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Bounds for the number of rational points
on curves over function fields

Amı́lcar Pacheco and Fabien Pazuki

Abstract. We provide an upper bound for the number of rational
points on a nonisotrivial curve defined over a one variable function field
over a finite field. The bound only depends on the curve and the field,
and not on the Jacobian variety of the curve.

Contents

1. Introduction 131

Acknowledgements 133

2. Proof of Theorem 1.1 part (a) 134

2.1. Tools from étale cohomology 135

3. Proof of Theorem 1.1 part (b): F -descent in characteristic p 136

3.1. Selmer groups 136

3.2. Group cohomology 137

3.3. p-rank and Lie algebras 137

3.4. Local computation 138

3.5. Global result 139

3.6. Using F -descent and finishing the proof 140

4. Further remarks 141

References 142

1. Introduction

Let k be a finite field of cardinality q and of positive characteristic p.
Let C a smooth, projective, geometrically connected curve defined over k
of genus g. Denote by K = k(C) its function field. Let Ks be a separable
closure of K. Given a smooth, projective, geometrically connected curve X
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defined over K of genus d ≥ 2, the analogue of the Mordell’s conjecture asks
whether the set X(K) is finite.

This does not come without a constraint, otherwise this question would
have a trivial negative answer. One has to assume that X is nonisotrivial.
This means that there does not exist a smooth projective geometrically
connected curve X0 defined over a finite extension l of k and a common
extension L of both K and l such that X ×K L ∼= X0 ×l L (cf. [Sa66]).
Under the aforementioned condition the finiteness of X(K) is a theorem
due to Samuel [Sa66].

Our purpose is to give an effective upper bound for the cardinality of the
set X(K) in terms of a minimal number of invariants associated with our
given geometric situation. Namely, our upper bound will depend on the
following parameters:

(i) The genus d of X/K.
(ii) The genus g of C/k.
(iii) The inseparable degree pe of the map u : U → Mg from the affine

sub-curve U of C (where X has good reduction) to the fine moduli
scheme of genus g curves. The map u is induced by a model X → C
of X/K.1

(iv) The conductor fX/K of X/K (this will be defined later in the text).

Let us insist on the fact that this bound does not depend on the Jacobian
variety JX of the curve X. The rank r of the Mordell–Weil group JX(K) is
not used in the bound. In the geometric case this rank is bounded in terms
of d and g (cf. Ogg’s bound, see Remark 2.3). We observe that the bound
in terms of the conductor of JX/K would be stronger (cf. Proposition 2.8),
but the point is to show that the bound can be expressed in terms of only
the curve itself. Our main result is the following theorem.

Theorem 1.1. Let k be a finite field of cardinality q and characteristic p, C
a smooth, projective, geometrically connected curve defined over k of genus g
and denote by K = k(C) its function field. Let X/K be a smooth, projective,
geometrically connected curve defined over K of genus d ≥ 2. We suppose
that X is nonisotrivial.

(a) If X is defined over K, but not over Kp, then the following inequality
holds:

#X(K) ≤ p2d·(2g+1)+fX/K · 3d · (8d− 2) · d!.

Denote the right hand side of the latter inequality by CBV.
(b) More generally, suppose that p > 2d + 1. If X is defined over Kpe,

but not over Kpe+1
for some natural integer e, then

#X(K) ≤ CBV · Cedesc,

1Observe that pe does not depend on the choice of the model X → C, for a further
discussion see Section 3.
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where one can take

Cdesc = qc0 and c0 = g − 1 + fX/K +
1

2
· pe+1 · d · (2g − 2 + 24d2 · fX/K).

Remark 1.2. In a recent paper [CoUlVo12], Conceição, Ulmer and Voloch
provide some explicit examples of curves Xa for which the number of rational
points cannot be bounded by a quantity independent of Xa. Consider the
curve Xa/Fp(t) defined by the affine equation y2 = x · (xr + 1) · (xr + ar),
where p > 3 and r is coprime to 2p and a = tp

n+1. Say n = 2m with m ∈ N
big enough. Then

#Xa(Fp(t)) ≥ d(n)� log n� log log h(Xa/Fp(t))� log log fJXa/Fp(t),

where the last step is obtained thanks to [HiPa13, Corollary 6.12], this
inequality relates the conductor of the Jacobian to its differential height.

