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Generic 1
2
-discrepancy of {nθ + x}

David Ralston

Abstract. We study the pointwise rate of divergence of the sequence
of discrepancy sums

Si(x) =

i−1∑
j=0

(
χ[0,1/2) − χ[1/2,1)

)
(x+ jθ)

for (Lebesgue) generic rotation parameter θ. Almost-sure upper and
lower bounds for the rate of divergence are given by a Khinchin-like
criterion related to convergence of a certain integral. Concluding re-
marks address the impossibility of finding a generic asymptotic rate of
divergence as well as the related study of how frequently Si(x) = 0.
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1. Introduction

Given an irrational θ and some x ∈ [0, 1), the 1/2-discrepancy sums of x
are given by

Si(x) =
i−1∑
j=0

(
χ[0,1/2) − χ[1/2,1)

)
(x+ jθ),

where all addition is taken modulo one. We are interested in studying the as-
ymptotic growth of Si(x) for generic θ. However, as Si(x) are not monotone,
it is convenient to define a maximal range function:

(1) ρn(x) = 1 + max {Si(x) : i = 1, . . . , n} −min {Si(x) : i = 1, . . . , n} .
In [Ra12], it was shown that there is a natural renormalization procedure

for studying this sequence; we will briefly reintroduce the necessary notation
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in §2, but familiarity with the existing techniques will be helpful. At the
center of this renormalization procedure is a map g : S1 → S1, closely
related to the Gauss map. While that work was concerned with developing
the renormalization procedure in order to construct specific behaviors, we
will begin our study of generic growth rates by showing first:

Theorem 1. There is a unique measure µg on the circle which is mutu-
ally absolutely continuous with respect to Lebesgue measure and is preserved
by g. Both Radon–Nikodym derivatives dx/dµg and dµg/dx are essentially
bounded. Furthermore, the system {S1, µg, g} is exponentially CF-mixing.

If ρn(x) ∈ o(bn) for every x ∈ [0, 1), then we will simply wrote ρn ∈ o(bn).
Similarly, we will write ρn /∈ o(bn) if for every x we have ρn(x) /∈ o(bn).
Note that trivially Sn(x) ∈ o(bn) for every x if and only if ρn ∈ o(bn), and
similarly for Sn(x) /∈ o(bn).

A function f : R+ → R is said to be regularly varying if for any t > 0 we
have f(tx) ∼ f(x):

f(tx) ∈ O(f(x)), f(x) ∈ O(f(tx)).

Theorem 2. Suppose that f(x) is a continuous nondecreasing function
which is regularly varying, defined for all x ≥ C. Define the sequence {F (n)}
by

(2) F (n) =

∫ n

C
f(x)dx.

Then for almost every θ, either ρn ∈ o(F (log n)) or ρn /∈ o(f(log n)) accord-
ing to whether ∫ ∞

C
f(x)dx <∞ or

∫ ∞
C

f(x)dx =∞.

The term 1/2-discrepancy sums hearkens to classical discrepancy theory.
The study of discrepancy theory in general tends to be highly probabilistic
in flavor, with many results holding in measure and relating to the sequence
{nkθ}, where nk is typically assumed to satisfy strict growth conditions
(see, e.g., [AB11] for an overview); our use of {kθ + x} does not change
the process through the horizontal shift +x, but the slow growth of the
multiples of θ used prohibit many useful probabilistic approaches, suggesting
a dynamic approach is more appropriate. Our approach therefore is more
similar to the original landmark paper in the field [Ke60]. Compared to that
result, the results above are similar in that a continued-fraction approach
is utilized, but by tailoring the process to a renormalization specific to this
particular interval [0, 1/2], we are able to derive pointwise behavior, rather
than distributional behavior. Our bounds in Theorem 2 are not as specific
as that of Kesten; by appealing to results in trimmed ergodic sums, remarks
in the conclusion show that the strong and specific distributional limits
obtained by Kesten cannot be achieved pointwise.



