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Diffeomorphism groups of balls and
spheres

Kathryn Mann

Abstract. In this paper we discuss the relationship between groups
of diffeomorphisms of spheres and balls. We survey results of a topo-
logical nature and then address the relationship as abstract (discrete)
groups. We prove that the identity component of the group of smooth
diffeomorphisms of an odd dimensional sphere admits no nontrivial ho-
momorphisms to the group of diffeomorphisms of a ball of any dimen-
sion. This result generalizes theorems of Ghys and Herman. We also
examine finitely generated subgroups of diffeomorphisms of spheres, and
produce an example of a finitely generated torsion-free group with an
action on the circle by smooth diffeomorphisms that does not extend to
a C1 action on the disc.
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1. Introduction

Let M be a manifold and let Diffr0(M) denote the group of isotopically
trivial Cr-diffeomorphisms of M . If M has boundary ∂M , there is a natural
map

π : Diffr0(M)→ Diffr0(∂M)

given by restricting the domain of a diffeomorphism to the boundary. The
map π is surjective, as any isotopically trivial diffeomorphism f of the bound-
ary can be extended to a diffeomorphism F of M supported on a collar
neighborhood N ∼= ∂M × I of ∂M by taking a smooth isotopy ft from f to
the identity, and defining F to agree with ft on ∂M × {t}.
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One way to measure the difference between the groups Diffr0(M) and
Diffr0(∂M) is to ask whether π admits a section. By section, we mean a map

φ : Diffr0(∂M)→ Diffr0(M)

such that π ◦φ is the identity on Diffr0(∂M). There are several categories in
which to ask this, namely

i) Topological: Require φ to be continuous, ignoring the group structure.
ii) (Purely) group-theoretic: Only require φ to be a group homomor-

phism, ignoring the topological structure on Diffr0(M).
iii) Extensions of group actions: In the case where no group-theoretic

section exists, we ask the following local (in the sense of group theory)
question. For which finitely generated groups Γ and a homomorphisms
ρ : Γ→ Diffr0(∂M) does there exist a homomorphism φ : Γ→ Diffr0(M)
such that π ◦ φ = ρ? If such a homomorphism exists, we say that φ
extends the action of Γ on ∂M to a Cr action on M .

In this paper, we treat the case of the ball M = Bn+1 with boundary
Sn. Note in the category of homeomorphisms rather than diffeomorphisms,
there is a natural way to extend homeomorphisms of Sn to homeomorphisms
of Bn+1. This is by “coning off” the sphere to the ball and extending each
homeomorphism to be constant along rays. The result is a continuous group
homomorphism

φ : Homeo0(S
n)→ Homeo0(B

n+1)

which is also a section of π : Homeo0(B
n+1) → Homeo0(S

n) in the sense
above. We will see, however, that the question of sections for groups of
diffeomorphisms is much more interesting!

Summary of results. Our goal in this work is to paint a relatively com-
plete picture of known and new results for the ball Bn. Here is an outline.

Topological sections. In Section 2 we give brief survey of known results
on existence and nonexistence of topological sections, and the relationship
between topological sections and exotic spheres. The reader may skip this
section if desired; it stands independent from the rest of this paper.

Group-theoretic sections. In contrast with the topological case, it is a theo-
rem of Ghys that no group theoretic sections φ : Diffr0(S

n) → Diffr0(B
n+1)

exist for any n or r. A close reading of Ghys’ work in [Ghy91] produces
finitely generated subgroups of Diff0(S

2n−1) that fail to extend to Diff0(B
2n)

and we give an explicit presentation of such a group in Section 3. These ex-
amples rely heavily on the dynamics of finite order diffeomorphisms.

Extending actions of torsion-free groups. Building on Ghys’ work and using
results of Franks and Handel involving distorted elements in finite groups,
in Section 4 we explicitly construct a group Γ to prove the following.
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Theorem 1.1. There exists a finitely generated, torsion-free group Γ and a
homomorphism

ρ : Γ→ Diff∞(S1)

that does not extend to a C1 action of Γ on B2.

Note that in contrast to Theorem 1.1, any action of Z, of a free group, or any
action of any group that is conjugate into the standard action of PSL(2,R)
on S1 will extend to an acton by diffeomorphisms on B2.

