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A distributional approach to Feynman’s
operational calculus

Lance Nielsen

Abstract. In this paper we will construct an operator-valued distri-
bution that will extend Feynman’s operational calculus in the setting of
Jefferies and Johnson, 2001–2003, and Johnson–Lapidus–Nielsen, 2014,
from the disentangling of holomorphic functions of several variables to
the disentangling of Schwartz functions on Rn. It will be shown that
the disentangled operator corresponding to a Schwartz function (i.e., the
disentangling of a Schwartz function) can be realized as the limit of a
sequence of operator-valued distributions of compact support in a ball
of a certain radius centered at 0 ∈ Rn. In this way, we can extend the
operational calculi to the Schwartz space.
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1. Introduction

The primary purpose of this paper is to use distributional methods to
enable Feynman’s operational calculus to be applied to elements of the
Schwartz space S(Rn) of tempered functions. As the reader will see, the
distributional approach developed below that facilitates the use of Schwartz
functions in the operational calculus will not lend itself to simple compu-
tation of the “disentangled operator”. On the other hand, we will see that
the “disentangled operator” corresponding to a Schwartz function will be
defined using a limit of a sequence of “disentangled operators” that result
from distributions with compact support. Theorems 4.2 and 4.3 take care
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of the “heavy lifting” required to define the operational calculus on the
Schwartz class. With these Theorems in hand, it is Definition 4.5 which
enables our extension of the operational calculus to the Schwartz space of
tempered functions. Indeed, Definition 4.5 is the ultimate goal of this paper.
Following Definition 4.5, there is a brief discussion concerning the approach
taken to obtain this definition, as well as the difficulties of using this defini-
tion in a practical way. We will also comment on the relation between the
present paper and other work that has been done on determining an exten-
sion of the operational calculus to functions other than analytic functions of
several variables.

It may be helpful to present, at this time, some background discussion
on the operational calculus. Feynman’s operational calculus originated with
the 1951 paper [2] and concerns itself with the formation of functions of non-
commuting operators. Indeed, even with functions as simple as f(x, y) = xy
it is not clear how to define f(A,B) if A and B do not commute — does one
let f(A,B) = AB, f(A,B) = BA, f(A,B) = 1

2AB+ 1
2BA, or some other ex-

pression involving sums of products of A and B? One has to decide, usually
with a particular problem in mind, how to form a given function of noncom-
muting operators. One approach to this problem (the approach followed in
this paper) was developed by Jefferies and Johnson in the papers [6, 7, 8, 9].
This approach is expanded on in the papers [10, 11, 12, 13, 14, 17], and
others. It is important to note that, in the setting of the original Jefferies–
Johnson approach, measures on intervals [0, T ] are used to determine when
a given operator will act in products. Furthermore, the measures used in the
original papers are continuous measures. However, Johnson and the current
author extended the operational calculus to measures with both continuous
and discrete parts in the aforementioned paper [17].

The discussion just above begs the question of how measures can be used
to determine the order of operators in products. Feynman’s heuristic rules
for the formation of functions of noncommuting operators give us a starting
point.

(1) Attach time indices to the operators to specify the order of operators
in products.

(2) With time indices attached, form functions of these operators by
treating them as though they were commuting.

(3) Finally, “disentangle” the resulting expressions; i.e., restore the con-
ventional ordering of the operators.

As is well known, the most difficult problem with the operational calculus
is the disentangling process. Indeed in his 1951 paper, [2], Feynman points
out that “The process is not always easy to perform and, in fact, is the
central problem of this operator calculus.”

We first address rule (1) above. It is in the use of this rule that we will see
measures used to track the action of operators in products. First, it may be
that the operators involved may come with time indices naturally attached.
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For example, we might have operators of multiplication by time dependent
potentials. However, it is also commonly the case that the operators used are
independent of time. Given such an operator A, we can (as Feynman most
often did) attach time indices according to Lebesgue measure as follows:

A =
1

t

∫ t

0
A(s) ds

where A(s) := A for 0 ≤ s ≤ t. This way of attaching time indices does ap-
pear a bit artificial but turns out to be extremely useful in many situations.
We also note that mathematical or physical considerations may dictate that
one use a measure different from Lebesgue measure. For example, if µ is a
probability measure on the interval [0, T ], and if A is a linear operator, we
can write

