ {2p − 1, 2p}, p ∈ N, it suffices to use p + 1 circles. Thus for
m = 3, we pick nine vectors from S5 ∪ S6 ∪ S7, for m = 4 we pick eleven
vectors from S8 ∪S9 ∪S10, etc. Carrying out the construction as before, we
get a unit vector um ∈ SM for some M ≥ m, and subsequences xm = (xmn ),
ym = (ymn ) of xm−1 and ym−1, respectively, such that ∠(um, w) ≥ π/4
whenever w = xmn or w = ymn for some n ∈ N, and such that xmn = xm−1n

and ymn = ym−1n whenever n ≤ m.
Defining x′n = xnn, y′n = ynn for n ∈ N, we get subsequences x′ = (x′n),

y′ = (y′n) of x, y, respectively, and a sequence u = (un) on S such that
∠(un, w) ≥ π/4 whenever w ∈ {xm, ym} and n,m ∈ N, and such that
∠(um, un) = π/2 whenever m 6= n. Letting zn = nun, it follows from the
fact that um ∈ SM for some M ≥ m that zn ∈ X for all n ∈ N. Writing
z = (zn), and arguing as we did in the proof that ∂GX is nonempty, it
follows that z is a Gromov sequence, and that both (x, z) and (z, y) lie in
E. We leave the details to the reader. �

It is easy to find a complete CAT(−1) space X in which φ : ∂GX →
∂EX is not injective. Indeed the hyperbolic plane X = H2 is one such
example. Since we can identify ∂IX with ∂GX in this case (because X is
complete CAT(−1), or alternatively because X is a proper geodesic Gromov
hyperbolic space: see Section 2), ∂GX can be identified with the unit circle,
and so its cardinality is that of the continuum. On the other hand, it is
clear that ∂EX is a singleton set. To prove that φ may fail to be surjective
even if X is complete CAT(−1), we need to work a bit harder.

Example 3.5. Let X be the Hilbert flying saucer, but let us replace our
original metric d by the conformally distorted length metric d′ given in-
finitesimally at a point with polar coordinates (t, θ) ∈ [0,∞) × ∂B(0, 1) by
ds, where ds2 = dt2 + sinh2(t)dθ2. Then (X, d′) has a single end, since
d′-balls around 0 coincide with d-balls.

Each of the sets Yi in Definition 3.3 is CAT(−1) with respect to d′: in fact
any geodesic triangle in Yi is contained in an isometric copy of a hyperbolic
plane. Since we obtain (X, d′) by gluing a succession of spaces Xi and Yi+1

along a pair of isometric complete convex spaces, the resulting space (X, d′)
is CAT(−1). It is also clearly complete. Thus ∂IX can be identified with
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∂GX. But the d- and d′-geodesic paths from 0 to x ∈ X coincide as sets, so
again ∂IX is empty.

We are now ready to prove our main theorems.

Proof of Theorem 1.1. If we glue a pair of disjoint complete CAT(0)
spaces X and Y by identifying a single point in X with another point in
Y , then we get another CAT(0) space which we denote X + Y according to
the basic gluing theorem II.11.1 of [1]. It is also easy to see that X + Y is
complete and that the ideal, Gromov, and end boundaries of X + Y can be
identified with the disjoint union of the corresponding boundaries in X and
Y . The maps ν, φ, and ε for X+Y are also obtained by taking the “disjoint
union” of the corresponding maps for X and Y , e.g. νX+Y is defined by
νX+Y (x) = νX(x) for all x ∈ ∂IX and νX+Y (y) = νX(y) for all y ∈ ∂IY .
It follows that if we have separate spaces where each of the maps ν, φ, and
ε fails to be injective or surjective, then by gluing all of these spaces at a
single point, we get a space where all three of these maps fails to be both
injective and surjective.

Now ν and ε fail to be injective in a Hilbert space of dimension larger
than 1, and they fail to be surjective in the Hilbert flying saucer, according
to Proposition 3.1 and Theorem 3.4. As for φ, it fails to be injective in the
hyperbolic plane, and it fails to be surjective in a hyperbolic version of the
Hilbert flying saucer (Example 3.5). Since all of these spaces are complete
CAT(0) spaces, we can glue them to get a complete CAT(0) space that fails
to have any of these injectivity or surjectivity properties.

Finally, let X be the subset of R2 consisting of the union of the line
segments from (0, 0) to (n, 1) for all n ∈ N, and attach the Euclidean length
metric to X. Then X is an unbounded tree but it has no end, so ∂EX, ∂GX,
and ∂IX are all empty. �

The proof of Theorem 1.2 is very similar. The hyperbolic version of the
Hilbert flying saucer in Example 3.5 is complete CAT(−1), so when we
glue it at a single point to the hyperbolic plane, the resulting space is also
complete CAT(−1). By the properties of the individual space, we see that
φ for the glued space fails to be either injective or surjective. Finally the
example in the last paragraph of the previous proof is CAT(−∞), so it also
works for Theorem 1.2.
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