Exotic homomorphisms. In Section 5, we will show that the failure of π :
Diffr0(B

n+1) → Diffr0(S
n) to admit a section is due (at least in the case

where n is odd) to a fundamental difference between the algebraic structure
of groups of diffeomorphisms of spheres and groups of diffeomorphisms of
balls. We prove

Theorem 1.2. There is no nontrivial group homomorphism

Diff∞0 (S2k−1)→ Diff1
0(B

m)

for any m, k ≥ 1.

This generalizes a result of M. Herman in [Her]. Theorem 1.2 also stands
in contrast to the situation with homeomorphisms of balls and spheres —
any continuous foliation of Bn+l by n-spheres can be used to construct a
continuous group homomorphism Homeo0(S

n)→ Homeo0(B
n+l).

Acknowledgements. The author would like to thank Christian Bonatti,
Danny Calegari, Benson Farb, John Franks, Allen Hatcher and Amie Wilkin-
son for helpful conversations and their interest in this project, and Kiran
Parkhe and Bena Tshishiku for their comments.

2. Topological sections: known results

In order to contrast our work on group-theoretic sections with the (fun-
damentally different) question of topological sections, we present a brief
summary of known results in the topological case. Let Diff(Bn rel ∂) denote
the group of smooth diffeomorphisms of Bn that restrict to the identity on

∂Bn = Sn−1. The natural restriction map Diff(Bn)
π→ Diff(Sn−1) is a fi-

bration with fiber Diff(Bn rel ∂). Hence, asking for a topological section of
π amounts to asking for a section of this fibration.

In low dimensions (n ≤ 3), it is known that the fiber Diff(Bn rel ∂) is
contractible, so a topological section exists. The n = 2 case is a classical
theorem of Smale [Sma59], and the n = 3 case a highly nontrivial theorem
of Hatcher [Hat83]. Incidentally, Diff0(B

1 rel ∂) is also contractible and this
is quite elementary — an element of Diff(B1 rel ∂) is a nonincreasing or
nondecreasing function of the closed interval, and we can explicitly define a
retraction of Diff(B1 rel ∂) to the identity via

r : Diff(B1 rel ∂)× [0, 1]→ Diff(B1 rel ∂)
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r(f, t)(x) = tf(x) + (1− t)x.
Whether Diff(B4 rel ∂) is contractible is an open question. To the best

of the author’s knowledge, whether Diff0(B
4)

π→ Diff0(S
3) has a section

is also open. However, in higher dimensions Diff(Bn rel ∂) is not always
contractible, giving a first obstruction to a section. This is related to the
existence of exotic smooth structures on spheres.

Exotic spheres. Let f ∈ Diff(Bn rel ∂) be a diffeomorphism. We can use
f to glue a copy of Bn to another copy of Bn along the boundary, producing
a sphere Snf with a smooth structure. If f lies in the identity component of

Diff(Bn rel ∂), then Snf will be smoothly isotopic to the standard n-sphere
Sn. If not, there is no reason that Snf need even be diffeomorphic to Sn.

In fact, it follows from the pseudoisotopy theorem of Cerf in [Cer70] that,
for n ≥ 5, the induced map from π0(Diff(Bn rel ∂)) to the group of exotic
n-spheres is injective.

Moreover — and more pertinent to our discussion — Smale’s h-cobord-
ism theorem ([Sma61]) implies the map from π0(Diff(Bn rel ∂)) to exotic
n-spheres is surjective. In particular, this means that in any dimension n
where exotic spheres exist, π0(Diff(Bn rel ∂)) 6= 0. Let us now return to the
fibration π : Diff(Bn) → Diff(Sn−1) and look at the tail end of the long
exact sequence in homotopy groups. If we consider the restriction of π to

the identity components Diff0(B
n)

π→ Diff0(S
n−1) we have

· · · → π1(Diff0(B
n))→ π1(Diff0(S

n−1))→ π0(Diff(Bn rel ∂))→ 0

Thus, whenever exotic spheres exist, the connecting homomorphism

π1(Diff0(S
n−1))→ π0(Diff(Bn rel ∂))

is nonzero, and so no section of the bundle exists.

Question 2.1. Does this bundle have a section in any dimensions n ≥ 5
where exotic spheres do not exist?