A =

∫
A(s)µ(ds)

where once again A(s) := A for 0 ≤ s ≤ T . When we write A in this
fashion, we are able to use the time variable to keep track of when the
operator A acts. Indeed, if we have two operators A and B, consider the
product A(s)B(t) (here, time indices have been attached). If t < s, then
we have A(s)B(t) = AB since here we want B to act first (on the right).
If, on the other hand, s < t, then A(s)B(t) = BA since A has the earlier
time index. In other words, the operator with the smaller (or earlier) time
index, acts to the right of (or before) an operator with a larger (or later)
time index. (It needs to be kept in mind that these equalities are heuristic
in nature.) For a much more detailed discussion of using measures to attach
time indices, see Chapter 14 of the book [15] as well as Chapters 2, 7 and 9
of the forthcoming book [16] and the references contained in these books.

Concerning the rules (2) and (3) above, we mention that, once we have
attached time indices to the operators involved, we calculate functions of the
noncommuting operators as if they actually do commute. These calculations
are, of course, heuristic in nature but the idea is that with time indices
attached, one carries out the necessary calculations giving no thought to
the operator ordering problem; the time indices enable us to restore the
desired ordering of the operators once the calculations are finished; this
is the disentangling process and is typically the most difficult part of any
given problem. While we will not go into detail concerning how to form
functions of several, noncommuting, operators, we will record in Section 2
the essential notation and results concerning the disentangling process as it
is done in the Jefferies–Johnson approach to the operational calculus. (For
a thorough discussion of the operational calculus, we refer the interested
reader to the book [15] and the forthcoming volume [16].)

Section 3 contains the necessary definitions and results concerning Fourier
analysis and distribution theory that will be needed in Section 4. We closely
follow the notation and definitions found in book [3] for much of this ma-
terial. Also contained in Section 3 is the disentangled exponential function
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that will play a crucial role in this paper. Furthermore, Section 3 contains a
norm estimate for the disentangled exponential function that will be needed
in Section 4.

The fourth section of this paper contains the main theorems, Theorems 4.2
and 4.3, that enable us to extend the domain of the operational calculus to
the Schwartz space S(Rn). Along with the Fourier transform, we will make
use of the disentangling of the exponential function

exp(z1 + · · ·+ zn),

an entire function of n complex variables. It is here that the Jefferies–
Johnson formalism enters in to our discussion. With the disentangled expo-
nential in hand, we choose a smooth φ from the appropriate function space
and define an entire function Fφ that will, via the Paley–Wiener theorem
for distributions, enable us to obtain a distribution Tφ of compact support
acting on the Schwartz space of tempered functions. We will be able to as-
sociate the action of Tφ to an explicit disentangling series. Finally, using the
ideas of approximate identities, we will be able to define the disentangling of
a tempered function as a limit of a sequence in L(X), using the distributions
Tφ. As mentioned previously, this is the main goal of the current paper.

Finally, Section 5 contains a brief discussion of the approach taken in this
paper and its relation to [12] and [5].

2. Definitions and notation

We start with a brief outline of the operational calculus as developed in
[6, 7, 8, 9] for the time independent setting and in [11] for the time-dependent
setting. Both approaches are developed with considerably more detail in the
forthcoming book [16].

Definition 2.1. Given n nonnegative real numbers (in practice, these num-
bers are typically strictly positive) r1, . . . , rn, we define A(r1, . . . , rn) to be
the family of functions f(z1, . . . , zn) of n complex variables which are ana-
lytic on the open polydisk

{(z1, . . . , zn) : |zj | < rj , j = 1, . . . , n}
and continuous on its boundary

{(z1, . . . , zn) : |zj | = rj , j = 1, . . . , n} .
Given any f ∈ A(r1, . . . , rn), we can write its Taylor series centered at the
origin in Cn as

(2.1) f(z1, . . . , zn) =
∞∑

m1,...,mn=0

am1,...,mnz
m1
1 · · · zmnn ,

where

am1,...,mn =
1

m1! · · ·mn!

∂m1+···+mnf

∂zm1
1 · · · ∂zmnn

(0, . . . , 0)
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and the series converges absolutely on the closed polydisk

{(z1, . . . , zn) : |zj | ≤ rj , j = 1, . . . , n} .
We define a norm on A(r1, . . . , rn) by

‖f‖A :=
∞∑

m1,...,mn=0

|am1,...,mn |r
m1
1 · · · rmnn .