In fact, the height h(Xa/Fp(t)) is the height of the equation defining the
curve (for instance defined through its associated Chow form). One can give
an upper bound for the theta height in terms of the height of the equation
as in [Re10, Théorème 1.3 and Proposition 1.1]. Next the theta height of
an abelian variety can be bounded from above by the differential height of
the abelian variety, because the former can be realized as the height on an
appropriate moduli space (cf. [HiPa13, Section 3], this also known in the
case of number fields, cf. [Pa12, Theorem 1.1]).

The history of explicit upper bounds for #X(K) starts with the work of
Szpiro [Sz81] which in fact gives an explicit upper bound for the height of
points in X(K). This depends, however, on the geometry of a semi-stable
fibration on curves φ : X → C which gives a minimal model of X/K over C.
One of the goals of the current paper is to obtain a bound which does not
depend on the geometry of any model of X/K over C.

We start with an upper bound for the number of elements of X(K), when
X is defined over K, but not over Kp. This follows from a result due to
Buium and Voloch [BuVo96]. In fact, their result gives an explicit proof of
a conjecture of Lang, Mordell’s conjecture is a particular case of the latter.
We then extend the first result to curves which can be defined over Kpn for
some integer n ≥ 1. The crucial step is the F -descent of abelian varieties in
characteristic p > 0 (see Section 3).
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2. Proof of Theorem 1.1 part (a)

We start by recalling:

Theorem 2.1 (Buium–Voloch, [BuVo96, Theorem]). Let k be a finite field
of characteristic p, K a one variable function field over k, X/K a smooth,
projective, geometrically connected curve defined over K of genus d ≥ 2. We
suppose that X is not defined over Kp. Let Γ a subgroup of JX(Ks) such
that Γ/pΓ is finite. The following inequality holds:

#(X ∩ Γ) ≤ #(Γ/pΓ) · pd · 3d · (8d− 2) · d!.

Remark 2.2. Let Γ = JX(K). Then JX(K)/pJX(K) is a finite group
by the Mordell–Weil theorem. Writing JX(K) = Zr × JX(K)tor, where
r = rk JX(K), one has JX(K)/pJX(K) = (Z/pZ)r × JX(K)tor/pJX(K)tor.
Its order is bounded from above by pd+r. Next we discuss an upper bound
for the rank.

Remark 2.3. Let k be any field and C smooth projective geometrically
connected curve over k. Denote by K = k(C) its function field. Let A/K
be a nonconstant abelian variety over K and denote by (τ,B) its K/k-trace
(cf. [La83]). Let k̄ be an algebraic closure of k. A theorem due to Lang and
Néron ([La83], [LaNe59]) states that the quotient group A(k̄(C))/τB(k̄) is a
finitely generated abelian group. A fortiori, the quotient group A(K)/τB(k)
is also finitely generated. Ogg in the 60’s (cf. [Ogg62]) produced the following
upper bound for the rank of the geometric quotient A(k̄(C))/τB(k̄) (hence
of A(K)/τB(k)). Below we define the conductor fA/K of A/K. Let d0 =
dimB. Then the upper bound is

2d · (2g − 2) + fA/K + 4d0 ≤ 4d · g + fA/K .

In particular, if K is a one variable function field over a finite field, then

rkA(K) ≤ 4d · g + fA/K .

Definition 2.4. Let ` 6= p be a prime number. Denote by T`(A) the `-adic
Tate module of A and define V`(A) = T`(A)⊗Z`

Q`. For each place v of K,
denote by Iv an inertia group at v (well-defined up to conjugation). Let εv
be the codimension of the subgroup of Iv-invariants V`(A)Iv in V`(A). Let δv
be the Swan conductor of H1

ét(AKs ,Q`) (cf. [Se69]). Define the conductor
divisor FA/K =

∑
v(εv + δv) · [v], where v runs through the places of K.

Denote fA/K = degFA/K .

