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Closed BLD-elliptic manifolds have
virtually Abelian fundamental groups

Enrico Le Donne and Pekka Pankka

Abstract. We show that a closed, connected, oriented, Riemannian
n-manifold, admitting a branched cover of bounded length distortion
from Rn, has a virtually Abelian fundamental group.
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1. Introduction

A continuous, discrete and open map M → N between n-manifolds is
called a branched cover. A branched cover f : M → N between Riemannian
n-manifolds has bounded length distortion if f is bilipschitz on paths, that
is, there exists a constant L ≥ 1 for which

L−1 `(γ) ≤ `(f ◦ γ) ≤ L `(γ)

for all paths γ in M , where `(·) is the length of a path. We call branched
covers of bounded length distortion just BLD-maps. Recall that in case M
is complete and N is connected, any BLD-map is surjective.

A BLD-map, as defined here, between oriented Riemannian manifolds is
either orientation preserving or orientation reversing by Černavskĭı–Väisälä
theorem; see [14]. Orientation preserving BLD-maps were first considered
by Martio and Väisälä in [10] as a strict subclass of quasiregular maps and
the metric theory of BLD-maps was developed in detail by Heinonen and
Rickman in [6]. Recall that a continuous map f : M → N between oriented
Riemannian n-manifolds is quasiregular if f belongs to the local Sobolev
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space W 1,n
loc (M,N) and satisfies the quasiconformality condition, that is,

there exists K ≥ 1 for which

|Df |n ≤ KJf , almost everywhere.

Here |Df | is the operator norm of the differential Df of f and Jf the Ja-
cobian determinant. A connected, oriented, and Riemannian n-manifold
N is quasiregularly elliptic if there exists a nonconstant quasiregular map
Rn → N .

In this note, we consider fundamental groups of closed BLD-elliptic man-
ifolds, that is, closed, connected and Riemannian n-manifolds N , for n ≥ 2,
which admit a BLD-map Rn → N . By a theorem of Varopoulos [15, pp. 146-
147], the fundamental group of a closed quasiregularly elliptic n-manifold
has growth of polynomial order at most n. By Gromov’s theorem on groups
of polynomial growth, the fundamental group is therefore virtually nilpo-
tent. It is a natural question whether we can say more on the structure of
such a fundamental group.

In [9], Luisto and the second-named author showed that closed quasireg-
ularly elliptic manifolds having maximal order of growth have virtually
Abelian fundamental group. For BLD-elliptic manifolds, no such additional
condition is needed.

Theorem 1.1. Let N be a closed, connected and Riemannian n-manifold
admitting a BLD-map Rn → N . Then π1(N) is virtually Abelian.

The proof is based on the reinterpretation of BLD-maps as Lipschitz quo-
tients introduced by Bates, Johnson, Lindenstrauss, Preiss, and Schecht-
mann in [1]. A map f : X → Y between metric spaces is an L-Lipschitz
quotient for L ≥ 1 if

BY (f(x), r/L) ⊂ f(BX(x, r)) ⊂ BY (f(x), Lr)

for all x ∈ X and r > 0, where BX(x, s) and BY (y, t) are metric balls
about x ∈ X and y ∈ Y and of radii s > 0 and t > 0 in X and Y ,
respectively. A standard path-lifting argument shows that BLD-maps are
Lipschitz quotients; see, e.g., [6, Proposition 4.13]. The converse, whether
Lipschitz quotients between Riemannian n-manifolds are BLD-maps, is true
for n = 2 and is an intriguing open question in geometric mapping theory
in higher dimensions, see [1, Section 4] or [6, Section 4].

Our method gives, in fact, a version of Theorem 1.1 for Lipschitz quo-
tients.

Theorem 1.2. Let n,m ∈ N. Let N be a closed, connected, and Riemannian
m-manifold admitting a Lipschitz quotient Rn → N . Then π1(N) is virtually
Abelian and has polynomial order of growth at most n.

Note that in the last theorem we are not assuming anymore that the
dimension of Rn is the same of the dimension of N . Our method is based
on ultralimits. Due to a possible change of dimension, the BLD-condition
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does not pass to ultralimits. However, the ultralimits of Lipschitz quotients
are Lipschitz quotients. Thus, by considering a blow-down of the universal
cover and the fundamental group, we find a Lipschitz quotient map from
Rn to a Carnot group G which is the asymptotic cone of π1(N). Then,
by passing to a tangent, i.e., by considering a blow-up, we find a surjective
group homomorphism Rn → G by Pansu’s differentiability theorem. Thus
G, which is the graded algebra of the Malcev closure of π1(N), is Abelian.
We then have that π1(N) is virtually Abelian.