We remark that for all n ≥ 5, it is known that Diff(Bn rel ∂) has some
nontrivial higher homotopy groups. Indeed, we learned from Allen Hatcher
that recent work of Crowey and Schick [CS13] shows that Diff(Bn rel ∂) has
infinitely many nonzero higher homotopy groups whenever n ≥ 7.

3. Group-theoretic sections

Recall from the introduction that a group-theoretic section of π is a (not
necessarily continuous) group homomorphism φ : Diffr0(S

n) → Diffr0(B
n+1)

such that π ◦ φ is the identity. Recall also that, when Γ is a group and
ρ : Γ → Diffr0(S

n) specifies an action of Γ on Sn, we say that ρ extends to
a Cr action on Bn+1 if there is a homomorphism φ : Γ→ Diffr0(B

n+1) such
that π ◦ φ = ρ.

The question of existence of group-theoretic sections for spheres and balls
is completely answered by the following theorem of Ghys.
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Theorem 3.1 ([Ghy91]). There is no section of Diff1
0(B

n+1)→ Diff1
0(S

n).
Moreover, there is no extension of the standard embedding of Diff∞0 (Sn) in
Diff1

0(S
n) to a C1 action of Diff∞0 (Sn) on Bn+1.

We ask to what extent the failure of sections holds locally, i.e., for finitely
generated subgroups. At one end of the spectrum, if Γ is a free group, and
ρ : Γ → Diffr0(S

n) is any action, we can build an extension of ρ by taking
arbitrary Cr extensions of the generators of ρ(Γ) — for instance, by using
the collar neighborhood strategy sketched in the introduction. There are no
relations to satisfy so this defines a homomorphism and gives a Cr action of
Γ on Bn+1.

At the other end, a careful reading of Ghys’ proof of Theorem 3.1 gives
the following corollary of Theorem 3.1.

Corollary 3.2. For any n, there exists a finitely generated subgroup Γ of
Diff∞0 (S2n−1) that does not extend to a subgroup of Diff1

0(B
2n).

Although this follows directly from Ghys’ proof of Theorem 3.1, we outline
the argument below in order to illustrate some of Ghys’ techniques. We
pay special attention to the n = 1 case because we will use part of this
construction in Section 4. The reader will note that the argument is unique
to odd-dimensional spheres, so does not answer the following question.

Question 3.3. Is there a finitely generated group Γ and a homomorphism
ρ : Γ → Diff∞0 (S2n) that does not extend to a C1 (or even Cr for some
1 < r ≤ ∞) action on B2n+1?

Sketch proof of Corollary 3.2. In the n = 1 case, we can take Γ to be
a two-generated group as follows. Any rotation of S1 can be written as a
commutator — a nice argument for this using some hyperbolic geometry
appears in Proposition 5.11 of [Ghy01] or Proposition 2.2 of [Ghy91]. So let
f and g be such that their commutator [f, g] is a finite order rotation, say
a rotation of order 2. Using the construction in [Ghy01], we may even take

f and g to be hyperbolic elements of PSL(2,R) ⊂ Diff∞0 (S1). Let f̃ and g̃
be lifts of f and g to diffeomorphisms of the threefold cover of S1. Since
f and g have fixed-points, we can choose f̃ and g̃ to be the (unique) lifts

that have fixed-points. Then the commutator [f̃ , g̃] will be rotation of the
threefold cover of S1 by π/3. Since the threefold cover of S1 is also S1, we

can consider f̃ and g̃ as diffeomorphisms of S1.
Let Γ be the subgroup of Diff∞0 (S1) generated by f̃ and g̃. It has the

following relations:

i) [f̃ , g̃]6 = 1.

ii) [f̃ , [f̃ , g̃]2] = [g̃, [f̃ , g̃]2] = 1.

The second relation here comes from the fact that [f̃ , g̃]2 is the covering
transformation. There may, incidentally, be other relations satisfied by Γ,
but this is of no importance to us.
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We claim that Γ does not extend to a subgroup of Diff1
0(B

2). To see
this, we argue by contradiction. Assume that there is a homomorphism
φ : Γ → Diff1

0(B
2) such that for any γ ∈ Γ, the restriction of φ(γ) to

∂B2 = S1 agrees with γ.
Let r denote rotation of S1 by 2π/3, this is the element [f̃ , g̃]2 ∈ Γ,

and so φ(r) is an order 3 diffeomorphism of the ball acting by rotation
on the boundary. In particular, it follows from Kerekjarto’s theorem in
[Ker19] that φ(r) is conjugate to an order three rotation, hence has a unique
interior fixed-point x. (A reader unfamiliar with Kerekjarto’s theorem on
finite order diffeomorphisms may wish to consult Constantin and Kolev’s
proof in [CK94]).

