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Commutators in the Steenrod algebra

John H. Palmieri and James J. Zhang

Abstract. A family of bases for the mod p Steenrod algebra is con-
structed from iterated commutators of algebra generators.
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1. Introduction

Fix a prime p and let A = Ap denote the mod p Steenrod algebra. In this
paper, we construct a new basis for A ; its elements are products of iterated
commutators of the algebra generators for A . We state our results at an
odd prime, then indicate the changes necessary when p = 2.

Recall that A is a graded Hopf algebra over the field Fp, and from Milnor’s
work [Mil58] the graded dual A ∗ of A has the form

A ∗ ∼= Λ(τ0, τ1, . . . )⊗ Fp[ξ1, ξ2, . . . ].

This is graded by setting deg τi = 2pi − 1, deg ξi = 2(pi − 1). The Milnor
basis for the Steenrod algebra is the dual to the monomial basis for A ∗: its
elements have the form

Qi1Qi2 . . .P(r1, r2, . . . ),

dual to

τi1τi2 . . . ξ
r1
1 ξ

r2
2 . . . .
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It is well known that a minimal set of algebra generators for A is

{Q0,P
1,Pp,Pp2 , . . . ,Ppi , . . . }.

For any positive integer s, the element Ps is equal to the Milnor basis
element P(s), and we recall from [Mil58, p. 151] that Qi+1 may be defined
inductively, starting from Q0, by

(1.1) Qi+1 = [Ppi , Qi] = PpiQi −QiPpi .

We define elements cs,t of A as follows: for each integer s ≥ 0, let cs,1 =

Pps , and for t ≥ 2, inductively define cs,t = [Pps+t−1
, cs,t−1]. For example,

c0,3 = [Pp2 , [Pp,P1]], c1,4 = [Pp4 , [Pp3 , [Pp2 ,Pp]]].

The degree of cs,t is

deg cs,t = 2ps(pt − 1).

We refer to each element cs,t as an iterated commutator of length t. (We
also note that by Milnor’s calculation (1.1), the Qi’s can also be viewed as
iterated commutators of length i+ 1 — for example, Q2 = [Pp, [P1, Q0]].)

For elements in low degrees, alternate notation is sometimes helpful: let
si = P i, let sij = [si, sj ], and inductively let si1,i2,...,in = [si1 , si2,...,in ]. Thus
when p = 5,

c0,3 = s25,5,1 = [P25, [P5,P1]].

The ‘s’ notation is easier to read: it is easy to read off the elements which
form the commutator, and the degree of si1,...,in is just 2(p−1)(i1 + · · ·+ in).
On the other hand, c0,5 is more compact than sp4,p3,p2,p,1.

Theorem 1.2 (p odd). Choose a linear ordering on the set

{cs,t : s ≥ 0, t ≥ 1}
of iterated commutators. Then the products

Qi1 . . . Qimc
j1
s1,t1
· · · cjnsn,tn

where i1 < · · · < im, cs1,t1 < · · · < csn,tn, and 1 ≤ jk ≤ p − 1 for each k,
form a basis for the Steenrod algebra.

We refer to these bases as “commutator bases”. See Theorem 1.3 for the
p = 2 case, and see Remarks 2.5 and 3.2 for generalizations.

For example, consider the degree 52 part of the mod 3 Steenrod algebra.

Note that this degree is divisible by 4. The elements P3i have degrees
divisible by 4, while the Qi’s have degrees congruent to 1 mod 4. There are
only three Qi’s with degree less than 52, so they will not be involved in the
basis in this degree. The iterated commutators in degree 52 and below are

s1 = P1, deg = 4, s3 = P3, deg = 12,

s9 = P9, deg = 36, s31 = [P3,P1], deg = 16,

s93 = [P9,P3], deg = 48, s931 = [P9, [P3,P1]], deg = 52.
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Two different commutator bases in this degree are

{s931, s1s93, s9s31, s21s3s231, s1s3s9},
{s931, s93s1, s31s9, s231s3s21, s9s3s1}.