Theorem 1.2 is in connection to a question of Gromov [5, Question 2.44]
whether fundamental groups of elliptic manifolds are virtually Abelian. A
Riemannian n-manifold M is called elliptic if there exists a Lipschitz map
Rn →M of nonzero asymptotic degree, that is, a map f : Rn →M satisfying

lim sup
r→∞

1

rn

∫
Bn(r)

Jf > 0.

By [5, Corollary 2.43], a closed and aspherical elliptic manifold has a virtu-
ally Abelian fundamental group. Since Lipschitz quotient maps are maps of
nonzero asymptotic degree, the topological assumption on asphericality in
this result can be replaced by a slightly stronger geometric assumption that
the manifold admits a Lipschitz quotient map from Rn.

2. Lipschitz quotients and volume growth

As mentioned in the introduction, Varopoulos’ theorem for quasiregular
maps states that the fundamental group of a closed quasiregularly elliptic
manifold has growth of polynomial order at most n; for open quasiregularly
elliptic manifolds, see [11, Theorem 1.3].

In this section, we prove an analogous result for closed, connected Rie-
mannian manifolds admitting a Lipschitz quotient map from Rn. We begin
with a lifting lemma for Lipschitz quotients, which will also be useful later
in the paper.

Lemma 2.1. Let N be a closed, connected, and Riemannian m-manifold
for m ≤ n, let f : Rn → N be an L-Lipschitz quotient, and f̂ : Rn → N̂ a
lift of f to a cover N̂ of N . Then f̂ is an L-Lipschitz quotient.

Proof. Let π : N̂ → N be a locally isometric covering map. Since N is
closed, we may fix δ > 0 so that π|BN̂ (y, δ) : BN̂ (y, δ) → BN (π(y), δ) is an

isometry for every y ∈ N̂ .
Since f̂ is obviously L-Lipschitz, it suffices to show that

BN̂ (f̂(x), r/L) ⊂ f̂ (Bn(x, r))

for each ball Bn(x, r) in Rn. Let y ∈ BN̂ (f̂(x), r/L) and ε ∈ (0, δ) so that

BN̂ (y, ε) ⊂ BN̂ (f̂(x), r/L).

Let [f̂(x), y] be a geodesic, i.e., a length minimizing arc, in N̂ from f̂(x)
to y and let B1, . . . , Bk be a sequence of balls, where k > 1/ε, so that
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Bi = BN̂ (zi, ε), where zi ∈ [f̂(x), y] and dN̂ (zi−1, zi) = dN̂ (f̂(x), y)/k for

each 2 ≤ i ≤ k; we may take z1 = f̂(x) and zk = y.
Since f is a Lipschitz quotient, there exists balls B′i = Bn(xi, Lε) in Rn,

for i = 1, . . . , k, so that x0 = x, B′i−1 ∩ B′i 6= ∅, and fB′i ⊃ πBi for each i.

Then y ∈ f̂B′k. Since B′k ⊂ Bn(x, r + Lε), the claim follows. �

Corollary 2.2. Let N be a closed, connected, and Riemannian manifold
admitting a Lipschitz quotient map from Rn. Then the polynomial order of
growth of π1(N) is at most n. In particular, π1(N) is virtually nilpotent.

Proof. The claim follows directly from the volume estimate for balls in the
Riemannian universal cover Ñ and Gromov’s theorem. Indeed, let

f : Rn → N

be an L-Lipschitz quotient. Let f̃ : Rn → Ñ be a lift of f to the universal
cover. Since the covering map Ñ → N is a local isometry and f̃ is L-
Lipschitz quotient,

volÑ

(
BÑ (f̃(x), r)

)
≤ volÑ

(
f̃(Bn(x, Lr))

)
≤
∫
Bn(x,Lr)

Jf̃

=

∫
Bn(x,Lr)

Jf ≤ L2nvolRn(Bn(0, 1))rn

for all x ∈ Rn and r > 0. Since π1(N) and Ñ are quasi-isometric, π1(N)
has polynomial growth of order at most n. The claim follows. �

3. Lipschitz quotients and ultralimits.

We refer the reader who is not used to the following notions of non-
principal ultrafilters and ultralimits to Chapter 9 of Kapovich’s book [7].
Roughly speaking, taking ultralimits with respect to a nonprincipal ultrafil-
ter is a consistent way of using the axiom of choice to select an accumulation
point of any bounded sequence of real numbers. Let ω be a nonprincipal
ultrafilter. Given a sequence Xj of metric spaces with base points ?j ∈ Xj ,
we consider the based ultralimit metric space

(Xω, ?ω) := (Xj , ?j)ω := lim
j→ω

(Xj , ?j).