Definition 2.5. A model of X/K over C is a smooth, projective, geo-
metrically connected surface X defined over k and a proper flat morphism
φ : X → C. Each place v of K is identified with a point of C. Denote by
κv the residue field at v (which is a finite field) and let κ̄v be an algebraic
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closure of κv. Denote by Xv the fiber of φ at v. For an algebraic variety Z
defined over a field l and for an extension L of l, denote ZL = Z ×l L.

2.1. Tools from étale cohomology.

Definition 2.6. Let Z be a smooth variety defined over a field l with alge-
braic closure l̄. Denote by n = dimZ, for each 0 ≤ i ≤ 2n, let H i

ét(Xl̄,Q`)
be the i-th étale cohomology group of Z/l. Define the Euler–Poincaré char-

acteristic of Z/l by χ(Z/l) =
∑2n

i=0(−1)i dimQ`
H i

ét(Zl̄,Q`). This number is
indeed independent from the choice of `.

Definition 2.7. Fix a place v of K. The Artin conductor of the curve X
over K at v is defined as fX/K,v = −χ(XKs) +χ(Xv,κ̄v) + δv, where χ(XKs),
respectively χ(Xv,κ̄v) denotes the Euler–Poincaré characteristic of XKs , re-
spectively Xv,κ̄v . The term δv denotes the Swan conductor of H1(XKs ,Q`)
at v (cf. [LiSa00, end of p. 414] for the definition of the Artin conductor,
[Se69] for the definition of the Swan conductor, as well as [Bl87, §1]). Define
the global conductor of the curve X/K by fX/K =

∑
v fX/K,v · deg v, where

v runs through the places of K.

The following proposition is a consequence of the subsequent lemma in
[Bl87].

Proposition 2.8. We have the inequality fJX/K ≤ fX/K .

Lemma 2.9 ([Bl87, Lemma 1.2]). Fix a place v of K and let Iv be an inertia
subgroup of Gal(Ks/K) at v. Then:

(I) H i
ét(XKs ,Q`)

Iv ∼= H i
ét(Xv,κ̄v ,Q`) for i = 0, 1.

(II) Let Mv be the free abelian group generated by the irreducible compo-
nents of Xv,κ̄v . Since the individual components are not necessarily

defined over κv, there is an action of Ẑ ∼= Gal(κ̄v/κv) on Mv. More-

over, there is an exact sequence of Ẑ-modules:

0→ Q`(−1)→Mv ⊗Q`(−1)→ H2
ét(Xv,κ̄v ,Q`)→ H2

ét(XKs ,Q`)
Iv → 0.

Remark 2.10. The definition of the conductor given in [LiSa00] agrees with
that given in [Bl87] (up to sign).

Proof of Proposition 2.8. It follows from the definition of fX/K,v, Lem-
ma 2.9 and the fact that the action of the Galois group Gal(Ks/K) on the
étale cohomology groups H i

ét(XKs ,Q`) (for i = 0, 2) is trivial that we have
an equality:

fX/K,v = dimQ`
H1

ét(XKs ,Q`)− dimQ`
H1

ét(XKs ,Q`)
Iv +mv − 1 + δv,

where mv denotes the number of the irreducible components of Xv,κ̄v . The
proposition now follows from observing that H1

ét(XKs ,Q`) ∼= H1
ét(JKs ,Q`)

(cf. [Mi85, Corollary 9.6]). �
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Definition 2.11. Let l be a field of characteristic p > 0 and Z/l a smooth
algebraic variety. Let Fabs : l→ l be the absolute Frobenius map defined by
a 7→ ap. We define the smooth variety Z(p) by the Cartesian diagram

Z(p) −−−−→ Zy y
Spec l −−−−→

Fabs

Spec l.

The relative Frobenius morphism F : Z → Z(p) is defined so that composed
with the upper horizontal arrow of the diagram gives the absolute Frobenius
morphism Fabs : Z → Z. This situation can be iterated by taking for any
integer e ≥ 1 to get the e-th power F e : Z → Z(pe) of F .