By construction, f̃ and g̃ both commute with r so φ(f̃) and φ(g̃) commute

with φ(r), hence fix x. The derivatives Dφ(f̃)x and Dφ(g̃)x commute with
Dφ(r)x which acts as rotation by 2π/3 on the tangent space. Moreover,

[Dφ(f̃)x, Dφ(g̃)x]2 = Dφ(r)x, a rotation by 2π/3. However, the centralizer
of rotation by 2π/3 in SL(2,R) is abelian, so writingDφ(r)x as a commutator
of elements in its centralizer is impossible. This is the desired contradiction,
showing that no extension of the action of Γ exists.

The case for n > 1 is similar. We consider S2n−1 as the unit sphere{
(z1, . . . , zn) ∈ Cn

∣∣∣∣ n∑
i=1

|zi|2 = 1

}
.

The idea is to show that the finite order element

r : (z1, . . . , zn) 7→ (λ1z1, . . . .λnzn)

where λi are distinct pth roots of 1, can also be expressed as a product of
commutators of elements f1, f2, . . . fk that each commute with a power of r.
Then we can take Γ to be the subgroup generated by the diffeomorphisms
fi. Supposing again for contradiction that φ : Γ → Diff1

0(B
2n) is a section,

one can show with an argument using Smith theory that the diffeomorphism
φ(r) ∈ Diff1

0(B
2n) has a single fixed-point x. It follows in a similar way to

the n = 1 case that the derivative of φ(r) at x has abelian centralizer, giving
a contradiction. �

4. Actions of torsion-free groups

The proof of Corollary 3.2 relied heavily on finite order diffeomorphisms.
Ghys’ proof of Theorem 3.1 — even in the case of even dimensional spheres
— also hinges on the clever use of finite order diffeomorphisms (and the
tools that they bring: Smith theory, fixed sets, derivatives in SO(n), etc.).
Thus, we ask the following refinement of Question 3.3.

Question 4.1. Does there exist a finitely generated, torsion-free group Γ
and a homomorphism ρ : Γ → Diff∞0 (Sn) that does not extend to a smooth
(or even Cr for some r ≥ 1) action on Bn+1?
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The following theorem answers this question for n = 1.

Theorem 1.1. There exists a finitely generated, torsion-free group Γ and a
homomorphism φ : Γ → Diff∞(S1) that does not extend to a C1 action on
B2.

Our proof modifies Ghys’ construction by using a dynamical constraint
based on algebraic structure to force a diffeomorphism to act by rotation at
a fixed-point. The algebraic structure in question is the notion of distorted
elements and the constraint on dynamics follows from a powerful theorem
of Franks and Handel. We provide a brief introduction in the following few
paragraphs; a reader familiar with this work may wish to skip ahead to
Corollary 4.3 and the proof of Theorem 1.1.

Distorted elements. Let Γ be a finitely generated group, and let S =
{s1, . . . , sk} be a symmetric generating set for Γ. For an element g ∈ Γ, the
word length (or S-word length) of g is the length of the shortest word in the
letters s1, . . . , sk that represents g. We denote word length of g by |g|.

We say that g ∈ Γ is distorted provided that g has infinite order and that

lim inf
n→∞

|gn|
n

= 0.

Although the word length of gn depends on the choice of generating set S
for Γ, it is not hard to see that whether g is distorted or not is independent
of the choice of S.

In [FH06], Franks and Handel prove a theorem about the dynamics of
actions of distorted elements in finitely generated subgroups of Diff0(Σ),
where Σ is a closed, oriented surface. The following theorem is a consequence
of their main result. We use the notation fix(g) for the set of points x such
that g(x) = x, and per(g) for the set of periodic points for g.

Theorem 4.2 (Franks–Handel, [FH06]). Suppose that f is a distorted ele-
ment in some finitely generated subgroup of Diff1

0(S
2). Suppose also that for

the smallest n > 0 such that fix(fn) 6= ∅, there are at least three points in
fix(fn). Then per(f) = fix(fn).