There are six iterated commutators involved here, and thus 6! different ways
of ordering them, producing 24 different commutator bases in this degree:
there are 6 permutations of s1, s3, and s9 for the last entry, the choice
between s1s93 and s93s1 doubles this, and the choice between s9s31 and
s31s9 doubles it again. (The element s31 commutes with s1 and s3, so its
ordering relative to those two elements plays no role.)

1.1. The p = 2 case. When p = 2, the picture is very similar. The dual
of the mod 2 Steenrod algebra has the form

A ∗ ∼= F2[ξ1, ξ2, . . . ],

graded by deg ξi = 2i − 1. As in the odd prime case, the Milnor basis is the
dual to the monomial basis, with

Sq(r1, r2, . . . ) dual to ξr11 ξ
r2
2 . . . .

A minimal generating set for A is {Sq2i : i ≥ 0}. The iterated commutators
cs,t and the s notation are defined exactly as above, with Sq− in place of
P−; for example,

c0,3 = s421 = [Sq4, [Sq2, Sq1]].

The degrees of these commutators are as follows:

deg cs,t = 2s(2t − 1), deg si1,...in = i1 + · · ·+ in.

We have the following result.

Theorem 1.3 (p = 2). Choose a linear ordering on the set

{cs,t : s ≥ 0, t ≥ 1}
of iterated commutators. Then the products

cs1,t1 · · · csn,tn ,
where cs1,t1 < · · · < csn,tn, form a basis for the Steenrod algebra.

1.2. Other results, organization. Many other bases for the Steenrod
algebra have been constructed, at least when p = 2 — see the papers of
Monks [Mon98] and Wood [Woo98] for more information. Wood points out
that many of the bases are comprised of products of distinct elements from
degrees of the form 2s(2t−1), and the commutator bases fit into this pattern.

One good feature of the commutator bases is that they are expressed in
terms of the algebra generators Q0 and Ppn . A consequence of this is that
the elements of the commutator bases may be explicitly written as poly-
nomials in these generators. Another consequence is that the commutator
bases restrict to give bases for the sub-Hopf algebras A (n) of A . (Unfor-
tunately, they don’t restrict to give bases for every sub-Hopf algebra of A
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— this is discussed in Section 3.) Fix n ≥ 0 and recall that A (n) is the

subalgebra of A generated by Q0 and {Ppi : 0 ≤ i ≤ n − 1} (or when

p = 2, the subalgebra generated by {Sq2i : 0 ≤ i ≤ n}). This turns out to
be closed under the coproduct, and hence is actually a sub-Hopf algebra.

Corollary 1.4. Fix an integer n ≥ 0.

(a) When p = 2, an iterated commutator cs,t is in A (n) if and only if
s+ t ≤ n+1. Given a linear ordering on the set {cs,t : s+ t ≤ n+1}
of commutators in A (n), the set of products

cs1,t1 · · · csk,tk
such that cs1,t1 < · · · < csk,tk and si + ti ≤ n+ 1 for each i, forms a
basis for A (n).

(b) When p > 2, an iterated commutator cs,t is in A (n) if and only if
s + t ≤ n. Also, Qi is in A (n) if and only if i ≤ n. Given a linear
ordering on the set {cs,t : s + t ≤ n} of commutators in A (n), the
set of products

Qi1 . . . Qimc
j1
s1,t1
· · · cjksk,tk

where i1 < · · · < im ≤ n, cs1,t1 < · · · < csn,tn, si + ti ≤ n, and
1 ≤ jk ≤ p− 1, forms a basis for A (n).

At the prime 2, for example, the ordering s1 < s2 < s21 determines the
following basis for A (1):

{1, s1, s2, s1s2, s21, s1s21, s2s21, s1s2s21}.

(For most of these elements, the ordering has no effect; for instance, the
six permutations of the elements s1, s2, and s21 all yield the same product
s1s2s21. Changing the ordering can only affect the basis in degree 3, in
which the two commutator bases are {s1s2, s21} and {s2s1, s21}.)