Proof of Theorem 1.1 part (a). Let  : X ↪→ JX be the embedding of X
into its Jacobian variety. Denote by X(K) = {x1, · · · , xm} the finite set of
K-rational points of X. Let Γ be the subgroup of JX(K) generated by the
images {(x1), · · · , (xm)} of these points under the embedding . Observe
that

#(Γ/pΓ) ≤ #(JX(K)/pJX(K)) ≤ pr+d ≤ pd·(4g+1)+fX/K

by Remarks 2.2 and 2.3 and Proposition 2.8. The result is now a consequence
of Theorem 2.1. �

3. Proof of Theorem 1.1 part (b): F -descent in characteristic
p

Let K be a one variable function field over a finite field of characteristic
p > 0.

3.1. Selmer groups. (See [Ul91, §1].) We start with the more general
set-up of an isogeny f : A→ B of nonconstant abelian varieties defined over
K. We use the convention that all cohomology groups will be computed in
terms of the flat site. As a consequence, on the flat site of K, we have a
short exact sequence of group schemes given by 0→ ker f → A −→ B → 0.

For any place v of K, let Kv be the completion of K at v. Denote by
Sel(Kv, f) the image of the coboundary map δv : B(Kv) → H1(Kv, ker f).
The global Selmer group Sel(K, f) is defined as the subset of those elements
in H1(K, ker f) whose restriction modulo v is trivial in Sel(Kv, f) for every
place v of K.

Recall that the Tate–Shafarevich group X(A/K) is defined as

ker(H1(K,A)→
∏
v

H1(Kv, A)).

The isogeny f induces a map f : X(A/K)→X(B/K) whose kernel is de-
noted by X(A/K)f . Then Sel(K, f) appears in the following exact sequence
of groups: 0→ B(K)/f(A(K))→ Sel(K, f)→X(A/K)f → 0. In practice
Sel(K, f) is finite and effectively computable.
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Denote by Ov the valuation ring of Kv. If both A and B have good
reduction over Ov, then the restriction map H1(Ov, ker f)→ H1(Kv, ker f)
induces an isomorphism Sel(Kv, f) ∼= H1(Ov, ker f). If L/Kv is a Galois
extension of degree prime to deg f , then the inclusion map

H1(Kv, ker f)→ H1(L, ker f)

induces an isomorphism Sel(Kv, f) ∼= Sel(L, f)G. Similarly, if L/K is a finite
Galois extension of degree prime to deg f , then Sel(K, f) = Sel(L, f)G.

3.2. Group cohomology. (See [Se79, Chapter VII, §2].) Let G be a
group, A an abelian group with an action of G on the left, denoted by

(σ ∈ G, a ∈ A) 7→ σ · a.
A one cocycle is a map a : G→ A such that aσ·σ′ = σ ·aσ′ +aσ. Note that if
A = B⊕C, where B and C are also abelian groups, then composing a with
projections on B, respectively C, one gets two one cocycles b : G → B and
c : G → C so that a = (b, c). A one cocycle a : G → A is a coboundary if
there exists α ∈ A such that aσ = σ · α − α, for every σ ∈ G. Again, if a
is a one cocycle which is a coboundary and A = B ⊕ C, then b and c are
coboundaries as well. Denote by H1(A,G) the group of one cocycles with
values in A modulo coboundaries. In the previous case, we have

H1(A,G) = H1(G,B)⊕H1(G,C).

3.3. p-rank and Lie algebras. (See [Mu70, Theorem, p. 139].) In the
case of an abelian variety A defined over an algebraically closed field l,
denote by A∨ = Pic0 A its dual abelian variety. Then LieA∨ ∼= H1(A,OA),
moreover under this isomorphism the p-th power map on LieA∨ corresponds
to the Frobenius map F on H1(A,OA). In particular,

r = p-rkA = dimFp A[p] = dimFp H
1(A,OA)F = dimFp (LieA)ss.

It is known from p-linear algebra that kerF ∼= µ⊕rp . Therefore, by group

cohomology, H1(Kv, kerF ) ∼= H1(Kv, µp)
⊕r ∼= (K∗v/K

∗p
v )⊕r.

We now return to our original abelian variety A/K, and denote by ϕ :
A → C its Néron model over C. Let eA : C → A be its neutral section. De-
note ωA/C = e∗AΩ1

A/C and ω̃A/C = ∧dωA/C , where d = dim A. The degree of

ω̃A/C is defined as the differential height of A/K and denoted by hdiff(A/K).
Then ω̃A/C corresponds to a unique Weil divisor DA/C on C.

