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Horospherical limit points
of S-arithmetic groups

Dave Witte Morris and Kevin Wortman

Abstract. Suppose Γ is an S-arithmetic subgroup of a connected,
semisimple algebraic group G over a global field Q (of any characteris-
tic). It is well-known that Γ acts by isometries on a certain CAT(0) met-
ric space XS =

∏
v∈S Xv, where each Xv is either a Euclidean building

or a Riemannian symmetric space. For a point ξ on the visual boundary
of XS , we show there exists a horoball based at ξ that is disjoint from
some Γ-orbit in XS if and only if ξ lies on the boundary of a certain
type of flat in XS that we call “Q-good.” This generalizes a theorem of
G. Avramidi and D. W. Morris that characterizes the horospherical limit
points for the action of an arithmetic group on its associated symmetric
space X.
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1. Introduction

Definition 1.1 ([6, Defn. B]). Suppose the group Γ acts by isometries on
the CAT(0) metric space X, and fix x ∈ X. A point ξ on the visual boundary
of X is a horospherical limit point for Γ if every horoball based at ξ intersects
the orbit x · Γ. Notice that this definition is independent of the choice of x.
Also note that if Λ is a finite-index subgroup of Γ, then ξ is a horospherical
limit point for Λ if and only if it is a horospherical limit point for Γ.

In the situation where Γ is an arithmetic group, with its natural action
on its associated symmetric space X, the horospherical limit points have a
simple geometric characterization:
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Theorem 1.2 (Avramidi–Morris [1, Thm. 1.3]). Let:

• G be a connected, semisimple algebraic group over Q,
• K be a maximal compact subgroup of the Lie group G(R),
• X = K\G(R) be the corresponding symmetric space of noncompact

type (with the natural metric induced by the Killing form of G(R)),
and
• Γ be an arithmetic subgroup of G.

Then a point ξ ∈ ∂X is not a horospherical limit point for Γ if and only
if ξ is on the boundary of some flat F in X, such that F is the orbit of a
Q-split torus in G(R).

This note proves a natural generalization that allows Γ to be S-arithmetic
(of any characteristic), rather than arithmetic. The precise statement as-
sumes familiarity with the theory of Bruhat–Tits buildings [12], and requires
some additional notation.

Notation 1.3.

(1) Let:

• Q be a global field (of any characteristic),
• G be a connected, semisimple algebraic group over Q,
• S be a finite set of places of Q (containing all the archimedean

places if the characteristic of Q is 0),
• Gv = G(Qv) for each v ∈ S, where Qv is the completion of Q

at v,
• Kv be a maximal compact subgroup of Gv, for each v ∈ S, and
• ZS be the ring of S-integers in Q.

(2) Adding the subscript S to any symbol other than Z denotes the
Cartesian product over all elements of S. Thus, for example, we
have GS =

∏
v∈S Gv =

∏
v∈S G(Qv).

(3) For each v ∈ S, let

Xv =

{
the symmetric space Kv\G(Qv) if v is archimedean,

the Bruhat–Tits building of G(Qv) if v is nonarchimedean.

Thus, Gv = G(Qv) acts properly and cocompactly by isometries on
the CAT(0) metric space Xv. So GS acts properly and cocompactly
by isometries on the CAT(0) metric space XS =

∏
v∈S Xv.

Definition 1.4. We say a family {Yt}t∈R of subsets of XS is uniformly
coarsely dense in XS/G(ZS) if there exists C > 0, such that, for every
t ∈ R, each G(ZS)-orbit in XS has a point that is at distance < C from
some point in Yt.

See Definition 3.2 for the definition of a Q-good flat in XS .

Theorem 1.5 (cf. [1, Cor. 4.5]). For a point ξ on the visual boundary of
XS =

∏
v∈S Xv, the following are equivalent:
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(1) ξ is a horospherical limit point for G(ZS).
(2) ξ is not on the boundary of any Q-good flat.
(3) There does not exist a parabolic Q-subgroup P of G, such that PS

fixes ξ, and P(ZS) fixes some (or, equivalently, every) horosphere
based at ξ.