GENERIC 1
2
-DISCREPANCY OF {nθ + x} 197

2. Existing notation and prior results

All notation is consistent with [Ra12]. We use standard continued fraction
notation, and as θ ∈ (0, 1) without loss of generality, we omit the integer
part and write for ai ∈ Z+

θ =
1

a1 +
1

a2 +
.. .

= [a1, a2, . . .].

The partial quotients may be written as ai(θ) when θ is not immediately clear
from context. The Gauss map acts as the one-sided shift on the sequence of
partial quotients for irrational θ in the following manner:

γ(θ) =
1

θ
− a1, γ([a1, a2, . . .]) = [a2, a3, . . .].

This action extends naturally to rational numbers as well, though this dis-
tinction is not important for our purposes. The Gauss map preserves a
unique probability measure which is mutually absolutely continuous with
respect to Lebesgue measure, and it is exponentially CF-mixing (see, e.g.,
[AN03] for a definition of this term; we will not use it in any technical way)
with respect to this measure. We denote this measure by µγ .

The function g acts on irrational θ = [a1, a2, . . .] as follows:

g([a1, a2, a3, . . .]) =


[a2 + 1, a3, . . .] = 1− θ (a1 = 1)

[1, a2, a3, . . .] = 1
1+γ(θ) (a1 = 1 mod 2, a1 6= 1)

[a3, a4, . . .] = γ2(θ) (a1 = 0 mod 2).

We define

E(x) = max{n ≤ x : n ∈ Z, n ≡ 0 mod 2},
and we then let

θn = gn(θ), δn = 1− E(a1(θn))θn.

If we assume that θ = θ0 < 1/2, then we may label the intervals

A = [0, 1/2), B = [1/2, 1− θ), C = [1− θ, 1).

We omit a discussion of standard terminology in substitutions systems
(see [Ra12, §2]), except to point out that most techniques are carried out in
the compact but disconnected space in which A, B and C are all compact.
This distinction can only cause problems in regards to the endpoints of the
intervals, and any orbit can include at most two of the endpoints. Define
the substitutions σn = σ(θn) according to Table 1. For convenience denote

σ(n) = σ0 ◦ σ1 ◦ · · · ◦ σn−1.
Under our labeling of A, B and C, we may without confusion define for

finite words Ω in the alphabet {A,B,C}
S(Ω) = #A−#B −#C,
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Case Substitution

a1 = 2k, a3 6= 1
A→ (Ak+1Bk−1C)(AkBk−1C)a2−1

B → (AkBkC)(AkBk−1C)a2−1

C → (AkBkC)(AkBk−1C)a2

a1 = 2k, a3 = 1
A→ (AkBkC)(AkBk−1C)a2

B → (Ak+1Bk−1C)(AkBk−1C)a2

C → (Ak+1Bk−1C)(AkBk−1C)a2−1

a1 = 2k + 1
A→ AkBkC
B → Ak+1Bk−1C
C → A

a1 = 1
A→ A
B → B
C → C

Table 1. The substitution σ as a function of θ.

and denoting by Ω(n) the first n letters in Ω (for 0 < n ≤ |Ω|, the length of
Ω), we may similarly define

ρ(Ω) = 1 + max{S(Ω(n)) : n = 1, 2, . . . , |Ω|}
−min{S(Ω(n)) : n = 1, 2, . . . , |Ω|}.

By [Ra12, Theorem 1.1], there is a special point x(θ) for which the se-
quence of words

(3) Ωn = σ(n)(A)

correctly encodes the orbit of x(θ) under rotation by θ with at most two
errors. That is, with two possible exceptions, the sequence of letters in
Ωn correctly specifies in which interval (x+ iθ) mod 1 lies. Combined with
[Ra12, Proposition 5.2], we have

(4) ρ(Ωn) =
1

2

n∑
i=0

E(a1(θn)) + ξ,

where |ξ| ≤ 5. As {Sn(x)} must be unbounded for every x [Ke66], the
bounded term ξ does not affect the claims of Theorem 2.