Organization: In the next section, we prove Theorems 1.2 and 1.3; the
main tools are the May filtration and the Poincaré-Birkhoff-Witt (PBW)
theorem. In Section 3, we discuss the relationship between the iterated
commutator cs,t and the element P st , and in Section 4, we discuss several
ways in which Wall’s 1960 paper laid the seeds for the ideas here. Finally,
in Section 5, we discuss some questions which motivated this work about
relationships between Artin–Schelter regular algebras and finite-dimensional
sub-Hopf algebras of the Steenrod algebra.

Acknowledgments. During the writing of this paper, a number of compu-
tations were done using the computer software Sage [Sage]. These were of
two sorts: checking of results like Lemma 2.3 before we had a proof, and get-
ting Milnor basis expressions for elements like [Sq1, [Sq2, [Sq4, [Sq8,Sq16]]]]
— see Section 3. None of the proofs in the paper depend on these calcula-
tions.
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2. Proof of the main theorem

In this section we prove Theorems 1.2 and 1.3, using the May filtration
and the Poincaré–Birkhoff–Witt theorem. Along the way, we compare the
iterated commutators to the more familiar Margolis P st elements, and we
show that modulo terms of higher filtration, cs,t is congruent to P st . This
allows us to prove our main result, and also to reprove a theorem of Monks
about P st -bases. For more about how cs,t and P st compare, see Section 3
below.

We can filter any augmented algebra by powers of the augmentation ideal;
when applied to the Steenrod algebra A , this is also called the May filtra-
tion. May first described this in his thesis [May64], and Ravenel has a nice
exposition [Rav86].

We let I denote the augmentation ideal of A , and then we define F 0A =
A and FnA = In for any n ≥ 1. One of May’s main results [May64,
May66] is that the associated graded algebra gr A is a primitively generated
Hopf algebra, and so is isomorphic to the restricted enveloping algebra of a
restricted Lie algebra. In the case of the Steenrod algebra, he identifies the
Lie algebra; see Ravenel [Rav86] also. We state what we need of his results
below.

For any element x ∈ A , we write x for its image in the associated graded

algebra gr A . We let P st be the Milnor basis element dual to ξp
s

t : that is,
P st = P(0, . . . , 0︸ ︷︷ ︸

t−1

, ps).

Theorem 2.1 (May). (a) When p = 2, the associated graded algebra
gr A is isomorphic to the restricted enveloping algebra of the graded
restricted Lie algebra with basis {P st : s ≥ 0, t ≥ 1}. The restriction
is trivial.

(b) When p > 2, the associated graded algebra gr A is isomorphic to the
restricted enveloping algebra of the graded restricted Lie algebra with
basis

{Qi : i ≥ 0} ∪ {P st : s ≥ 0, t ≥ 1}.

The restriction is trivial.

There is also a description of the Lie bracket, but we do not need it.
We recall another result of May’s. Following May [May64], the weight of

a nonzero element a of A is the integer n so that a ∈ FnA and a 6∈ Fn+1A .
For example, if a = Sq2 Sq2 = Sq1 Sq2 Sq1, then a is in F 2 because it is a
product of two indecomposables, and it is also in F 3 since it is a product
of three indecomposables. One can see that it may not be written involving
nontrivial products of four indecomposables, so the weight of this element
is 3. The element Sq4 + Sq2 Sq2 has weight 1, because every expression for
it in terms of indecomposables involves the singleton Sq4.
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Lemma 2.2 (Theorem 2.6 in [May64]). Given a finite sequence (r1, r2, . . . )
of non-negative integers, write each ri in base p: ri =

∑
j p

jrij with 0 ≤
rij ≤ p − 1. Then the weight of the Milnor basis element P(r1, r2, . . . ) is∑

i,j irij. Also, the weight of Qi is i+ 1. Therefore the weight of the Milnor
basis element

Qi1Qi2 . . .P(r1, r2, . . . )

is
∑

(ik + 1) +
∑

i,j irij.
The weight of a sum of Milnor basis elements is the minimum of the

weights of the summands.

For example, the weight of P st is t.

Lemma 2.3.