(4) The horospheres based at ξ are uniformly coarsely dense in

XS/G(ZS).

(5) The horoballs based at ξ are uniformly coarsely dense in XS/G(ZS).
(6) π(B) = XS/G(ZS) for every horoball B based at ξ, where

π : XS → XS/G(ZS)

is the natural covering map.

Remark 1.6. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are proved in the
following sections, by fairly straightforward adaptations of arguments in [1].
This suffices to establish the theorem, since:

• (1) ⇔ (6) is a restatement of Definition 1.1.
• (4) ⇒ (5) is obvious, because horoballs are bigger than horospheres.
• (5) ⇒ (1) is well-known (see, for example, [1, Lem. 2.3(⇐)]).

The minimal parabolic Q-subgroups of G are all conjugate under G(Q)
[4, Thm. 4.13(b)], and the proof of Proposition 3.4 shows that the nonhoro-
spherical limit points fixed by a given parabolic Q-subgroup are all contained
in the boundary of a single Q-good flat, so Theorem 1.5 implies the following
alternative characterization of the horospherical limit points:

Corollary 1.7 (cf. [1, Cor. 1.4]). If B is the boundary of any maximal Q-
good flat in XS, then the set of horospherical limit points for G(ZS) is the
complement of

⋃
g∈G(Q)Bg.

Acknowledgements. D. W. M. would like to thank A. Rapinchuk for an-
swering his questions about tori over fields of positive characteristic. K. W.
gratefully acknowledges the support of the National Science Foundation.

2. Proof of (3) ⇒ (4)

(3) ⇒ (4) of Theorem 1.5 is the contrapositive of the following result.

Proposition 2.1 (cf. [1, Thm. 4.3]). If the horospheres based at ξ are
not uniformly coarsely dense in XS/G(ZS), then there is a parabolic Q-
subgroup P of G, such that:

(1) PS fixes ξ.
(2) P(ZS) fixes some (or, equivalently, every) horosphere based at ξ.

Proof. We modify the proof of [1, Thm. 4.3] to deal with minor issues,
such as the fact that GS is not (quite) transitive on XS . To avoid technical
complications, assume G is simply connected. We begin by introducing yet
more notation:
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(Γ) Let Γ = G(ZS).

(x) Let x ∈ XS . If v ∈ S is a nonarchimedean place, then we choose x
so that its projection to Xv is a vertex.

(γ) Let γ : R → XS be a geodesic with γ(0) = x and γ(+∞) = ξ. Let
γ+ : [0,∞) → X be the forward geodesic ray of γ. For each v ∈ S,
let γv be the projection of γ to Xv, so γv is a geodesic in Xv.

(FS) For each v ∈ S, choose a maximal flat (or “apartment”) Fv in Xv

that contains γv. Then FS is a maximal flat in XS that contains γ.

(AS) For each v ∈ S, there is a maximal Qv-split torus Av of G(Qv), such
that Av acts properly and cocompactly on the Euclidean space Fv
by translations. Then AS acts properly and cocompactly on FS (by
translations).

(CS) For each v ∈ S, choose a compact subset Cv of Fv, such that CvAv =
Fv. Then CSAS = FS .

(Aγ) Let Aγ = { a ∈ AS | CS a∩γ 6= ∅ } and A+
γ = { a ∈ AS | CS a∩γ+ 6=

∅ }.
(F⊥, A⊥) Let F⊥ be the (codimension-one) hyperplane in FS that is orthogonal

to the geodesic γ and contains x. Let

A⊥ = { a ∈ AS | CS a ∩ F⊥ 6= ∅ }.