We recall briefly the construction. Let

XN
b := {(xj)j∈N : xj ∈ Xj , sup{d(xj , ?j) : j ∈ N} <∞} .

For all (xj)j , (x
′
j)j ∈ XN

b , set

dω((xj)j , (x
′
j)j) := lim

j→ω
dj(xj , x

′
j),

where limj→ω denotes the ω-limit of a sequence indexed by j. Then Xω is the
metric space obtained by taking the quotient of (XN

b , dω) by the semidistance
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dω. We denote by [xj ] the equivalence class of (xj)j . The base point ?ω in
Xω is [?j ].

Suppose fj : Xj → Yj are maps between metric spaces, ?j ∈ Xj are base
points, and we have the property that (fj(xj))j ∈ Y N

b , for all (xj)j ∈ XN
b .

Then the ultrafilter ω assigns a limit map

fω := lim
j→ω

fj : (Xj , ?j)ω → (Yj , fj(?j))ω

as fω([xj ]) := [fj(xj)].
In particular, if fj : Xj → Yj are L-Lipschitz maps, then limj→ω fj is a

well-defined map (Xj , ?j)ω → (Yj , fj(?j))ω. Moreover, passing to ω-limits
for the inequalities

dj(fj(xj), fj(x
′
j)) ≤ Ldj(xj , x′j),

one obtains that fω is L-Lipschitz, i.e.,

dω(fω([xj ]), fω([x′j ])) ≤ Ldω([xj ], [x
′
j ]).

Lemma 3.1. Lipschitz quotients pass to ultralimits as Lipschitz quotients
quantitatively, that is, ultralimits of L-Lipschitz quotients are L-Lipschitz
quotients for all L ≥ 1.

Proof. Suppose that fj : Xj → Yj are L-Lipschitz quotients, i.e., in addition
to be L-Lipschitz maps, we know that

(3.1) BYj (fj(xj), r/L) ⊂ fj(BXj (xj , r)),

for all xj ∈ Xj and r > 0. Take (xj)j∈N ∈ XN
b and (yj)j∈N ∈ Y N

b . Then
(3.1) implies that, for all j ∈ N there exists x′j ∈ Xj with fj(x

′
j) = yj and

d(x′j , xj) ≤ Ld(yj , fj(xj)).

Note that

d(x′j , ?j) ≤ d(x′j , xj) + d(xj , ?j)

≤ Ld(yj , fj(xj)) + d(xj , ?j)

≤ Ld(yj , fj(?j)) + Ld(fj(?j), fj(xj)) + d(xj , ?j)

≤ Ld(yj , fj(?j)) + (L2 + 1) d(xj , ?j).

Thus (x′j)j∈N ∈ XN
b . Also fω([x′j ]) = [fj(x

′
j)] = [yj ] and

dω([x′j ], [xj ]) = lim
j→ω

d(x′j , xj)

≤ L lim
j→ω

d(yj , fj(xj))

= Ldω([yj ], [fj(xj)])

= Ldω([yj ], fω([xj ])).

We conclude the ultralimit map fω is an L-Lipschitz quotient as well. �
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LetX be a metric space with distance dX . We fix a nonprincipal ultrafilter
ω, a base point ? ∈ X, and a sequence of positive numbers λj → 0 as j →∞.
The asymptotic cone of X is defined as

Cone(X) := (λjX, ?)ω.

Here λjX = (X,λjdX) and ? is seen as the constant sequence.
From Lemma 3.1, we immediately have the following result.

Corollary 3.2. Let f : X → Y be an L-Lipschitz quotient between metric
spaces. Then Cone(f) := fω : Cone(X) → Cone(Y ) is an L-Lipschitz
quotient.

Note that fω above is the limit of the sequence of maps f : λjX → λjY ,
which are set-wise always the same map and are L-Lipschitz quotients for
all j.