The words Ωn represent the encoding of the first return of x(θ) to an

interval Ĩn. The intervals Ĩn are nested and compact (in the associated
space in which A, B and C are all compact), and of length

|Ĩn| = δ0 · δ1 · · · δn−1.

The point x(θ) is the intersection of all Ĩn; we point out that for all irrational
θ

(5) lim inf
n→∞

∣∣∣∣ log(δ0 · · · δn−1)
n

∣∣∣∣ ≥ log 2

2
> 0,
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which is to say that the length of Ĩn always decays at least exponentially
fast. This observation is direct from the fact that no two consecutive θi may
both be larger than 1/2, and for θi < 1/2 we have δi < 1/2.

While not explicitly stated in the proof of [Ra12, Theorem 1.1], the follow-
ing is immediate from the techniques of the proof, especially [Ra12, Propo-
sition 4.1]:

Corollary. For each y ∈ [0, 1) and every n, there are two words Υ0(y, n),
Υ1(y, n), where

Υ1(y, n) ∈ {σ(n)(A), σ(n)(B), σ(n)(C)},

and Υ0(y, n) is either a proper right factor of one of these words or empty,
and the concatenated word

(6) Ωn(y) = Υ0(y, n)Υ1(y, n)

correctly encodes the orbit of y, except for at most two errors.

Proof. By [Ra12, Theorem 1.1], the induced transformation on each Ĩn is

rotation by θn, and we may therefore label intervals A, B and C within Ĩn
according to this new rotation θn; the specific labeling is outlined in that
proof. Let Υ0(y, n) be the word which encodes the orbit of y (in the discon-
nected symbol space corresponding to the original transformation) through

its return to Ĩn (if y ∈ Ĩn, then let Υ0(y, n) be empty), and let Υ1(y, n) be

σ(n)(∗), where ∗ represents which of the intervals A, B, C contains this first
point in the orbit of y (under the correct labeling of intervals in the induced

system on Ĩn). As the collection

{σ(n)(A), σ(n)(B), σ(n)(C)}

encodes all possible orbits of points in Ĩn until their return to Ĩn and the
original rotation by θ is minimal, Υ0 must be a right factor of one of these
words. �

It is worth pointing out that Ωn(y) correctly encodes the orbit of y, but
is not in general a word of the same length as Ωn.

Define the matrices Mn = M(θn) according to Table 2 (the eigenvalues
are readily computable). For convenience, denote

M (n) = Mn−1 ·Mn−2 · · ·M0,

so by [Ra12, Lemma 5.4], we have both that |σ(n)(A)| = |σ(n)(B)| and

(7) M (n)

[
1
1

]
=

[
|σ(n)(A)|
|σ(n)(C)|

]
.
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Case M(θ) Eigenvalues

a1 = 2k, a3 6= 1

[
(a1 − 1)a2 + 1 a2
(a1 − 1)a2 + a1 a2 + 1

]
ka2 + 1±

√
ka2(ka2 + 2)

a1 = 2k, a3 = 1

[
(a1 − 1)a2 + a1 a2 + 1
(a1 − 1)a2 + 1 a2

]
ka2 + 1±

√
ka2(ka2 + 2)

a1 = 2k + 1

[
a1 − 1 1

1 0

]
k ±
√
k2 + 1

a1 = 1

[
1 0
0 1

]
1

Table 2. The matrices M(θ) used to determine the lengths

of σ(n)(A), σ(n)(C). Note that 2k = E(a1).

3. Proof of Theorem 1

Note that g−1(1/2, 1) ⊂ (0, 1/2), so any probability measure µ which is
preserved by g must have µ(1/2, 1) ≤ 1/2: the Gauss measure µγ is not
preserved by g.

Define the following collection of open intervals (for n,m, k = 1, 2, . . .):(
1

2
, 1

)
,

(
1

2k + 2
,

1

2k + 1

)
,

(
m

2nm+ 1
,

m+ 1

2n(m+ 1) + 1

)
.