(P ξv , Nv) For each v ∈ S, let

P ξv =
{
g ∈ G(Qv)

∣∣ { aga−1 | a ∈ A+
γ } is bounded

}
,

so P ξv is a parabolic Qv-subgroup of G(Qv) that fixes ξ. The Iwasawa
decomposition [12, §3.3.2] allows us to choose a maximal horospheri-

cal subgroup Nv of G(Qv) that is contained in P ξv and is normalized
by Av, such that FvNv = Xv.(

Pv,Mv,
Tv,M

∗
v

)
By applying the S-arithmetic generalization of Ratner’s Theorem
that was proved independently by Margulis-Tomanov [7] and Ratner
[11] (or, if charQ 6= 0, by applying a theorem of Mohammadi [8,
Cor. 4.2]), we obtain an S-arithmetic analogue of [1, Cor. 2.13].
Namely, for some parabolic Q-subgroup P of G, if we let Pv =
P(Qv) for each v ∈ S, and let Pv = MvTvUv be the Langlands
decomposition over Qv (so Tv is the maximal Qv-split torus in the
center of the reductive group MvTv, and Uv is the unipotent radical),
then we have

NS ⊆M∗S US and M∗S US Γ ⊆ NS Γ,

where M∗v is the product of all the isotropic almost-simple factors
of Mv.

Since Nv ⊆ Pv for every v (and PS is parabolic), we have US ⊆ NS and
AS ⊂ PS (cf. proof of [1, Lem. 2.10]). Therefore, since all maximal Qv-
split tori of Pv are conjugate [2, Thm. 20.9(ii), p. 228], and M∗v Tv contains
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a maximal Qv-split torus, there is no harm in assuming AS ⊆ M∗S TS , by
replacing M∗S TS with a conjugate. Let AMS = AS ∩MS = AS ∩M∗S .

Note that Nv is in the kernel of every continuous homomorphism from

P ξv to R. Since P ξv acts continuously on the set of horospheres based at ξ,
and these horospheres are parametrized by R, this implies that Nv fixes
every horosphere based at ξ. Then, since FS NS = XS , we see that, for
each a ∈ Aγ , the set F⊥ aNS is the horosphere based at ξ through the point
xa. By the definition of A⊥, this implies that the horosphere is at bounded
Hausdorff distance from

Ha = xaA⊥NS .

(Also note that every horosphere is at bounded Hausdorff distance from
some Ha, since AS acts cocompactly on FS .) We have

aA⊥NS Γ ⊇ aA⊥ ·NS Γ ⊇ aA⊥ ·M∗S US Γ.(2.2)

We claim that F⊥A
M
S is not coarsely dense in FS . Indeed, suppose, for

the sake of a contradiction, that the set is coarsely dense. Then A⊥A
M
S is

coarsely dense in AS , which means there is a compact subset K1 of AS , such
that AS = K1A⊥A

M
S . Also, the Iwasawa decomposition [12, §3.3.2] of each

G(Qv) implies there is a compact subset KS of GS , such that KSASNS =
GS . Then, for every a ∈ Aγ , we have

KSK1 · aA⊥M∗SUS = KSa(K1A⊥M
∗
S)US ⊇ KSaASM

∗
SUS

⊇ KSASNS = GS .

Since the compact set KSK1 is independent of a, this (together with (2.2))
implies that the sets Ha are uniformly coarsely dense in X/Γ. This con-
tradicts the fact that the horospheres based at ξ are not uniformly coarsely
dense.

Since F⊥ is a hyperplane of codimension one in FS (and AMS is a group that
acts by translations), the claim proved in the preceding paragraph implies
F⊥ = F⊥A