The proof that ‖ · ‖A is indeed a norm can be found in [6] and in [16].
With this norm, and via point-wise operations, A(r1, . . . , rn) becomes a
commutative Banach algebra (see [6], [16]). We will refer to this algebra
below as A.

Remark 2.2. Clearly, A(r1, . . . , rn) consists of functions analytic on the
open polydisk with radii r1, . . . , rn and which are continuous on its boundary.
Moreover, with the norm ‖ · ‖A, A(r1, . . . , rn) is a weighted `1-space.

Next, given a Banach space X, we take the maps

Aj : [0, T ]→ L(X),

j = 1, . . . , n, to be measurable in the sense that A−1
j (E) is a Borel set in

[0, T ] for all strongly open E ⊆ L(X). (For the definition of the strong
operator topology, see, for example, page 182 of [18, Vol. 1].) For each
j = 1, . . . , n, we associate to Aj(·) a Borel probability measure µj on [0, T ].
As mentioned in the introduction, we will refer to µj as the time-ordering
measure associated to Aj(·). We will assume that∫

[0,T ]
‖Aj(s)‖L(X)µj(ds) <∞,

for j = 1, . . . , n.

Remark 2.3. We are not assuming that our time-ordering measures are
continuous (recall that a measure µ on a measurable space Ω is continuous
if µ({x}) = 0 for all singleton sets {x} ⊂ Ω). Continuous time-ordering
measures are used [6, 7, 8, 9] and in much of the subsequent work on this
approach to the operational calculus. However, the operational calculus in
the presence of time-ordering measures with nonzero discrete parts has been
developed in [17] and, more exhaustively in [16]. If a given time-ordering
measure µj has a nonzero discrete part, we will assume that the support
of the discrete part is finite (see [17], [16]). The presence of a nontrivial
discrete part will not affect the results contained in this paper. Indeed, it
is a strength of the approach taken in this paper that the presence of a
discrete part in any (or all) of the time-ordering measure(s) will not affect
this papers’ results.

Given the operator-measure pairs (Aj(·), µj), j = 1, . . . , n, we let

rj :=

∫
[0,T ]
‖Aj(s)‖L(X)µj(ds).
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We use the numbers r1, . . . , rn to construct the commutative Banach algebra
A. We can now define the disentangling algebra. It is this commutative
Banach algebra that supplies the “commutative world” in which Feynman’s
rules can be applied in a mathematically rigorous fashion.

Definition 2.4. The disentangling algebra D(Ã1(·), . . . , Ãn(·)) associated to
the algebra A(r1, . . . , rn) is defined as follows. Discard all operator-theoretic
aspects (and time-dependence, if present) of the L(X)-valued functions
Aj(·), j = 1, . . . , n, keeping only the associated real number rj . We ob-

tain formal commuting objects Ã1(·), . . . , Ãn(·). To define the disentangling

algebra D(Ã1(·), . . . , Ãn(·)), given f ∈ A(r1, . . . , rn), we replace the complex

variables z1, . . . , zn with the objects Ã1(·), . . . , Ãn(·), obtaining expressions
(obtained using the Taylor series expansion (2.1))

(2.2) f
(
Ã1(·), . . . , Ãn(·)

)
=

∞∑
m1,...,mn=0

am1,...,mn

(
Ã1(·)

)m1

· · ·
(
Ãn(·)

)mn
.

The disentangling algebra D(Ã1(·), . . . , Ãn(·)) is the collection of all such
expressions for which

‖f‖D :=

∞∑
m1,...,mn=0

|am1,...,mn |r
m1
1 · · · rmnn <∞.

(
D(Ã1(·), . . . , Ãn(·)), ‖ · ‖D

)
is a commutative Banach algebra via pointwise

operations (see [6], [16]). We will, below, refer to this algebra as D.

Remark 2.5. It is shown in [6] and also in [16] that A and D are isometri-
cally isomorphic.

With the algebra D in hand, we can use Feynman’s rules to carry out the
time-ordering calculations necessary for computing the disentangled version
of a function f ∈ D; we map the end result of these calculations into L(X)

via the disentangling map Tµ1,...,µn : D(Ã1(·), . . . , Ãn(·)) → L(X). It turns
out that the essential ingredient in the definition of the disentangling map
is the computation of the disentangling of the monomial

Pm1,...,mn(Ã1(·), . . . , Ãn(·)) :=
(
Ã1(·)

)m1

· · ·
(
Ãn(·)

)mn
,

where m1, . . . ,mn ∈ N ∪ {0}. Before recording the disentangling of the
monomial, some notation is necessary. First, given m ∈ N, we let Sm be the
group of permutations on m objects. For m ∈ N and π ∈ Sm, we let

(2.3) ∆m(π) :=
{

(s1, . . . , sm) ∈ [0, T ]m : 0 < sπ(1) < · · · < sπ(m) < T
}
.