(a) Let x be an element of A and fix an integer k ≥ 0. The weights of

Ppkx and xPpk are at least one more than the weight of x.
(b) For any s ≥ 0 and t ≥ 1, the weight of cs,t is t, and the weight of

cs,t − P st is at least t+ 1.

Proof. (a) Saying that x has weight at least w means x is in FwA = Iw;
i.e., there is an expression E for x in terms of the indecomposables of A
such that every summand has at least w factors. In this case, each summand

in both PpkE and EPpk has at least w + 1 factors.
(b) We use induction on t. When t = 1, cs,1 = Pps = P s1 ; this starts the

induction.
Now suppose that t ≥ 1 and cst = P st + (other terms), where each of the

other terms has weight at least t+ 1. Then

cs,t+1 = [Pps+t
, cst]

= [Pps+t
, P st ] + [Pps+t

, (other terms)].

The terms in the second commutator are of one of the two forms xPps+t
or

Pps+t
x, where x has weight at least t+ 1. By part (a), each of these terms

has weight at least t+ 2.
Using Milnor multiplication, one sees that the first commutator equals

Pps+t
P st − P st Pps+t

= P st+1 +

ps−1∑
j=1

bjP(ps+t − ptj, 0, . . . , 0, ps − j, j)


−

ps−1∑
j=1

cjP(ps+t − j, 0, . . . , 0, ps − pj, j)


for some coefficients bj and cj , where the entries in each basis element are
in positions 1, t, and t + 1. If t ≥ 2, then May’s lemma 2.2 says that the
weight of each such basis element is at least t+ 2. If t = 1, then the entries
are in positions 1 and 2; both are nonzero, and hence each summand has
weight at least 3, as desired.
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This finishes the inductive step, and hence the proof. �

Proof of Theorems 1.2 and 1.3. Suppose that p is odd and g is a graded
restricted Lie algebra over a field of characteristic p. Then one version of the
Poincaré–Birkhoff–Witt theorem says that the associated graded algebra of
its restricted enveloping algebra u(g) is isomorphic to a tensor product of an
exterior algebra on the odd-degree classes in g with a truncated polynomial
algebra on the even-degree classes in g: see Proposition 6.12 and Theorem
7.11 in [MM65], for example. That is, if we choose bases (xα) for godd and
(yβ) for geven, then

gru(g) ∼= Λ(xα)⊗ k[yβ]/(ypβ).

Any choice of basis for gru(g) lifts to give one for u(g). As a consequence,
a basis for u(g) may be obtained as follows: if we choose orderings on the
bases (xα) and (yβ), then the set of monomials

x1 . . . xmy
j1
1 . . . yjnn

where x1 < · · · < xm, y1 < · · · < ym, and 1 ≤ jk ≤ p − 1, forms a basis for
u(g).

In the case of interest here, (gr A )odd is the restricted enveloping alge-
bra on the graded restricted Lie algebra with basis (Q0, Q1, . . . ), while the
restricted Lie algebra underlying (gr A )even has basis (P st : s ≥ 0, t ≥ 1).
From Lemma 2.3, we see that in gr A , we have cs,t = P st . Since any lift of
a vector space basis for gr A gives one for A , we have the desired result.

The case when p = 2 is simpler: then the associated graded of a restricted
Lie algebra g over a field of characteristic 2 is isomorphic to a truncated poly-
nomial algebra k[y1, y2, . . . ]/(y

2
i ), with one generator for each basis element

of g, and the proof proceeds as above. �

This also gives a proof of the following theorem, due to Monks when
p = 2; the bases constructed here are called P st -bases.

Theorem 2.4.

(a) [Mon98] Let p = 2. Choose a linear ordering on the set

{P st : s ≥ 0, t ≥ 1}.

Then the set of products

P s1t1 · · ·P
sn
tn

where P s1t1 < · · · < P sntn forms a basis for the Steenrod algebra.
(b) Suppose p > 2. Choose a linear ordering on the set

{P st : s ≥ 0, t ≥ 1}.