The middle intervals are those θ whose continued fraction expansion begins
with an odd number (except one); we will refer to the collection of all such
intervals as odd intervals. The right-most intervals are those θ whose con-
tinued fraction expansion begins with the pair [2n,m, . . .], and we will refer
to the collection of all such intervals as even intervals. The collection of
odd and even intervals, together with (1/2, 1) we denote C, and note that C
covers S1 except for a countable set of points.

Lemma 3.1. We have each of the following:

(I) C is a Markov partition for g.
(II) For c1, c2 ∈ C, if g(c1) ∩ c2 6= ∅, then c2 ⊂ g(c1).

(III) There is a k such that (0, 1) ⊂ gk(c) for each c ∈ C.
(IV) The map g is monotone and 1 : 1 on each c ∈ C, and extends to the

closure of each c to a C2 function.
(V) g is expansive; ∃k and d > 1 such that |(gk)′(x)| ≥ d for almost all

x.
(VI) g has the Renyi (or strong distortion) property: ∃d such that for

every c ∈ C

sup
x∈c

(
|g′′(x)|
(g′(x))2

)
< d.

(VII) The endpoints of all c ∈ C map (via the C2 extension from item
(IV)) to a finite set.
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Proof. The restriction of g to each c ∈ C is invertible, and we have chosen
C to generate the Borel σ-algebra under g−1; if θ1 6= θ2, then there is some
minimal index i such that ai(θ1) 6= ai(θ2), from which one sees that there is
some k such that either (see for example [Ra12, Eqn. 20])

a1(g
kθ1) 6= a1(g

kθ2), or a1(g
kθ1) = a1(g

kθ2) = 0 mod 2,

a2(g
kθ2) 6= a2(g

kθ2).

So item (I) is shown.
The related items (II) and (III) can both be shown directly using the fact

that g maps odd intervals to (1/2, 1), g maps (1/2, 1) to (0, 1/2), and g maps
even intervals to (0, 1).

On the even intervals, g = γ2 is the square of the Gauss map, and the
even intervals are members of the standard Markov partition for γ2, which is
well-known to have all of these properties. Furthermore, on (1/2, 1) we have
g(θ) = 1 − θ < 1/2. Using the chain rule, then, we need only establish the
remaining items for the odd intervals. So, let us consider the odd interval
for a fixed k. The reader may verify that for θ = [2k + 1, . . .] we have

1

2k + 1
< 1− 2kθ <

1

k + 1
.

Using this inequality, one may show:

g(θ) =
1

1 + γ(θ)
=

θ

1− 2kθ
,

g′(θ) =
1

(1− 2kθ)2
≥ (k + 1)2,

g′′(θ) =
4k

(1− 2kθ)3
≤ 4k(2k + 1)3.

Item (IV) is immediate from the first line (for θ in this odd interval, θ <
(2k + 1)−1, so there is no asymptote), and item (V) from the second (recall
that k ≥ 1). Item (VI) follows from the bounds on g′ and g′′. �

The literature surrounding the existence of invariant measures for Markov
maps of the interval is vast. We have arranged Lemma 3.1 to match the
statement which appears in [BS79]. This theorem gives the existence of a
unique probability density µg, supported on all of [0, 1), which is invariant
under g and continuous with respect to Lebesgue measure, with essentially
bounded Radon–Nikodym derivative. Therefore {S1, µg, g} is ergodic. Fol-
lowing the trail of references in that work back to [PV75] actually says more,
however, that the system {S1, µg, g} is weakly Bernoulli (and therefore ex-
act). Item (III) gives that g is topologically mixing (any open set contains
an open subinterval specified by an initial finite string of partial quotients),
so by [Aa97, Corollary 4.7.8], our system is exponentially CF-mixing. That
the Radon–Nikodym derivative dµg/dx is bounded away from zero (not just
bounded) is given as a remark in the third paragraph of [Aa97, §4.7].
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The following Khinchin-like characterization follows immediately via a
standard shrinking-target result (or the Borel–Cantelli Lemma) as g is mix-
ing and µg ∼ µγ , the measure preserved by the Gauss map (as both are
mutually absolutely continuous with respect to Lebesgue measure):

Corollary 3.1. Let {bi} be a sequence of positive real numbers for i =
0, 1, . . .. Then the inequality

a1(g
nθ) > bn

is satisfied almost surely infinitely many times or only finitely many times
according to whether the series

∞∑
i=0

1

bi

diverges or not.