We can derive a corresponding statement about actions on the disc.

Corollary 4.3. Suppose that f is a distorted element in some finitely gen-
erated subgroup of Diff1

0(B
2) with a periodic point on the boundary of period

k > 1. Then fix(f) consists of a single point.

Proof. Suppose f is distorted in Γ ⊂ Diff1
0(B

2). By the Brouwer fixed-
point theorem, f has at least one fixed-point. Since f has a periodic point
on the boundary S1, all fixed-points for f lie in the interior of B2. Double
B2 along the boundary to produce the sphere, and double the action of
Γ. This can be smoothed to a C1 action on S2 using the techniques of K.
Parkhe in [Par12]. The smoothing construction will not change the set of
fixed or periodic points. Applying Theorem 4.2 to the action on S2, we
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conclude that the doubled action of Γ on the sphere can have at most two
fixed-points (since there are nonfixed periodic points), so the original action
of f has a single fixed-point. �

With Corollary 4.3 as a tool, we are now in a position to prove Theo-
rem 1.1.

Proof of Theorem 1.1. Recall the group Γ ⊂ Diff0(S
1) from the proof

of Corollary 3.2. It is generated by two elements f̃ and g̃, satisfying the
relations [f̃ , g̃]6 = 1 and [f̃ , [f̃ , g̃]2] = [g̃, [f̃ , g̃]2] = 1. Let Γ′ be the lift of
Γ to the universal central extension Diff∞Z (R) of Diff∞0 (S1). Explicitly, we
can realize Γ′ as the group of all lifts of elements of Γ to diffeomorphisms of
the infinite cyclic cover R of S1. For concreteness, let f̂ and ĝ denote the
lifts of f̃ and g̃ that have fixed-points. Then Γ′ is generated by f̂ , ĝ, and
the central element t, and satisfies the relation t = [f̂ , ĝ]2. Note that, since
Diff∞Z (R) is torsion-free, Γ′ is as well.

Finally, to complete our construction, let Γ̂ be the HNN extension of Γ′

obtained by adding a generator a and relation ata−1 = t4. HNN extensions
of torsion-free groups are torsion-free, so Γ̂ is torsion-free also.

We now construct a homomorphism ρ : Γ̂ → Diff∞0 (S1) and show that

it does not admit an extension φ : Γ̂ → Diff1
0(B

2). The homomorphism ρ

will not be faithful (and in fact the image ρ(Γ̂) will have torsion), but this
is besides the point — the interesting part of this question is extending ρ as
an action of Γ. For example, a nonfaithful action (with torsion or not) of a
free group F on S1 always extends to the disc as an action of a free group
just by arbitrarily extending each generator.

To define ρ, set ρ(a) = id, and for all γ ∈ Γ̃ let ρ(γ) be the action of γ
on the quotient R/Z, i.e., the quotient action on the original circle S1. In
other words, the image of ρ in Diff∞0 (S1) is the group Γ of Corollary 3.2.

Note that the fact that ρ(t) = [ρ(f̂), ρ(ĝ)]2 is rotation by 2π/3 ensures that
the relation ρ(a)ρ(t)ρ(a)−1 = ρ(t)4 is satisfied.

We claim that this action does not extend to a C2 action on the disc. To
see this, suppose for contradiction that some extension φ : Γ̂ → Diff1

0(B
2)

exists. If φ(t) has finite order, then it must be rotation by π/3, and so has
a unique fixed-point x. Now we make the same argument (verbatim!) as in

the proof of Corollary 3.2: since φ(t) commutes with φ(f̂) and φ(ĝ), both

φ(f̂) and φ(ĝ) fix x and have derivatives at x in SO(2). This contradicts the

fact that φ(t) is the commutator of φ(f̂) and φ(ĝ).

If instead φ(t) has infinite order, then it is a distorted element in φ(Γ̂).
We know also that the restriction of φ(t) to the boundary is rotation by
2π/3. Applying Corollary 4.3, we conclude that φ(t) has a single fixed-point

x, and x is again fixed by φ(f̂) and φ(ĝ). If the derivative Dφ(t)x were a
nontrivial rotation of order at least 3, we could again look at derivatives at x
and give the same argument as in the finite order case to get a contradiction.
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Thus, it remains only to show that Dφ(t)x is a rotation of order at least 3.
We show that it is rotation of order 3 exactly.