M
S ⊇ xAMS . This means that γ is orthogonal to the convex hull of

xAMS .
On the other hand, we know that MS centralizes TS . Therefore, MS

fixes the endpoint ξT of any geodesic ray γT in the convex hull of xTS . So
MS acts (continuously) on the set of horospheres based at ξT . However,
MS is the almost-direct product of compact groups and semisimple groups
over local fields, so it has no has no nontrivial homomorphism to R. (For
the semisimple groups, this follows from the truth of the Kneser–Tits Con-
jecture [10, Thm. 7.6].) Since the horospheres are parametrized by R, we
conclude that MS fixes every horosphere based at ξT . Hence AMS also fixes
these horospheres. So xAMS is contained in the horosphere through x, which
means the convex hull of xAMS must be perpendicular to the convex hull of
xTS . Since AMS TS has finite index in AS , the conclusion of the preceding
paragraph now implies that γ is contained in the convex hull of xTS , so
CGS

(
TS
)

fixes ξ.
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We also have

PS = MSTSUS = CGS

(
TS
)
US ⊆ CGS

(
TS
)
NS .

Since CGS

(
TS
)

and NS each fix the point ξ, we conclude that PS fixes ξ.
This completes the proof of (1).

From here, the proof of (2) is almost identical to the proof of Thm. 4.3(2)
in [1]. �

3. Proof of (2) ⇒ (3)

(2) ⇒ (3) of Theorem 1.5 is the contrapositive of Proposition 3.4 below.

Notation 3.1. Suppose T is a torus that is defined over Q. Let:

(1) X ∗Q(T) be the set of Q-characters of T;

(2) T
(1)
S =

{
g ∈ TS

∣∣ ∏
v∈S
∥∥χ(gv)

∥∥
v

= 1, ∀χ ∈ XQ(T)
}

.

Definition 3.2. Suppose F is a flat in XS (not necessarily maximal). We
say F is Q-good if there exists a Q-torus T, such that:

• T contains a maximal Q-split torus of G.
• T contains a maximal Qv-split torus Av of Gv for every v ∈ S.
• F is contained in the maximal flat FS that is fixed by AS .

• F is orthogonal to the convex hull of an orbit of T
(1)
S in FS .

Remark 3.3. Q-good flats are a natural generalization of Q-split flats.
Indeed, the two notions coincide in the setting of arithmetic groups. Namely,
suppose:

• Q is an algebraic number field.
• S is the set of all archimedean places of Q.
• T is a maximal Q-split torus in G.
• H = ResQ/QG is the Q-group obtained from G by restriction of

scalars.

Then TS can be viewed as the real points of a Q-torus in H(R), and T
(1)
S is

the group of real points of the Q-anisotropic part of TS . Thus, in this setting,
the Q-good flats in the symmetric space of GS are naturally identified with
the Q-split flats in the symmetric space of H(R).

Proposition 3.4 (cf. [1, Prop. 4.4]). If there is a parabolic Q-subgroup P
of G, such that PS fixes ξ, and P(ZS) fixes every horosphere based at ξ,
then ξ is on the boundary of a Q-good flat in XS.

Proof. Choose a maximal Q-split torus R of P. The centralizer of R in G
is an almost direct product RM for some reductive Q-subgroup M of P.

Choose a Q-torus L of M, such that L(Qv) contains a maximal Qv-split
torus Bv of M(Qv) for each v ∈ S. (This is possible when charQ = 0 by [10,
Cor. 3 of §7.1, p. 405], and the same proof works in positive characteristic,
because a theorem of A. Grothendieck tells us that the variety of maximal
tori is rational [5, Exp. XIV, Thm. 6.1, p. 334], [3, Thm. 7.9].) Let T = RL
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and Av = R(Qv)Bv, so that T is a Q-torus that contains the maximal
Q-split torus R as well as the maximal Qv-split tori Av for all v ∈ S.

Let FS be the maximal flat corresponding to AS , and choose some x ∈ FS .
Since PS fixes ξ, there is a geodesic γ = {γt} in FS , such that limt→∞ γt = ξ
(and γ0 = x).