The relative version of the first paragraph of this section states that if
ϕ∨ : A∨ → C is the dual group scheme of ϕ : A → C, then LieA∨ ∼= R1ϕ∗OA.
The latter is dual to Ω1

C(DA/C).
Denote by C the Cartier operator acting on Ω1

C (cf. [Se56]). By the
previous isomorphism the p-th power map on LieA∨ corresponds to the
map F on R1ϕ∗OA. Next by Serre’s duality theorem for curves, the latter
map corresponds to the map C on Ω1

C(DA/C). In particular, p-LieA∨ is dual

to Ω1
C(DA/C)C .
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Let D1, · · · , Dr be a basis of H0(C, p-LieA∨), then there exists ai ∈ k̄
such that Dp

i = ai ·Di, where k̄ denotes the algebraic closure of k. Denote
LA = LieA∨. In this case the Oort–Tate classification of finite flat group
schemes of order p in characteristic p implies that we may associate to ai a
group schemeGLA,0,ai = G0,ai over C (cf. [Mi86, Chapter III, 0.9], [OoTa70]).

3.4. Local computation.

3.4.1. Potential good reduction. We fix a place v of K. Let Ks be a
separable closure of K and denote by Iv an inertia subgroup of Gal(Ks/K)
at v (this is well-defined up to conjugation). By definition AKv = A×K Kv

has potential good reduction at v, if there exists a finite extension K ′ of
Kv such that AK′ = AKv ×Kv K

′ has good reduction at v. By [SeTa68,
Theorem 2], if ` 6= p is a prime number and ρ` : Gal(Ks/K) → Aut(T`(A))
is the Galois representation on the Tate module, then A has potential good
reduction at v if and only if ρ`(Iv) is finite.

3.4.2. Description of Selmer groups. (See [Ul91, §3].) Suppose that
we are in this case and let K ′ be as above. Denote by v′ the valuation of K ′

over v. Let n = −v′(DA/C). Define U [i] = {f̄ ∈ K∗v/K
∗p
v | ordv(f) ≥ 1 − i}.

Apply [Mi86, Chapter III, §7.5] to get H1(OK′ , G0,ai)
∼= U

[pn]
K′ . The previous

properties of Selmer groups give

Sel(K ′, F ) ∼= H1(OK′ , kerF ) ∼= H1(OK′ , µp)
⊕r ∼= (U

[pn]
K′ )⊕r.

Then taking Galois invariants as in Subsection 3.1, we get

Sel(K,F ) ∼= Sel(K ′, F )Gal(K′/K) ∼= (U
[i]
Kv

)⊕r,

where i = −p · v(DA/C).

3.4.3. Potential semi-abelian reduction. We suppose that p > 2d+ 1,
where d = dimA. In this case, A acquires everywhere semi-stable reduction
over L = K(A[`]) for any prime ` 6= p (cf. [Gr72]). In particular, for the
places where the reduction is already good, we are reduced to the latter
subsubsection. So we suppose that we are in the case where A has bad
semi-abelian reduction at a place w of L. In this case by [BoLuRa90] there
exists a semi-abelian variety G ∈ Ext1(B,Gt

m) defined over Lw, where B is
an abelian variety with good reduction at w, and a lattice Λ ⊂ G(Lw) such
that A(Lw) ∼= G(Lw)/Λ.

The action of the absolute Frobenius map F of G engenders the semi-
abelian variety G(p) ∈ Ext1(B(p),Gt

m), where B(p) is the image of B under

F . One checks that A(p)(Lw) ∼= G(p)(Lw)/Λ(p), where the lattice Λ(p) is
generated by the vectors obtained from the generators of Λ by raising each
component to p. Recall that there exists an isogeny V : A(p) → A (called
the Verschiebung) such that V ◦ F = [p]A and F ◦ V = [p]A(p) .
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The coboundary map is given by A(Lw) → H1(Lw, kerF ). We have
already shown that the latter is isomorphic to (L∗w/L

∗p
w )⊕r. The previous

parametrization composed with V then gives a surjective map

G(p)(Lw)/Λ(p) � (L∗w/L
∗p
w )⊕r.