Lemma 4.4. The derivative Dφ(t)x is a rotation of order 3.

Proof. Since t is central in Γ and since ρ(a)ρ(t)ρ(a)−1x = ρ(t)4x = x im-

plies that ρ(a)x = x, the whole group φ(Γ̂) fixes x. Moreover, the derivatives
of ρ(t) and ρ(a) at x satisfy

Dφ(a)xDφ(t)xDφ(a)−1x = Dφ(t)4x.

This relation in GL(2,R) implies that either Dφ(t)x has a fixed tangent
direction or is an order 3 rotation. Our strategy to show that it is order 3
is to compare the “rotation number” of φ(t) at the fixed-point and on the
boundary.

Blow up the disc B2 at x to get a C0 action of Γ̂ on the closed annulus,
A. The action of Γ̂ on one boundary component of A is the linear action on
the space of tangent directions at x (so t either acts with a fixed-point or as
an order 3 rotation), and on the other boundary it is the original action on
∂B2 as an order 3 rotation.

With this setup, we can apply the notion of “linear displacement” from
[FH06] and conclude that since ρ(t) is distorted, it must act on each bound-
ary component of A with the same rotation number and hence act as an
order 3 rotation on both (See lemma 6.1 of [FH06]). But instead of defining
“linear displacement” and “rotation number” here, it will be faster to give a
complete, direct proof for our special case. The reader familiar with rotation
numbers for circle homeomorphisms will see that it readily generalizes.

Suppose for contradiction that t acts on one boundary component of A
with a fixed-point. Let Ã denote the universal cover of A, identified with
R× [0, 1] with covering transformation T : (x1, x2) 7→ (x1 + 1, x2).

Let t̃ ∈ Homeo0(Ã) be the lift of the action of t to Ã with a fixed-point on
one boundary component; without loss of generality assume (x0, 1) is fixed.
Then t̃ acts on R × {0} as translation by m + 1/3 for some integer m. Let
ã be any lift of the action of a.

Now ã(t̃ )nã−1 is a lift of (t̃ )4
n
, so is of the form (t̃ )4

n
T l for some l. In

particular, considering the distance between the images of (x0, 0) and (x0, 1)
we have

‖ã(t̃ )nã−1(x0, 1)− ã(t̃ )nã−1(x0, 0)‖ = ‖(t̃ )4
n
(x0, 1)− (t̃ )4

n
(x0, 0)‖

= ‖(x0, 1)− (x0 + (m+ 1/3)4n, 1)‖
∼ (m+ 1/3)4n

However, the distance ‖ã(t̃ )nã−1(x0, 1)− ã(t̃ )nã−1(x0, 0)‖ grows linearly in
n — it is bounded by the maximum displacement of ã and t̃. Precisely, if

d = max
z∈Ã

{
max{‖ã(z)− z‖, ‖t̃(z)− z‖}

}
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then we have

2(n+ 2)d+ 1 ≤ ‖ã(t̃ )nã−1(x0, 1)− ã(t̃ )nã−1(x0, 0)‖
and this is our desired contradiction. �

Remark 4.5. It is possible to modify the construction in the proof Theo-
rem 1.1 to avoid finite order elements. The idea is to modify ρ(f̂) slightly so

that the diffeomorphism ρ(t) := [ρ(f̂), ρ(ĝ)]2 is the composition of an order 3
rotation r with an r-equivariant diffeomorphism h supported on a collection
of small intervals in S1 and conjugate to a translation on these intervals.
We then modify ρ(a) so that it is remains r-equivariant, but is conjugate to
an expansion on the intervals of supp(h) — i.e., so that h and ρ(a) act by a

standard Baumslag–Solitar action on these intervals. Done correctly, ρ(f̂),
ρ(ĝ) and ρ(a) will be infinite order diffeomorphisms, and will generate a

subgroup of Diff∞0 (S1) satisfying the relations [ρ(t), ρ(f̂)] = [ρ(t), ρ(ĝ)] = 1
and ρ(t)ρ(a)ρ(t)−1 = ρ(a)4. We leave the details to the reader.