Then the set of products

Qi1 . . . Qim(P s1t1 )j1 · · · (P sntn )jn
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where ii < · · · < im, P s1t1 < · · · < P sntn , and 1 ≤ jk ≤ p − 1, forms a
basis for the Steenrod algebra.

These restrict, in the obvious way, to bases for any sub-Hopf algebra of the
Steenrod algebra.

Remark 2.5. The proof of Theorems 1.2 and 1.3 actually produces more
bases than described in the statements of those results. First, one can cer-
tainly change the ordering on the Qi’s, although they anticommute, so this
only changes the signs of the resulting monomials. One can also intermingle
the Qi’s and the cs,t’s. Finally, rather than choosing a “global” ordering on,
say, the cs,t’s, one can choose a different ordering for each monomial. As
stated in the proof, any lift of a basis for gru(g) is a basis for A , so one

may choose c0,1c0,2 as the lift of P 0
1P

0
2 , while choosing c0,2c0,1c0,3 as the lift

of P 0
1P

0
2P

0
3 . Stating the theorems in this generality is a bit unwieldy and

not very motivated, though.

3. Comparing cs,t to P s
t

Readers familiar with the Steenrod algebra may be curious about the
relationship between a given iterated commutator and the element P st in
the same degree. Note first that deg cs,t = degP st . Also, for any integer
s ≥ 0, by definition we have cs,1 = P s1 = Pps .

Lemma 3.1. Fix an integer t ≥ 1. Then c0,t = P 0
t .

Proof. This is proved by induction on t: an easy Milnor multiplication

computation shows that [Ppt−1
, P 0

t−1] = P 0
t . �

It is easy to see that when p = 2, c1,2 = P 1
2 . However, hand and computer

calculations [Sage] suggest that for all other combinations of p, s, and t, the
elements cs,t and P st differ. One can prove that cs,2 6= P s2 if s ≥ 2 at the
prime 2: in the Milnor basis, the commutator [Sq(2s), Sq(2s+1)] has a term
Sq(2s−1 + 2s, 2s−1), arising from the Milnor matrix∥∥∥∥ ∗ 2s−1

2s 2s−1

∥∥∥∥
in the product Sq(2s+1) Sq(2s).

By theorems of Anderson and Davis [AD73] and Adams and Margolis
[AM74], any sub-Hopf algebra of A is determined by which P st ’s (and when
p is odd, which Qn’s) it contains, and as a consequence, any P st -basis for the
Steenrod algebra restricts to a basis for any sub-Hopf algebra of A . This
is not true for commutator bases. For example, when p = 2, the sub-Hopf
algebra B generated by P 0

3 and P 1
3 is four-dimensional with basis

{1, P 0
3 , P

1
3 , P

0
3P

1
3 }.
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However, the intersection of B with any commutator basis has only three
elements:

1, c03, c03c13.

(The elements c03 and c13 commute.) Thus commutator bases for A are
not well-suited for studying arbitrary sub-Hopf algebras B of the Steenrod
algebra; instead, one should use the Milnor basis or P st -bases, or one should
construct new commutator bases, built from algebra generators for B and
their iterated commutators.

By the way, there are several ways to define an iterated commutator of
consecutive Ppns. At the prime 2, for example, with the elements Sq1, Sq2,
and Sq4, either c0,3 = [[Sq1, Sq2], Sq4] or [Sq1, [Sq2, Sq4]] seem like natural
choices. These happen to be equal, because [Sq2, [Sq1,Sq4]] = 0. Similarly,

[[[Sq1, Sq2],Sq4],Sq8] = [Sq1, [Sq2, [Sq4,Sq8]]].

However,

[[[[Sq1,Sq2], Sq4], Sq8],Sq16] 6= [Sq1, [Sq2, [Sq4, [Sq8, Sq16]]]].