4. Proof of Theorem 2

For a square real-valued matrix M , let ‖M‖ be the largest eigenvalue
(in modulus), and for a real-valued column vector u, let ‖u‖ be the largest
element (in absolute value).

Lemma 4.1. With M(θ) as given by Table 2, we have both log ‖M(θ)‖ and
log ‖M−1(θ)‖ in L1(X,µg).

Proof. As the two-by-two matrices M(θ) all have |detM(θ)| = 1, we
have ‖M(θ)‖ = ‖M−1(θ)‖. As µg is mutually absolutely continuous with
Lebesgue measure, it therefore suffices to show that∫ 1

0
log ‖M(θ)‖dθ <∞.

For θ ∈ (1/2, 1), we have ‖M(θ)‖ = 1. If a1(θ) = 2k + 1 for k 6= 1, then

log ‖M(θ)‖ = log |k +
√
k2 + 1| < log(2k + 1).

On the other hand, for a1(θ) = 2n and a2(θ) = m we have

log ‖M(θ)‖ = log |nm+ 1 +
√
nm(nm+ 2)| ≤ log(2nm+ 2).

So we may therefore sum across the even and odd intervals:∫ 1

0
log ‖M(θ)‖dθ

≤
∞∑
k=1

∫ 1
2k+1

1
2k+2

log(2k + 1)dθ +

∞∑
n,m=1

∫ m+1
2n(m+1)+1

m
2nm+1

log(2nm+ 2)dθ

=

∞∑
k=1

log(2k + 1)

(2k + 1)(2k + 2)
+

∞∑
n,m=1

log(2nm+ 2)

(2nm+ 1)(2n(m+ 1) + 1)
,

and the summability of both series is direct. �
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By the Oseledec ergodic theorem, then, for almost every θ we have

(8) lim
n→∞

1

n
log

(
M (n)

[
1
1

])
= λ

for some λ <∞.

Proposition 4.1. For almost every θ, for every ε > 0 we have for suffi-
ciently large n (recall (3))

(λ− ε)n−3 ≤ |Ωn| ≤ (λ+ ε)n.

Proof. The upper inequality is direct in light of the previous remarks and
(7). For the lower inequality we must establish

min{|σ(n)(A)|, |σ(n)(C)|} ≥ max{|σ(n−3)(A)|, |σ(n−3)(C)|}.

The proof may be accomplished through an exhaustive case-by-case analysis
of different possible forms for the matrices Mn−1, Mn−2 and Mn−3. The sit-
uation is easiest in the case that a1(θn−1) = 0 mod 2. For example, suppose
that

Mn−1 =

[
(2k − 1)m+ 1 m
(2k − 1)m+ 2k m+ 1

]
, M (n−1)u =

[
A
B

]
.

Then we have

M (n)u =

[
C
D

]
=

[
((2k − 1)m+ 1)A+mB

((2k − 1)m+ 2k)A+ (m+ 1)B

]
,

and we clearly have

min{C,D} ≥ max{A,B}.
The matrices M(θ) for a1(θ) = 1 mod 2 are less trivial, but the composition
of two such matrices is seen to have the desired property. Since two such
matrices can only occur separated by an identity matrix, and it is possible
that Mn−1 was the identity matrix, then (n−3) in the exponent is sufficient.

�

Lemma 4.2. λ > 1.