To accommodate the use of time-ordering measures with nontrivial (finitely
supported) discrete parts, we need to modify (2.3) as follows. Let m ∈ N and
suppose that τ1, . . . , τh ∈ (0, T ) are such that τ1 < τ2 < · · · < τh. Choose
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nonnegative integers θ1, . . . , θh+1 ∈ N ∪ {0} such that θ1 + · · · + θh+1 = m
and define, for π ∈ Sm,

∆m;θ1,...,θh+1
(π) :=

{
(s1, . . . , sm) ∈ [0, T ]m : 0 < sπ(1) < · · · < sπ(θ1)(2.4)

< τ1 < sπ(θ1+1) < · · · < sπ(θ1+θ2) < τ2

< sπ(θ1+θ2+1) < · · · < sπ(θ1+···+θh) < τh

< sπ(θ1+···+θh+1) < · · · < sπ(m) < T
}
.

The reader will note that, given the numbers τ1, . . . , τh, the nonnegative
integer θ1 serves to count the number of time indices that occur before τ1,
the nonnegative integer θ2 counts the number of time indices that occur
between τ1 and τ2, etc.

Finally, define

(2.5) C̃i(s) :=


Ã1(s) if i ∈ {1, . . . ,m1} ,
Ã2(s) if i ∈ {m1 + 1, . . . ,m1 +m2} ,

...

Ãn(s) if i ∈ {m1 + · · ·+mn−1 + 1, . . . ,m}

and

(2.6) Ci(s) :=


A1(s) if i ∈ {1, . . . ,m1} ,
A2(s) if i ∈ {m1 + 1, . . . ,m1 +m2} ,

...

An(s) if i ∈ {m1 + · · ·+mn−1 + 1, . . . ,m} ,

where m := m1 + · · · + mn. The tilded objects C̃i(s) give the appropri-

ate formal commuting object Ã(·)(s) (that replace the variables z1, . . . , zn),
depending on the block {1, . . . ,m1} , . . . , {m1 + · · ·+mn−1 + 1, . . . ,m} to
which the index i belongs. The same comment holds regarding the Ci(s);
the difference is that the tildes are erased, turning the tilded objects into
the L(X)-valued functions.

With the notation introduced above, we are now ready to record the
disentangling (in the disentangling algebra) of the monomial

Pm1,...,mn(Ã1(·), . . . , Ãn(·)) = (Ã1(·))m1 · · · (Ãn(·))mn .

We will state the result for continuous measures and measures with finitely
supported discrete parts separately. For complete details concerning how
the following proposition is arrived at, see [6], [17], and especially [16].

Proposition 2.6.

(1) In the disentangling algebra D, when the time-ordering measures

µ1, . . . , µn are continuous, the monomial Pm1,...,mn(Ã1(·), . . . , Ãn(·))
can be written as
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(2.7)

Pm1,...,mn(Ã1(·), . . . , Ãn(·)) =
∑
π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1))

· (µm1
1 × · · · × µmnn ) (ds1, . . . , dsm).

(2) When each of the time-ordering measures µ1, . . . , µn has a finitely
supported discrete part, we write

µj = λj + ηj ,

where λj is continuous and ηj is purely discrete and finitely supported
for j = 1, . . . , n. Let {τ1, . . . , τh}, 0 < τ1 < · · · < τh < T , be the

union of the supports of η1, . . . , ηn. Write ηj =
∑h

i=1 pjiδτi, where∑h
i=1 pji = 1 for j = 1, . . . , n. In the disentangling algebra D, the

monomial Pm1,...,mn(Ã1(·), . . . , Ãn(·)) can be written as

Pm1,...,mn(Ã1(·), . . . , Ãn(·))(2.8)

=
∑

q11+q12=m1

· · ·
∑

qn1+qn2=mn

m1! · · ·mn!

q11!q12! · · · qn1!qn2!

∑
j11+···+j1h=q12

· · ·

∑
jn1+···+jnh=qn2

q12! · · · qn2!

j11! · · · j1h! · · · jn1! · · · jnh!