5. Exotic homomorphisms: nonexistence

In [Her], Michael Herman proved the following stronger version of Theo-
rem 3.1 in the case where n = 1.

Theorem 5.1 ([Her]). There are no nontrivial group homomorphisms

Diff∞0 (S1)→ Diff1
0(B

2).

Herman’s key tools are the deep fact that Diff∞0 (S1) is simple, and the
easy fact that S1 is a finite cover of itself. We combine some of these ideas
with the techniques of Ghys in [Ghy91] to prove a similar theorem for any
odd dimensional sphere, with any group of diffeomorphisms of a ball as the
target. This is Theorem 1.2 as stated in the introduction.

Theorem 1.2. There are no nontrivial group homomorphisms

Diff∞0 (S2k−1)→ Diff1
0(B

m)

for any m, k ≥ 1.

Proof. Let n = 2k − 1 and identify Sn with the unit sphere{
(z1, . . . , zk) ∈ Cn

∣∣∣∣∣
k∑
i=1

|zi|2 = 1

}
.

For any prime p, there is a free Zp -action on Sk generated by the map

fp : (z1, . . . , zk) 7→ (µ1z1, . . . , µkzk)

where µi are any pth roots of unity.
Suppose φ : Diff∞0 (Sn)→ Diff0(B

m) is a nontrivial homomorphism. Since
Diff∞0 (Sn) is a simple group (a deep result due to Mather and Thurston, see,
e.g., [Ban97] for a proof), φ must be injective. By the Brouwer fixed-point
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theorem, φ(fp) must fix a point. Since fp is a finite order diffeomorphism,
the set fix(φ(fp)) ⊂ Bm of fixed-points of φ(f) is a submanifold of Bm (one
way to see this is to average a metric so that fp acts by isometries). That fp is
orientation preserving and of finite order further implies that fix(φ(fp)) has
codimension at least 2, this is because any finite order diffeomorphism f is
an isometry with respect to some metric, and if f is nontrivial its derivative
at a fixed-point is a nontrivial finite order element of O(n).

Let H be the group of isotopically trivial diffeomorphisms of Sn/〈fp〉 ∼=
Sn. We have an exact sequence

0→ Zp → H ′ → H → 1

where H ′ is the group of all lifts of diffeomorphisms in H to fp-equivariant
diffeomorphisms of Sn.

We claim now that Zp is the only normal subgroup of H ′. To see this,
suppose that N ⊂ H ′ is a normal subgroup. Then the image of N in H
must either be trivial or all of H. If the image is trivial, then either N is
trivial or N = Zp and we are done. If the image of N in H is all of H, we

consider a S1×· · ·×S1 subgroup of H, where the ith S1 factor is the norm 1
complex numbers mod µi. An element (λ1, . . . λk) ∈ (S1)k/(µ1, . . . , µk) acts
on Sn/〈fp〉 by pointwise multiplication,

(z1, . . . zk) 7→ (λ1z1, . . . λkzk).

Consider the extension Γ as in the diagram below.

0 // Zp // H ′ // H // 1

0 // Zp // Γ //
?�

OO

S1 × · · · × S1 //

?�

OO

1.

Specifically, Γ is the group of all lifts of these actions

(z1, . . . zk) 7→ (λ1z1, . . . λkzk)

to Sn, the p-fold cover of Sn/〈fp〉. It may be helpful for the reader to
consider the n = 1 case, in which case we are just working with rotations of
S1 and their lifts to a p-fold cover of S1.

Note that N ∩Γ is a normal subgroup of Γ that projects to the full group

S1 × · · · × S1. In particular, since

(
µ

1
p

1 , . . . µ
1
p
n

)
∈ S1 × · · · × S1, we know

that some diffeormorphism g of the form

(z1, . . . zk)
g7→
(
µ
n1+

1
p

1 z1, . . . µ
nk+

1
p

k zk

)
, ni ∈ Z

lies in Γ, hence in H ′. It follows that gp = fp is a generator of Zp, so Zp ⊂ N .
Since Zp ⊂ N and N projects to H, it follows that N = H ′, which is what
we wanted to show.
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Having shown that Zp is the only normal subgroup of H ′, we can conclude
that the action of φ(H ′) on fix(φ(fp)) ⊂ Bm is either faithful, trivial, or has
kernel Zp. We already know that Zp lies in the kernel — this is φ(fp) acting
on its fix set — so the action of φ(H ′) is not faithful. If the action is trivial,
then for x ∈ fix(φ(fp)), we get a representation