In particular, this implies that the coboundary map is surjective, i.e.,

Sel(Lw, F ) ∼= (L∗w/L
∗p
w )⊕r.

Finally once more taking Galois invariants we get

Sel(Kv, F ) ∼= Sel(Lw, F )Gal(Lw/Kv) ∼= (K∗v/K
∗p
v )⊕r,

(cf. [Ul91, §3]).

3.5. Global result. We denote by v, good the set of places v of K where A
has good reduction. Similarly v,bad denotes the set of places v of K where
A has bad reduction. Let

D =
∑
v,bad

[v]−
∑
v,good

iv · [v] ∈ Div C, where iv = −p · v(DA/C).

We observe that

0 < degD ≤ fA/K + p · hdiff(A/K).

Note there exists an injective map K∗/K∗p ↪→ Ω1
K given by f̄ 7→ df/f . Ob-

serve that the image is exactly (Ω1
C)

C . The local results imply f̄ ∈ Sel(K,F )

if and only if df/f ∈ H0(C,Ω1
C(−D))C . By the Riemann–Roch theorem, one

gets

dimFq H
0(C,Ω1

C(−D))C ≤ dimFq H
0(C,Ω1

C(−D))

= g − 1 + degD ≤ g − 1 + fA/K + p · hdiff(A/K).

Remark 3.1. As we have mentioned before pe is the inseparable degree of
the map u : U → Mg from the open sub-curve U of C to the fine moduli
space Mg of genus g curves induced from a model X → C of X/K. This
invariant is indeed birational. It may be interpreted as follows: pe is the

largest power of p such that X is defined over Kpe , but not over Kpe+1
.

We need to assume from now on that p > 2d+1. In this case, if ` 6= p is a
prime number and L = K(A[`]), then A has semi-abelian reduction over L.
Furthermore, since L/K is tamely ramified of degree prime to p, then the
Swan conductor makes no contribution to fA/K , hence FA/K =

∑
v εv · [v].

We now recall the abc-theorem for semi-abelian schemes in characteristic
p > 0.

Theorem 3.2 ([HiPa13, Theorem 5.3]). Let A/K be a nonconstant abelian
variety with everywhere semi-abelian reduction. Denote by φ : A → C a
Néron model of A/K. Let PA/K be the set of places of K where A has bad
reduction. Denote s̄ =

∑
v∈PA/K

deg v. Let eA : C → A be a section of φ and
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ωA/C = e∗A ∧d Ω1
A/C. Suppose that p > 2d+ 1. Then the following inequality

holds

(3.1) hdiff(A/K) = degωA/C ≤
1

2
· pe · d · (2g − 2 + s̄).

Applying Theorem 3.2 to AL/L we get the following upper bound:

hdiff(AL/L) ≤ 1

2
· pe · d · (2g − 2 + fAL/L).

By [Pa05, Proposition 3.7] page 371, one has

fAL/L ≤ [L : K] · fA/K ≤ `4d
2 · fA/K .

Choosing ` = 2 (remember that p > 2d+ 1 ≥ 3, so p 6= 2) provides:

(3.2) hdiff(AL/L) ≤ 1

2
· pe · d · (2g − 2 + 24d2 · fA/K).

Let c0 = g−1+fA/K+ 1
2 ·p

e·d·(2g−2+24d2 ·fA/K). Then #SelAL
(L,F ) ≤ qc0 .

Recall that since L/K is Galois of order prime to p,

SelAL
(L,F )G = SelA(K,F ).

We conclude that #SelA(K,F ) ≤ qc0 . Denote Cdesc = qc0 .

3.6. Using F -descent and finishing the proof. The following lemma
allows us to conclude the proof of item (b) of Theorem 1.1.

Lemma 3.3. Let X ↪→ JX be a curve over a field K as before embedded
into its Jacobian variety JX . Suppose X is defined over Kpe, but not over

Kpe+1
. Suppose that one has the estimate

#(JX(K)/F (JX(K))) ≤ Cdesc.