Thus one needs to choose one of these to be the iterated commutator
c0,5. According to Lemma 3.1, the left side is equal to P 0

5 , and this led
to the choice made in this paper. This is not entirely arbitrary: the ele-

ment P 0
n commutes with Sq2i for i ≤ n − 1, while the element obtained as

on the right side does not have such good centrality properties: if we let
b = [Sq1, [Sq2, [Sq4, [Sq8, Sq16]]]], then in the Milnor basis, we have

b = Sq(0, 0, 0, 0, 1) + Sq(0, 3, 1, 1) + Sq(1, 3, 3) + Sq(1, 5, 0, 1) + Sq(6, 1, 1, 1)

and

[b,Sq2] = Sq(1, 1, 2, 1) + Sq(2, 3, 1, 1).

This element b does not commute with Sq4, Sq8, or Sq16, either.
At odd primes, one has the same considerations, as well as sign issues;

these determined our choice of cs,t = [Pps+t−1
, cs,t−1]. Using [cs,t−1,Pps+t−1

]
instead just introduces a sign, of course, but it seems pleasant to have
c0,t = P 0

t instead of c0,t = ±P 0
t .

Remark 3.2. Note that if we replace cs,t with iterated commutators defined
like b — that is, if we define c′s,1 = Pps and c′s,t = [Pps , c′s+1,t−1] — then
Lemma 2.3 still holds, and hence so do Theorems 1.2 and 1.3. This gives
yet another family of bases for A .

4. Wall’s relations

In a 1960 paper [Wal60], Wall described generators and relations for the
mod 2 Steenrod algebra; the generators are the Sq2n ’s, and the relations are
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of the two forms

[Sq2n ,Sq2n+i
] = (terms) for i ≥ 2,(4.1)

(Sq2n)2 = (other terms).(4.2)

One could imagine that, given an appropriate ordering of the Sq2n ’s and the
other iterated commutators, one could use these relations to prove a PBW
type of theorem, thus establishing Theorem 1.3, or at least some cases of it
(depending on what properties the ordering might have to satisfy).

Wall proceeded along these lines to produce a basis, the elements of which
are monomials in the Sq2n ’s — see the end of this section. He also used a
precursor of the May filtration, which he called height [Wal60, p. 432]: the
height of a monomial in the Sq2n ’s is the vector (i0, i1, . . . ), where in is the
number of times Sq2n appears. These are ordered right-lexicographically;
then the height of a sum of such monomials is the greatest of the heights
of the summands, and the height of an element of the Steenrod algebra is
the minimum of the heights of any expression for it as a polynomial in the
Sq2ns. For example, since Sq2 Sq2 = Sq1 Sq2 Sq1, there are two possible
height vectors for this element: (0, 2) and (2, 1). Since (2, 1) is smaller in
the right lex ordering, it is the height of Sq2 Sq2. From [Wal60, Theorem 3]
and Lemma 2.2, it follows that if (i0, i1, . . . ) is the height of a Milnor basis
element Sq(r1, r2, . . . ), then its May weight is

∑
in.

We also note that Wall actually used the iterated commutators we are
discussing; he wrote T ts for what we call cs,t [Wal60, p. 436].

Thus the ideas in this paper are descended from those of Wall’s, even
though we have not explicitly used any of his results, and we only discovered
some of the connections (such as Wall’s use of the iterated commutators)
after we had proved our main results.

Now we describe Wall’s basis for the mod 2 Steenrod algebra, the closely
related “Arnon A basis,” and a possible connection with commutator bases.
Wall’s basis first appeared in [Wal60], and Arnon’s A basis first appeared in
[Arn94]. Both are discussed in [Mon98].

For integers m ≥ k, let

Qmk = P2kP2k+1 · · · P2m−1
P2m ,

Xm
k = P2mP2m−1 · · · P2k+1

P2k .

At the prime 2, the set of words in the Qmk ’s, ordered in decreasing left lexi-
cographic order on the pairs (m, k), is a basis for A — this is the Wall basis
— as is the set of words in the Xm

k ’s, ordered in increasing left lexicographic
order on the pairs (m, k) — this is Arnon’s A basis.