Proof. See (5). As the length of Ĩn decays at least exponentially fast (it is

not larger than 2−n/2), the return time of any point in Ĩn to itself increases

exponentially fast. As the entries of M (n)

[
1
1

]
are the two return times of

points in Ĩn to itself (7), we must have λ ≥
√

2. �

Now let f(x) be continuous, nondecreasing and regularly varying, and
define F (t) as in the introduction (2). We proceed now under the assumption
that f(x) is not integrable. From Corollary 3.1, it follows that for generic θ
and infinitely many n, we have f(n) < (1/2)E(a1(θn)). So by (4),

ρ(Ωn) > f(n).
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By Proposition 4.1, then, we have infinitely many times N such that (recall
(1) for the definition of ρN )

ρN (x(θ)) ≥ f(C logN),

where C = log(λ+ ε), so as f was regularly varying, ρn(x(θ)) /∈ o(f(log n)).
Similarly, if f is integrable, we eventually have for generic θ that

(1/2)E(a1(θn)) < f(n),

so up to a bounded difference which we ignore, we may say that for generic
θ we eventually have

1

2

n−1∑
i=0

E(a1(θi)) < F (n),

from which it follows (by considering all |Ωn−1| ≤ N ≤ |Ωn| and using
regularity of f and Proposition 4.1 as before) that ρn(x(θ)) ∈ O(F (log n)).
As we may multiply f by any ε > 0 without affecting summability, then, we
have ρn(x(θ)) ∈ o(F (log n)).

So for the specific point x(θ), the growth of the range of Sn(x) (that is,
the sequence ρn(x(θ))) grows subject to the desired bounds. It remains to
show that the behavior of any ρn(y) may be accurately considered through
the sequence ρn(x(θ)).

Note that regardless of the sequence of substitutions σi, we have (refer to
Table 1 and [Ra12, Proposition 5.1])

ρ(σ(n−1)(A)) ≤ ρ(σn(∗)) ≤ ρ(σn(A)),

where ∗ ∈ {A,B,C}. Finally, it is clear that for any two words ν1 and ν2,
the range of their concatenation is bounded by the sum of their individual
ranges:

ρ(ν1ν2) ≤ ρ(ν1) + ρ(ν2).

Altogether, then, recall (6), to see that for any y, for every θ and any n ≥ 1:

ρ(Ωn−1) ≤ ρ(Ωn(y)) ≤ 2ρ(Ωn).

So, for any ε > 0 and sufficiently large n

(λ− ε)n−4 ≤ |Ωn−1| ≤ |Ωn(y)| ≤ 2 max{|σ(n)(A)|, |σ(n)(C)|} ≤ 2(λ+ ε)n.

All previous arguments using regularity of {f(n)} still apply, then, extending
the existing arguments to all points for generic θ and completing the proof
of Theorem 2.

5. Concluding remarks

We present a pair of simple computations to show the relatively tight
control we may generically impose upon ρn(y) for any y and for generic θ.
A classical application of the Denjoy–Koksma inequality is to show that for θ
having bounded partial quotients, for every x we have ρn(x) ∈ O(log n) (see
for example [Co09, §2.1]). It was shown in [Ra12, Theorem 1.4] that in fact
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ρn(x) ∼ log(n) for such θ. However, by setting f(x) = x log x · · · log(k−1) x,
the product of the first k iterated logarithms (starting at index zero, and
defined for sufficiently large x), we see that for generic θ we have

ρn /∈ o(log n · · · log(k) n).

Another classical application of the Denjoy–Koksma inequality is that for
generic θ, for every x we have ρn(x) ∈ o(nε) for every ε > 0 (also in [Co09,
§2.1]). To improve upon this bound, consider

f(x) = x log x · · · log(k−2) x(log(k−1) x)1+ε

for sufficiently large x. Using the straightforward fact (one may estimate
the integral with the corresponding sum over integers) that∫ t

C
x log x · · · log(k)(x) ∼ t log t · · · log(k) t

(setting C sufficiently large so that all terms are defined), we have

F (log n) <
(

log(k−1)(log n)
)1+ε(logn∑

i=1

i log i · · · log(k−2)(n)

)
∼ log n · · · log(k−1)(n)(log(k)(n))1+ε,

so generically our discrepancy sums grow slower than all such functions.
One might hope that there could be some sequence such that generically

ρn ∼ bn. Such a quest would be a fool’s errand: the sequence ρ(Ωn) is given
by a partial ergodic sum of the nonintegrable nonnegative function E(a1θ),
and the growth rate is therefore seen to be similar to the ergodic sums of
simply a1(θ). While the map g and the Gauss map γ are not identical and
do not preserve the same measure, they are both exponentially CF-mixing
with respect to mutually absolutely continuous measures.