Now T(ZS) is a cocompact lattice in T
(1)
S (because the “Tamagawa num-

ber” of T is finite: see [10, Thm. 5.6, p. 264] if charQ = 0; or see [9,
Thm. IV.1.3] for the general case), and, by assumption, T(ZS) fixes the

horosphere through x. This implies that all of T
(1)
S fixes this horosphere, so

xT
(1)
S is contained in the horosphere. Therefore, the convex hull of xT

(1)
S is

perpendicular to the geodesic γ, so γ is a Q-good flat. �

4. Proof of (1) ⇒ (2)

(1) ⇒ (2) of Theorem 1.5 is the contrapositive of the following result.

Proposition 4.1 (cf. [1, Prop. 3.1] or [6, Thm. A]). If ξ is on the boundary
of a Q-good flat, then ξ is not a horospherical limit point for G(ZS).

Proof. Let:

• F be a Q-good flat, such that ξ is on the boundary of F .
• γ be a geodesic in F , such that limt→∞ γ(t) = ξ.
• T, AS , and FS be as in Definition 3.2.
• x = γ(0) ∈ FS .
• FS be considered as a real vector space with Euclidean inner product,

by specifying that the point x is the zero vector.
• Cx be a compact set, such that CxAS = FS (and x ∈ Cx).
• γ⊥ be the orthogonal complement of the 1-dimensional subspace γ

in the vector space FS .
• γ⊥A = { a ∈ AS | Cxa ∩ γ⊥ 6= ∅ }.
• γA(t) ∈ AS , such that γ(t) ∈ CxγA(t), for each t ∈ R.
• R be a maximal Q-split torus of G that is contained in T.
• Φ be the system of roots of G with respect to R.
• αS : TS → R+ be defined by αS(g) =

∏
v∈S
∥∥α(gv)

∥∥
v

for α ∈ Φ
(where ‖ · ‖v ◦α is extended to be defined on all of T(Qv) by making
it trivial on the Q-anisotropic part).
• α̂S : FS → R be the linear map satisfying α̂S(xa) = logαS(a) for all
a ∈ AS .
• αF ∈ FS , such that 〈αF | y〉 = α̂S(y) for all y ∈ FS .
• Φ++ = {α ∈ Φ | α̂S

(
γ(t)

)
> 0 for t > 0 }.

• ∆ be a base of Φ, such that Φ+ contains Φ++.
• ∆++ = ∆ ∩ Φ++.
• Pα = RαMαNα be the parabolic Q-subgroup corresponding to α,

for α ∈ ∆, where:
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◦ Rα is the one-dimensional subtorus of R on which all roots in
∆ r {α} are trivial.
◦ Mα is reductive with Q-anisotropic center.
◦ The unipotent radical Nα is generated by the roots in Φ+ that

are not trivial on Rα.

Given any large t ∈ R+, we know α̂S
(
γ(t)

)
is large for all α ∈ ∆++.

By definition, we have T
(1)
S =

⋂
α∈∆ kerαS . Since γ is perpendicular to the

convex hull of x ·T (1)
S , this implies that γ(t) is in the span of {αF }α∈∆. Also,

for α ∈ ∆, we have

〈αF | γ(t)〉 = α̂S
(
γ(t)

)
≥ 0.

There is no harm in renormalizing the metric on XS by a positive scalar
on each irreducible factor (cf. [1, Rem. 5.4]). This allows us to assume
〈αF | βF 〉 ≤ 0 whenever α 6= β (see Lemma 4.2 below). Therefore, for any
b ∈ γ⊥A , there is some α ∈ ∆, such that α̂S

(
xγA(t)b

)
is large (see Lemma 4.3

below). This means αS
(
γA(t) b

)
is large.