Then one obtains the upper bound

#X(K) ≤ CBV · Cedesc,

where CBV = p2d·(2g+1)+fX/K · 3d · (8d− 2) · d!.

Proof. Suppose that X is defined over K, but not over Kp. Then without
any further hypothesis the theorem is proven in part (a). Suppose now

that X is defined over Kp, but not over Kp2 . Then there exists a smooth,
geometrically connected, projective curve X1 defined over K, but not over
Kp such that

F : X1 → X
(p)
1 = X

is the relative Frobenius morphism of X1. Consider the following decompo-
sition into right cosets

X(K) =
⋃
i

F (X1(K)) + Pi.
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Under the embedding  : X ↪→ JX this decomposition is included in the
decomposition ⋃

i

F (JX1(K)) + (Pi).

Note that these classes are not necessarily distinct, however this decompo-
sition is contained in the decomposition⋃

l

F (JX1(K)) + αl,

where we now consider all representatives of JX(K) modulo F (JX1(K)). As
a consequence we get

(X(K) : F (X1(K)) ≤ (JX(K) : F (JX1(K)) ≤ #SelJX (K, kerF ) ≤ Cdesc,

Recall that F is purely inseparable, therefore #F (X1(K)) ≤ CBV. Finally
we get

#X(K) ≤ CBV · Cdesc.

Suppose now that X is defined over Kp2 , but not over Kp3 . As before
there exist curvesX1, X2 (with the same description as in the last paragraph)
such that

X2
F−→ X1 = X

(p)
2

F−→ X = X
(p)
1 = X

(p2)
2 .

In this case we have got inequalities

#X1(K) ≤ #X2(K) ·#(JX1(K)/F (JX2(K)),

#X(K) ≤ #X1(K) ·#(JX(K)/F (JX1(K)).

Observe that #(JX1(K)/F (JX2(K)) ≤ #SelJX1
(K, kerF ). An upper bound

for the latter term depends only on JX1 through its conductor. Since JX
and JX1 are F -isogeneous, their conductors coincide. Whence,

#X(K) ≤ CBV · C2
desc.

An easy induction argument then finishes the proof. �

4. Further remarks

Remark 4.1. We would now like to compare our result with a result similar
in nature when we replace the one variable function field K defined over a
finite field k by a number field K. In order to do this we refer to the work
of Rémond (cf. [Re10]).

Theorem 4.2 (Rémond). Let X be a smooth, projective, geometrically con-
nected curve of genus d ≥ 2 defined over a number field K, then one has

#X(K) ≤ (238+2d · [K : Q] · d ·max(1, hΘ))(r+1)·d20 ,

where hΘ is the theta height of JX and r = rk JX(K).
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Remark 4.3. Using Proposition 5.1 page 775 of [Re10], one has r �
log fJX/K , as in the function field case, but the bound on the number of
points is still dependent on the height of the Jacobian variety. To be more
precise, Rémond shows in loc. cit. how to produce a bound depending on
the height of a model of the curve (and not of its Jacobian variety), but it
seems difficult to get rid of this height. It would be a consequence of a con-
jecture of Lang and Silverman, as explained in the introduction of [Pa12].
Note that in the function field case, the height of the Jacobian variety JX is
comparable to the degree of its conductor fJX/K . More precisely it is proven
in [HiPa13, Corollary 5.12] that we have the following inequalities

pe · fA/K � hdiff(A/K)� pe · fA/K ,

where the implied constants depend only on g and d. Note that the upper
bound is a consequence of Theorem 3.2. The lower inequality has a simpler
proof (cf. loc. cit.).
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ron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21.
Springer-Verlag, Berlin, 1990. x+325 pp. ISBN: 3-540-50587-3. MR1045822
(91i:14034), Zbl 0705.14001, doi: 10.1007/978-3-642-51438-8.

[Bl87] Bloch, Spencer. De Rham cohomology and conductors of curves. Duke
Math. J. 54 (1987), no.2, 295–308. MR0899399 (89h:11028), Zbl 0632.14018,
doi: 10.1215/S0012-7094-87-05417-2.

[BuVo96] Buium, Alexandru; Voloch, José Felipe. Lang’s conjecture in char-
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