The partial sums a1+a2+· · ·+an (ergodic sums of the function a1(θ) under
the action of γ) almost surely do not have a strong law of large numbers
(a result known already to Khinchin [Kh35]). However, that example does
admit a weaker ‘trimmed’ law of large numbers [DV86]: for almost every θ,

lim
n→∞

a1 + a1 + . . .+ an −max{ai : i = 1, . . . , n}
n log n

=
1

log 2
.

That is to say that the sums grow like n log n except for rare large partial
quotients, corresponding to visits to the cusp in the corresponding flow as-
sociated to γ in the modular surface SL1(R)/SL2(Z) (Khinchin proved in
[Kh35] convergence in measure of the ratio (a1 + ... + an)/n log n). This
sort of normalization of trimmed sums was extended to a very general set-
ting in [AN03]; ergodic sums of nonintegrable functions under exponentially
CF-mixing maps, for example our own

ρ(Ωn) = E(a1(θ0)) + · · ·+ E(a1(θn−1)),
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may be compared to trimmed sums of regularly varying comparison se-
quences.

Off the interval (1/2, 1), we have the trivial inequality

a1(θ) > (1/2)E(a1(θ)) > a1(θ)/3.

As the measure preserved by g is mutually absolutely continuous with re-
spect to the Gauss measure, it follows from [AN03] that the trimmed sums
in our system are almost surely not too far removed from the trimmed sums
of partial quotients:

1

2

n−1∑
i=0

E(a1(θi))−
1

2
max{E(a1(θi)) : i = 0, 1, . . . , n− 1} ∼ n log n.

However, we have as a corollary of Theorem 2 that

lim sup
n→∞

ρn(x)

log n log logn
=∞.

Finally, we close with a few remarks concerning visits to zero of the de-
terministic random walk. That is, consider the function

Vn(x) = # {i = 0, 1, . . . , n− 1 : Si(x) = 0} .
The properties of this function have been studied in various contexts. In the
event where θ is a quadratic irrational, for example, the sums are particularly
well-behaved; there exist constants c1 and c2 such that for all n

c1

(
n√
lnn

)
≤ E(Vn) ≤ c2

(
n√
lnn

)
,

a result which appears in [AK82], and significant refinements to this estimate
have recently been made[ADDS]. The situation where θ is not a quadratic
irrational is significantly less amenable to analysis. It follows directly from
[CR13, Corollary 4.3], for example, that for θ of the form

θ = [2r1, s1, 2r2, s2, . . .],

with the si bounded, we have for all x ∈ [0, 1) and all n ∈ N
Vq2n(x) ≤ τq2n−2,

where the constant τ = τ(θ) is independent of x and n, and the qi refer to
the standard continued fraction convergents. As for θ of this form we have

q2n = (snrn + 1)q2n−2 + snq2n−3 ≥ rnq2n−2,
along this subsequence of times we can, for any fixed sequence bn → 0, easily
choose the rn large enough so that

q2n−2
q2n

≤ bn.

It follows that

E(Vq2n) ≤ max {Vq2n(x) : x ∈ [0, 1)} ≤ τq2n−2 ≤ τ(θ)bnq2n.
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While for quadratic irrationals the “appropriate” scaling function is bn =
1/
√

log(q2n), for bizarrely constructed θ we may force visits to zero to be
very rare events (bn → 0 was arbitrary!). The above argument is simply
a rewording of the more intricate [CR13, Theorem 4.4] for the particular
purpose of counting the visits to zero.
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