Since conjugation by the inverse of γA(t) b contracts the Haar measure

on (Nα)S by a factor of αS
(
γA(t) b

)k
for some k ∈ Z+, and the action of

NS on (Nα)S is volume-preserving, this implies that, for any g ∈ γA(t) bNS ,
conjugation by the inverse of g contracts the Haar measure on (Nα)S by
a large factor. Since Nα(ZS) is a cocompact lattice in (Nα)S (because the
“Tamagawa number” of Nα is finite: see [10, Thm. 5.6, p. 264] if charQ = 0;
or see [9, Thm. IV.1.3] for the general case), this implies there is some
nontrivial h ∈ Nα(ZS), such that ‖ghg−1 − e‖ is small. We conclude that ξ
is not a horospherical limit point for G(ZS) (cf. [1, Lem. 2.5(2)]). �

Lemma 4.2. Assume the notation of the proof of Proposition 4.1. The
metric on XS can be renormalized so that we have 〈αF | βF 〉 ≤ 0 for all
α, β ∈ ∆ with α 6= β.

Proof. When v is archimedean, the Killing form provides a metric on Xv.
We now construct an analogous metric when v is nonarchimedean. To do
this, let Φv be the root system of G with respect to the maximal Qv-split
torus Av, let t⊕

⊕
α∈Φv

gα be the corresponding weight-space decomposition
of the Lie algebra of Gv, choose a uniformizer πv of Qv, let X∗(Av) be the
group of co-characters of Av, and define a Z-bilinear form

〈 | 〉v : X∗(Av)×X∗(Av)→ R

by

〈ϕ1 | ϕ2〉v =
∑
α∈Φv

v
(
α
(
ϕ1(πv)

))
v
(
α
(
ϕ2(πv)

))(
dim gα

)
.

This extends to a positive-definite inner product on X∗(Av) ⊗ R (and the
extension is also denoted by 〈 | 〉v). It is clear that this inner product is
invariant under the Weyl group, so it determines a metric on Xv [12, §2.3].
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By renormalizing, we may assume that the given metric on Xv coincides
with this one.

Let E be the Q-anisotropic part of T. Then it is not difficult to see that
X∗
(
R
)
⊗ R is the orthogonal complement of X∗

(
E(Qv)

)
⊗ R, with respect

to the inner product 〈 | 〉v (cf. [1, Lem. 2.8]). Since every Q-root annihilates
E(Qv), this implies that the Fv-component αFv of αF belongs to the convex
hull of xR(Qv), for every α ∈ Φ.

From [4, Cor. 5.5], we know that the Weyl group over Q is the restriction
to R of a subgroup of the Weyl group over Qv. So the restriction of 〈 | 〉v
to X∗

(
R
)
⊗R is invariant under the Q-Weyl group. Assume, for simplicity,

that G is Q-simple, so the invariant inner product on X∗
(
R
)
⊗ R is unique

(up to a positive scalar). (The general case is obtained by considering the
simple factors individually.) This means that, after passing to the dual space
X ∗
(
R
)
⊗R, the inner product 〈 | 〉v must be a positive scalar multiple cv of

the usual inner product (for which the reflections of the root system Φ are
isometries), so 〈αFv | βFv 〉v = cv〈α | β〉 for all α, β ∈ ∆. Since it is a basic
property of bases in a root system that 〈α | β〉 ≤ 0 whenever α 6= β, we
therefore have

〈αF | βF 〉 =
∑
v∈S
〈αFv | βFv 〉v =

∑
v∈S

cv〈α | β〉 =
∑
v∈S

(
> 0
)(
≤ 0
)
≤ 0. �

Lemma 4.3 ([1, Lem. 2.6]). Suppose:

(1) v, v1, . . . , vn ∈ Rk, with v 6= 0.
(2) v is in the span of {v1, . . . , vn}.
(3) 〈v | vi〉 ≥ 0 for all i.
(4) 〈vi | vj〉 ≤ 0 for i 6= j.
(5) T ∈ R+.

Then, for all sufficiently large t ∈ R+ and all w ⊥ v, there is some i, such
that 〈tv + w|vi〉 > T .
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Sci. Publ. Math. 27 (1965), 55–150. MR207712 (34 #7527), Zbl 0145.17402,
doi: 10.1007/BF02684375.

[5] Demazure, M.; Grothendieck, A.; Dirs. Schémas en groupes. II. Groupes de type
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