∑
θ1+···+θh+1=q11+···+qn1∑

π∈Sq11+···+qn1

∫
∆q11+···+qn1;θ1,...,θh+1

(π)

C̃π(q11+···+qn1)(sπ(q11+···+qn1))

· · · C̃π(θ1+···+θh+1)(sπ(θ1+···+θh+1))

[
n−1∏
α=0

(
pn−α,hÃn−α(τh)

)jn−α,h]
C̃π(θ1+···+θh)(sπ(θ1+···+θh)) · · · C̃π(θ1+1)(sπ(θ1+1))[
n−1∏
α=0

(
pn−α,1Ãn−α(τ1)

)jn−α,1]
C̃π(θ1)(sπ(θ1)) · · · C̃π(1)(sπ(1))

(λq111 × · · · × λqn1n ) (ds1, . . . , dsq11+···+qn1).

The complexity seen in part (2) of the proposition above arises from the
presence of the discrete measures η1, . . . , ηn. See [17] or [16] for a com-
plete discussion and derivation of the time-ordering of the monomial in the
presence of time-ordering measures with nonzero discrete parts.

We now define the disentangling map that takes the time-ordered element
of D to an operator in L(X).

Definition 2.7.

(1) When the time-ordering measures µ1, . . . , µn associated to the L(X)-
valued functions A1(·), . . . , An(·), respectively, are continuous we de-

fine the image of the monomial Pm1,...,mn(Ã1(·), . . . , Ãn(·)) under the
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disentangling map Tµ1,...,µn : D→ L(X) by

(2.9) Tµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·))

:=
∑
π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

(µm1
1 × · · · × µmnn ) (ds1, . . . , dsm)

where Ci(·) is defined by (2.6).
(2) When the time-ordering measures µ1, . . . , µn associated to the L(X)-

valued functions A1(·), . . . , An(·), respectively, have nontrivial dis-
crete parts, we define the image of the monomial

Pm1,...,mn(Ã1(·), . . . , Ãn(·))

under the disentangling map Tµ1,...,µn : D → L(X) as follows. For
each j = 1, . . . , n, write µj = λj + ηj where ηj is purely discrete of
finite support and is written as in Proposition 2.6. Define

Tµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·))(2.10)

:=
∑

q11+q12=m1

· · ·
∑

qn1+qn2=mn

m1! · · ·mn!

q11!q12! · · · qn1!qn2!

∑
j11+···+j1h=q12

· · ·

∑
jn1+···+jnh=qn2

q12! · · · qn2!

j11! · · · j1h! · · · jn1! · · · jnh!

∑
θ1+···+θh+1=q11+···+qn1∑

π∈Sq11+···+qn1

∫
∆q11+···+qn1;θ1,...,θh+1

(π)

Cπ(q11+···+qn1)(sπ(q11+···+qn1))

· · ·Cπ(θ1+···+θh+1)(sπ(θ1+···+θh+1))

[
n−1∏
α=0

(pn−α,hAn−α(τh))jn−α,h

]
Cπ(θ1+···+θh)(sπ(θ1+···+θh)) · · ·Cπ(θ1+1)(sπ(θ1+1))[
n−1∏
α=0

(pn−α,1An−α(τ1))jn−α,1

]
Cπ(θ1)(sπ(θ1)) · · ·Cπ(1)(sπ(1))

(λq111 × · · · × λqn1n ) (ds1, . . . , dsq11+···+qn1),

where Ci(·) is defined by (2.6).
(3) Let f ∈ D. Write the Taylor series for f as in (2.2). Define

(2.11) Tµ1,...,µnf(Ã1(·), . . . , Ãn(·))

:=
∞∑

m1,...,mn=0

am1,...,mnTµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·));

i.e., we define the disentangling map for an arbitrary element of D
term-by-term in the Taylor series for f .
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• If the time-ordering measures µ1, . . . , µn are continuous, we use
part (1) for Tµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·)).
• If the time-ordering measures have nonzero, finitely supported,

discrete parts, we compute Tµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·))
via part (2).

The disentangling map has the following properties.

Theorem 2.8. The disentangling map Tµ1,...,µn : D→ L(X) is:

(1) linear;
(2) a norm 1 contraction if Aj(s) ≡ Aj for all s ∈ [0, T ] and j = 1, . . . , n,

i.e., the operator-valued functions are constant-valued (the time in-
dependent setting);

(3) a contraction in the time dependent setting, but not necessarily of
norm 1.