(Karaca [Kar02] has claimed the existence of similar bases at odd primes,
although the statements of his results are problematic.)
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We refer to these as monomial bases, since their elements are monomials
in the algebra generators Sq2n , n ≥ 0. For example, in degree 5, we have

Wall basis : {Q1
1Q

1
0, Q

2
2Q

0
0} = {(Sq2)(Sq1 Sq2), (Sq4)(Sq1)},

Arnon’s A basis : {X1
0X

1
1 , X

0
0X

2
2} = {(Sq2 Sq1)(Sq2), (Sq1)(Sq4)}.

Now we put the commutators cs,t in decreasing left lexicographic ordering
on the pairs (s+ t, s):

c0,1 < c0,2 < c1,1 < c0,3 < c1,2 < c2,1 < c0,4 < · · · .
In the ‘s’ notation, this is the ordering

s1 < s21 < s2 < s421 < s42 < s4 < s8421 < · · · .
This ordering gives a commutator basis. If we make the assignment

cs,t 7→ Xs+t−1
s ,

then the elements of this commutator basis produce the elements of Arnon’s
A basis. More precisely, for each pair (s, t), the Arnon monomial Xs+t−1

s

is a summand of cs,t, and may be considered the “leading” summand. In-
deed, given a commutator basis element cs1,t1 · · · csn,tn , expand each csi,ti
in terms of the generators Sq2m and then sort the resulting summands left
lexicographically; for example,

s21s42 = (Sq1 Sq2 + Sq2 Sq1)(Sq2 Sq4 + Sq4 Sq2)

= Sq1 Sq2 Sq2 Sq4 + Sq1 Sq2 Sq4 Sq2

+ Sq2 Sq1 Sq2 Sq4 + Sq2 Sq1 Sq4 Sq2,

with the summands going from smallest to largest. Then the Arnon basis
element Xs1+t1−1

s1 · · ·Xsn+tn−1
sn is the largest term in this expansion. This is

a step toward reproving that Arnon’s A basis is in fact a basis.
Similarly, if we reverse the ordering on the commutators, we get a different

basis, and the assignment cs,t 7→ Qs+t−1s converts this commutator basis to
the Wall basis.

Problem 4.3. Make these arguments precise; produce alternate proofs of
Wall’s and Arnon’s results, as well as odd primary analogues.

Problem 4.4. Generalize these arguments and use them to find more mono-
mial bases for the Steenrod algebra.

5. Artin–Schelter regular algebras

The results in this paper were discovered while investigating questions
about sub-Hopf algebras of the Steenrod algebra and Artin–Schelter regular
algebras. For example:

Question 5.1. Let p = 2. For any n ≥ 0, what is the smallest possible
global dimension of an Artin–Schelter regular algebra mapping onto A (n)?
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This has been resolved for n = 0 and n = 1, but not for n ≥ 2. See below.
We should recall the following definition; see [AS87], [Ste96], and others.

Definition 5.2. A graded connected algebra R over a field k is called Artin–
Schelter regular (or AS regular) if the following three conditions hold.

(AS1) R has finite global dimension d.
(AS2) R is Gorenstein, i.e., for some integer l,

ExtiR(k,R) ∼=

{
k(l) if i = d

0 if i 6= d

where k is the trivial module R/R≥1 and k(l) is a shift of it.
(AS3) R has finite polynomial growth; i.e., there is positive number c such

that dimRn < c nc for all n ≥ 0.

Artin–Schelter regular algebras form an important class of algebras. As
suggested in the introduction of [LPWZ07], for example, the noncommu-
tative noetherian AS regular algebras can be viewed as good analogues of
finitely generated polynomial algebras. The analogy is not fully developed
though: the following is unresolved.

Problem 5.3. Classify the homomorphic images of the noetherian AS reg-
ular algebras. If an algebra is the homomorphic image of a noetherian AS
regular algebra, find the smallest global dimension among the AS regular
algebras mapping onto it.

Of course, if we replace “AS regular” by “finitely generated polynomial,”
we get precisely the finitely generated commutative algebras, and the small-
est possible global dimension is just the size of a minimal generating set.
With the problem as stated, though, finite generation is not sufficient: the
free algebra k〈x, y〉 is finitely generated, but from (AS3) one can see that
there is no AS regular algebra mapping onto it.