D : H ′ → GL(m,R) ⊂ GL(m,C)

by sending a diffeomorphism f to the derivative of φ(f) at x. Since φ(fp)
has nontrivial derivative at any point, and Zp = 〈fp〉 is the only normal
subgroup of H ′, the representation D must be faithful. We will show this is
impossible. Indeed, it should already seem believable to the reader that H ′

is a “large” group and so is not linear. Here is a short, elementary argument
to make this clear.

Proof that D cannot be a faithful representation. Since Dφ(fp)(x)
has order p, after conjugation in GL(m,C) we may assume it is diagonal
of the form 

α1In1 0 · · · 0
0 α2In2 · · · 0
...

...
. . .

...
0 0 · · · αkInk


where αi are each distinct pth roots of unity, the distinct complex eigenvalues
of Dφ(fp)(x), and Ini is the ni × ni square identity matrix.

The centralizer of such a matrix in GL(m,C) is the set of block diagonals
of the form 

An1 0 · · · 0
0 An2 · · · 0
...

...
. . .

...
0 0 · · · Ank


with Ani ∈ GL(ni,C). In other words, the centralizer is a subgroup iso-
morphic to GL(n1,C) × GL(n2,C) × · · · × GL(nk,C). In particular, (after
conjugation) we may view H ′ as a subgroup of GL(n1,C) × GL(n2,C) ×
· · · ×GL(nk,C), with fp ∈ H a central element.

Since Dφ(fp)(x) has order p, at least one eigenvalue is not 1. Without
loss of generality, assume α1 6= 1. Now consider the homomorphism H ′ → R
given by projecting GL(n1,C)×GL(n2,C)× · · · ×GL(nk,C) onto the first
factor — i.e., onto GL(n1,C) — and then taking the determinant. We
may assume that we chose p > m, so as to ensure that the image αn1

1 of fp
under this homomorphism is nontrivial. However, we showed above that the
subgroup generated by fp was the only normal subgroup of H ′. This means
that this homomorphism to R must be faithful — but this is impossible
since H ′ itself is nonabelian. �
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Thus, it remains only to deal with the case where H ′ acts on fix(φ(fp))
with kernel Zp. In this case, we introduce an inductive argument. Consider
the diffeomorphism

fp2 : (z1, . . . , zk) 7→ (ν1z1, . . . , νkzk)

where ν2i = µi. Then fp2 is an order p2 diffeomorphism acting freely on Sn,
commuting with fp and so an element of H ′. Since fp2 /∈ Zp, we know that
φ(fp2) acts nontrivially on fix(φ(fp)). Moreover, fix(φ(fp2)) ⊂ fix(φ(fp)),
and is a nonempty submanifold of codimension at least two.

As before, we consider a group of diffeomorphisms of a quotient of Sn. Let
H2 be the group of isotopically trivial diffeomorphisms of Sn/〈fp2〉. Since
Sn/〈fp2〉 is a compact manifold, H2 is a simple group. Let H ′2 be the group
of all lifts of elements of H2 to Sn. The argument we gave above for H
works (essentially verbatim) to show that 〈fp〉 ∼= Zp, and 〈fp2〉 ∼= Zp2 are
the only normal subgroups of H ′2.

Now consider the action of H ′2 on fix(〈fp2〉). If the action is trivial, we get
as before a global fixed-point and a linear representation H ′2 → GL(m,R).
The argument using matrix centralizers above can be applied again in this
case to derive a contradiction. Otherwise, the action of H ′2 on fix(φ(fp2) is
nontrivial. In this case, we can proceed inductively by considering higher
powers of p and corresponding diffeomorphisms fpk . Each time we will
reduce the dimension of the fix set (a finite process) or derive a contradiction.

�

Note that the proof above depended on the fact that S2k−1 admits finite
order diffeomorphisms that act freely, and so it does not readily generalize
to odd dimensional spheres. We conclude with a natural follow-up problem.

Problem 5.2. Describe all homomorphisms Diff∞0 (S2n)→ Diff1
0(B

m). Can
such a homomorphism be nontrivial?
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