For the proofs of these statements, we refer the reader to [6], [17], [11]
and [16].

3. Specifics needed for the distributional approach to the
operational calculus

Now that we have a general outline of the ideas of the operational calculus
in Jefferies–Johnson setting of the operational calculus [6, 7, 8, 9], we move
on to the ideas needed to obtain the main results, Theorems 4.2 and 4.3, of
the present paper. As in the previous section, we assume that Aj : [0, T ]→
L(X), j = 1, . . . , n, are measurable in the sense that A−1

j (E) is a Borel

set in [0, T ] for every strongly open E ⊆ L(X). Associate to each Aj(·),
j = 1, . . . , n, a Borel probability measure µj ; µj may be continuous or it
may have a nontrivial finitely supported discrete part. Define real numbers
r1, . . . , rn by

(3.1) rj :=

∫
[0,T ]
‖Aj(s)‖L(X)µj(ds).

We assume that each of these numbers is finite. Construct the commuta-
tive Banach algebra A(r1, . . . , rn) and the associated disentangling algebra

D(Ã1(·), . . . , Ãn(·)). Now, let

f(z1, . . . , zn) := exp(z1 + · · ·+ zn).

It is clear that f is an entire function and so is an element of A and
f(Ã1(·), . . . , Ãn(·)) is an element of D. As is well known, we may write

f(z1, . . . , zn) =
∞∑

m1,...,mn=0

1

m1! · · ·mn!
zm1

1 · · · zmnn .

The disentangling of f is, then
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Tµ1,...,µnf(Ã1(·), . . . , Ãn(·))(3.2)

=
∞∑

m1,...,mn=0

1

m1! · · ·mn!
Tµ1,...,µnPm1,...,mn(Ã1(·), . . . , Ãn(·))

=: expµ1,...,µn

 n∑
j=1

∫
[0,T ]

Aj(s)µj(ds)

 .

Remark 3.1. If the time-ordering measures µ1, . . . , µn are continuous, we
use part (1) of Definition 2.7 to determine the disentangling of f . If the time-
ordering measures µ1, . . . , µn have nontrivial, finitely supported, discrete
parts, we use part (2) of Definition 2.7 to determine the disentangling of f .
However, the particular forms of the disentangling of the exponential will
play no explicit role in what follows.

A norm estimate for (3.2) will play a crucial role below. It turns out
that norm estimate does not depend on whether or not the time-ordering
measures have discrete parts. Indeed, we have∥∥∥∥∥∥expµ1,...,µn

 n∑
j=1

∫
[0,T ]

Aj(s)µj(ds)

∥∥∥∥∥∥
L(X)

(3.3)

≤
∞∑

m1,...,mn=0

1

m1! · · ·mn!

∥∥∥Tµ1,...,µnPm1,...,mn
(
Ã1(·), . . . , Ãn(·)

)∥∥∥
L(X)

≤
∞∑

m1,...,mn=0

1

m1! · · ·mn!

(∫
[0,T ]
‖A1(s)‖L(X)µ1(ds)

)m1

· · ·

(∫
[0,T ]
‖An(s)‖L(X)µn(ds)

)mn

= exp

(∫
[0,T ]
‖A1(s)‖L(X)µ1(ds) + · · ·+

∫
[0,T ]
‖An(s)‖L(X)µn(ds)

)
.

This norm estimate is obtained by using the triangle inequality for the first
inequality. Then, when computing an estimate for ‖Tµ1,...,µnPm1,...,mn‖L(X),
we again apply the triangle inequality followed by the standard Banach alge-
bra inequality ‖AB‖L(X) ≤ ‖A‖L(X)‖B‖L(X) to the operator products. (See
Equations (2.9) and (2.10) of Definition 2.7.) With the operators enclosed
with norms, all of the terms in the integrands become real-valued and so
commutative. We then “unravel” the disentangling computations and ob-
tain the second inequality in (3.3). (See [17], [15], [16] for the details of
obtaining such inequalities.)
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We now define Fexp : Cn → L(X) by

(3.4) Fexp(ξ1, . . . , ξn) := expµ1,...,µn

2πi
n∑
j=1

ξj

∫
[0,T ]

Aj(s)µj(ds)

 .