If g is a finite-dimensional positively graded Lie algebra, then its envelop-
ing algebra U(g) is AS regular with global dimension equal to the vector
space dimension of g. From this, one can show that any finite-dimensional
graded connected algebra B is the image of an AS regular algebra: via the
adjointness between U(−) and the forgetful functor from algebras to Lie al-
gebras, there is a surjective algebra map U(B) � B. This leads to questions
like 5.1 above.

Regarding Question 5.1, when n = 0, A (0) = F2[s1]/(s
2
1), so let R(0) =

F2[s1]. This has global dimension 1, which is clearly as small as possible.
When n = 1, let

R(1) = F2〈s1, s2〉/([s1, s21], [s2, s21]),
where as usual, s21 = [s1, s2]. This algebra is AS regular since it is an
enveloping algebra, and it maps onto A (1). The kernel is the ideal

(s21, s
2
2 + s1s21, s

2
21).
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The algebra R(1) has global dimension 3, and one can show that there is no
AS regular algebra of smaller dimension mapping onto A (1) (for example
using a classification of AS regular algebras of dimension at most 2). When
n = 2, we found an AS regular algebra R(2) of dimension 6 mapping onto
A (2):

R(2) = F2〈s1, s2, s4〉/I
where I is the ideal generated by the relations

[s1, s21], [s2, s21], [s2, s421], [s1, s4] + s2s21,

[s2, s42] + s1s421, [s4, s42] + s2s1s421

(where s21, etc., are commutators, as above). One can show that R(2) is
AS regular by constructing it as an iterated Ore extension: start with the
polynomial algebra on s1 and s12, then adjoin s2, s124, s24, and s4, in that
order. The kernel of the map R(2) � A (2) is the ideal

(s21, s
2
2 + s1s21, s

2
21, s

2
4 + s2s42, s

2
42, s

2
421).

R(2) has dimension 6, and we believe this to be smallest possible, but we
were unable to prove it. We note that in each of these cases, the global
dimension of R(n) equals the number of iterated commutators cs,t (which
equals the number of P st elements) in the Hopf algebra A (n). We were
unable to extend this to the n = 3 case, but it leads to a possible answer to
Question 5.1.

Guess 5.4. Let p = 2. For any n ≥ 0, the algebra A (n) is the homomorphic

image of an Artin–Schelter regular algebra of global dimension
(
n+2
2

)
. Any

AS regular algebra mapping onto A (n) has global dimension at least
(
n+2
2

)
.

Indeed, if B is any finite-dimensional sub-Hopf algebra of A , then there is
an AS regular algebra of global dimension log2 dimF2 B mapping onto B,
and this global dimension is as small as possible.

One viewpoint is this: any such Hopf algebra B may be filtered so
that its associated graded algebra is a restricted enveloping algebra u(g)
for a restricted Lie algebra g (with trivial restriction) of dimension d =
log2 dimF2 B. Thus the (full) enveloping algebra U(g) is an AS regular al-
gebra of global dimension d. Perhaps the filtration can be “unwound” to
get an algebra R mapping onto B, so that there is a filtration on R with
associated graded U(g). This would give R the structure of an AS regu-
lar algebra of dimension d. That is, we hope for an AS regular algebra R,
filtered compatibly with B, fitting into this diagram:

R � gr
//

����

U(g)

����

B � gr
// u(g)
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In other words, especially in light of how R(0), R(1) and R(2) are defined
above: one should view the Hopf algebra B as some sort of deformation of
the restricted enveloping algebra u(g), and so it has relations of two types: if
its generators and their iterated commutators are denoted {xi}, then there
will be “commutator relations” [xi, xj ] = · · · and “restriction relations”
xpi = · · · . (For example, in addition to the relations for A (n) and R(n)
above, see also Wall’s relations (4.1)–(4.2).) Ideally, R should be defined
just by using the commutator relations.

In any case, given a sub-Hopf algebra B of A , understanding its gen-
erators, their iterated commutators, and the resulting commutator and re-
striction relations should provide insight into the structure of B and the AS
regular algebras mapping onto it.
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