In our argument we will perform a blow down (i.e., a passing to asymptotic
cones) followed by a blow up (i.e., a passing to tangents). In both cases we
will make use of theorems by Pansu. We begin with a weaker version of
Pansu’s theorem on asymptotic cones sufficient for our purposes.

Theorem 3.3 (Pansu, [12, Théorèm principal]). Let Γ be a nilpotent finitely
generated group equipped with some word distance. Then Cone(Γ) is a sub-
Finsler Carnot group. In particular, Cone(Γ) is biLipschitz equivalent to a
subRiemannian Carnot group.

Remark 1. From the section ‘Complément au théorèm principal’ in [12,
page 421], the group structure of Cone(Γ) is clear: we may assume that Γ
is a lattice in a nilpotent Lie group G, which is called Malcev closure of
Γ. Then Cone(Γ) is the graded algebra associated to G. In particular, the
group Γ is virtually Abelian if and only if G is Abelian, and if and only if
Cone(Γ) is Abelian.

Remark 2. We refer the reader to the papers [3] for another proof of The-
orem 3.3 and the construction of the graded algebra and the subFinsler
structure on it. We point out that the above theorem by Pansu is stating
that the asymptotic cone does not depend on the choice of ultrafilter ω nor
on the scaling factors λj . We actually do not need such an independence.
Using the theory of locally compact groups, one can easily prove that any
such an asymptotic cone is always a subFinsler group, see [4, 2, 8]. How-
ever, for us it will be important to know that, as explained in Remark 1, the
asymptotic cone is Abelian only if the initial group Γ is virtually Abelian.

Regarding blow-ups, we shall use the following differentiability theorem.
In a Carnot group G, we denote by Lp : G→ G the left translation by p ∈ G,
and by δh : G→ G the dilation by h > 0.

Theorem 3.4 (Pansu, [13, Théorème 2]). Let G1 and G2 be two subRie-
mannian Carnot groups. If f : G1 → G2 is Lipschitz, then for almost every
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p ∈ G1, the difference quotient maps δ1/h ◦ L−1f(p) ◦ f ◦ Lp ◦ δh converge uni-

formly on compact sets to a group homomorphism.

Remark 3. Observe that if fj : X → Y are L-Lipschitz quotients between
metric spaces and are converging uniformly on balls, then the limit is an
L-Lipschitz quotient. Thus, in Theorem 3.4, the group homomorphism is a
Lipschitz quotient if f is a Lipschitz quotient.

4. Proof of Theorem 1.2

By passing to the ultralimit as explained in the previous section, we obtain
the following existence result.

Lemma 4.1. Let f : Rn → N be a Lipschitz quotient into a closed and
connected Riemannian n-manifold. Then there exists a Lipschitz quotient
F : Rn → Cone(π1(N)) to the asymptotic cone of π1(N).

Proof. Let Ñ be the universal cover of N and f̃ : Rn → Ñ a lift of f . By
Lemma 2.1, f̃ is a Lipschitz quotient.

Then, by Corollary 3.2, there exists a Lipschitz quotient

f̃ω : Rn → Cone(Ñ);

here we use the fact that the asymptotic cone of the Euclidean space Rn is
just Rn itself.

Let S be a finite symmetric generating set of π1(N). Equip π1(N) with
the word distance associated to S. Since N is closed, the metric spaces
Ñ and π1(N) are quasi-isometric. Thus, by passing to asymptotic cones,

we get a biLipschitz homeomorphism φ : Cone(Ñ) → Cone(π1(N)). Thus
F = φ ◦ fω : Rn → Cone(π1(N)) is the desired map. �

Proof of Theorem 1.2. LetN be a closed, connected Riemannian n-mani-
fold admitting a Lipschitz quotient f : Rn → N . Then, by Lemma 4.1 there
exists a Lipschitz quotient F : Rn → Cone(π1(N)) to the asymptotic cone of
π1(N). By Theorem 3.3, Cone(π1(N)) is bilipschitz equivalent to a Carnot
group G.

From Theorem 3.4, since F is a Lipschitz map between Carnot groups,
we have that, for almost every p ∈ Rn, the tangent map Rn → G is a group
homomorphism. Let φ be any of such maps. Since φ is an ultratangent of
a Lipschitz quotient, it is a Lipschitz quotient by Remark 3. In particular,
φ is surjective. Thus G is the image under a homomorphism of the Abelian
group Rn. Hence, the group G is Abelian. Thus π1(N) is virtually Abelian
by Remark 1. �
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