Clearly, Fexp is an entire L(X)-valued function. From the norm estimate
(3.3), it is clear that

(3.5) ‖Fexp(ξ1, . . . , ξn)‖L(X) ≤ exp

2π
n∑
j=1

|ξj |
∫

[0,T ]
‖Aj(s)‖L(X)µj(ds)

 .

For the reader’s convenience, we now move on to sketch out the essential
facts that we will need about the Schwartz space of test functions, the Fourier
transform and the convolution product. We will follow Chapter 2 of [3].

Definition 3.2. A C∞ complex-valued function f on Rn is called a Schwartz
function if, for every pair α, β ∈ Nn ∪ {0, . . . , 0} of multi-indices, there is a
positive constant Cα,β such that

ρα,β(f) := sup
x∈Rn

|xα∂βf(x)| = Cα,β <∞.

The set of all Schwartz functions on Rn will be denoted by S(Rn).

Remark 3.3. In this definition we have used the standard notation con-
cerning multi-indices — xα := xα1

1 · · ·xαnn , ∂β := ∂β1+···+βn

∂x
β1
1 ···∂x

βn
n

, etc.

Definition 3.4. Given f ∈ S(Rn), we define the Fourier transform f̂ of f
by

f̂(ξ) :=

∫
Rn
e−2πiξ·xf(x) dx,

where ξ · x denotes the standard inner product on Rn.

We will also have use of the convolution.

Definition 3.5. For f, g ∈ S(Rn), define the convolution f ∗ g of f with g
by

(f ∗ g)(x) :=

∫
Rn
f(y)g(x− y) dy.

Remark 3.6. Of course, if f and g are in L1(Rn), the convolution is de-
fined, but, as we will only use functions in the Schwartz space, we state the
definition for Schwartz functions.

We will need the following theorem. (See [3, Proposition 2.2.11].)

Theorem 3.7. Let f, g ∈ S(Rn) and let α ∈ Nn ∪ {0, . . . , 0}. Then:

(a) (∂αf)ˆ(ξ) = (2πiξ)αf̂(ξ).

(b) f̂ ∗ g = f̂ ĝ.

(c) f̂ ∈ S(Rn).
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We will have occasion to make use of the following as well. (See [3,
Proposition 2.2.7].)

Proposition 3.8. Let f, g ∈ S(Rn). Then fg and f ∗ g are in S(Rn).
Moreover,

∂α(f ∗ g) = (∂αf) ∗ g = f ∗ (∂αg)

for all multi-indices α ∈ Nn ∪ {0, . . . , 0}.

We next recall the inverse Fourier transform.

Definition 3.9. Given f ∈ S(Rn), the inverse Fourier transform of f is

f̌(x) = f̂(−x) =

∫
Rn
f̂(ξ)e2πix·ξ dξ.

Finally, we will need functions in the Silva space G of test functions for the
so-called Fourier ultra-hyperfunctions of S. Silva and Morimoto–Park. The
following characterization of elements of Silva space is found in Theorem 3.4
of [1].

Theorem 3.10. The Silva space G consists of all locally integrable functions
φ on Rn such that, for any h > 0,

(3.6) sup
x∈Rn

|φ(x)|eh‖x‖ <∞, and sup
ξ∈Rn

|φ̂(ξ)|eh‖ξ‖ <∞.

Here, ‖ · ‖ denotes the Euclidean norm on Rn.

Remark 3.11. Note that if φ ∈ C∞(Rn) and if φ satisfies (3.6) for all h > 0,
then certainly φ ∈ S(Rn) as well as being an element of G.

It will be prudent to very briefly review some basic facts about operator-
valued tempered distributions. An element of L(S(Rn),L(X)) is a tempered
L(X)-valued distribution (or operator-valued distribution). As usual, the

Fourier transform T̂ of a L(X)-vaued tempered distribution is defined by

T̂ (f) := T (f̂) for all f ∈ S(Rn). Similarly, the inverse Fourier transform of
T is defined by Ť (g) := T (ǧ).

An element T of L(C∞(Rn),L(X)) is a distribution with compact support
[19, Theorem 24.2]. (The topology of C∞(Rn) is the topology of uniform
convergence of functions and their derivatives on compact subsets of Rn.)
For T ∈ L(C∞(Rn),L(X)), the support of T is the complement of the set
of all points x ∈ Rn for which there exists an open neighborhood V such
that T (f) = 0 for all smooth functions f supported in V . (Of course, every
distribution with compact support also has finite order, but this will play
no explicit role in this paper.)

Finally, we will present a vector-valued version of the Paley–Wiener the-
orem for distributions of compact support. The scalar version of the Paley–
Wiener Theorem can be found in [19, Theorem 29.2]. The vector-valued
version stated below follows easily from the scalar-valued version. Define
U(r) := {x ∈ Rn : ‖x‖ ≤ r}. Given ξ ∈ Cn, denote the real part of ξ by <ξ
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and denote the imaginary part of ξ by =ξ. (Of course, <ξ = (<ξ1, . . . ,<ξn)
and =ξ = (=ξ1, . . . ,=ξn), where ξ = (ξ1, . . . , ξn).)

Theorem 3.12 (Paley–Wiener Theorem). Let X be a Banach space and
let T ∈ L(S(Rn), X) be a tempered distribution. Then there exists an r ≥ 0
such that T has compact support contained in the ball U(r) if and only if T
is the Fourier transform of an entire function e : Cn → X for which there
exists C ≥ 0, s ≥ 0 such that

‖e(ξ)‖B ≤ C(1 + ‖ξ‖)ser‖=ξ‖,

for all ξ ∈ Cn.

4. Main results

It is in this section that we work towards a way to compute the disentan-
gled operator fµ1,...,µn(A1(·), . . . , An(·)) corresponding to f ∈ S(Rn). The
reader will note that we will not make use of the commutative Banach alge-
bras A and D in this section. The essential ingredient for our development
will be the disentangled exponential function (see (3.2), above)

(4.1) Tµ1,...,µn exp
{

2πi
(
Ã1 + · · ·+ Ãn

)}
=: expµ1,...,µn

2πi

n∑
j=1

∫
[0,T ]

Aj(s)µj(ds)

 .

As we wish to find the disentangled operator corresponding to an arbitrary
element f ∈ S(Rn), it is, perhaps, not a surprise that we move away from
explicit use of the disentangling algebra. However, it is important to note
that the exponential function exp(z1 + · · ·+zn) which leads to the disentan-
gled exponential used below is, as an entire function, an element of every
disentangling algebra, and furthermore, that the disentangling (4.1) results
from the Jefferies–Johnson approach to the operational calculus that was
outlined above. It is in the computation of the disentangled operator (4.1)
that the machinery outlined in Section 2 comes into play.

In order to begin working towards our goal of a distributional repre-
sentation of Feynman’s operational calculus, we start by defining, for φ ∈
C∞(Rn) ∩ G, the function Fφ : Rn → L(X) by

(4.2) Fφ(ξ) := φ̂(ξ) expµ1,...,µn

2πi

∞∑
j=1

ξj

∫
[0,T ]

Aj(s)µj(ds)

 .

Recalling (3.4), the definition of Fexp, we see that Fφ = φ̂Fexp. Now, since
the Fourier transform, as a function of ξ ∈ Cn, is an entire function and
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since the function

ξ ∈ Cn 7→ expµ1,...,µn

2πi
∞∑
j=1

ξj

∫
[0,T ]

Aj(s)µj(ds)


is an entire L(X)-valued function, it is evident that, as a function of ξ ∈ Cn,
Fφ is an entire L(X)-valued function. Furthermore, using (3.3), we obtain
the following bound on ‖Fφ(ξ)‖L(X):

‖Fφ(ξ)‖L(X)

(4.3)

≤ |φ̂(ξ)| exp

2π
n∑
j=1

|ξj |
∫

[0,T ]
‖Aj(s)‖L(X)µj(ds)


≤ |φ̂(ξ)| exp

2π

√√√√ n∑
j=1

|ξj |2

√√√√ n∑
j=1

(∫
[0,T ]
‖Aj(s)‖L(X)µj(ds)

)2


≤ |φ̂(ξ)| exp

2π (‖<(ξ)‖+ ‖=(ξ)‖)

√√√√ n∑
j=1

(∫
[0,T ]
‖Aj(s)‖L(X)µj(ds)

)2
 .

Let R :=

√∑n
j=1

(∫
[0,T ] ‖Aj(s)‖L(X)µj(ds)

)2
. Then (4.3) can be written as

(4.4) ‖Fφ(ξ)‖L(X) ≤ |φ̂(ξ)| exp {2πR‖<(ξ)‖+ 2πR‖=(ξ)‖} .

Also, with h := 2πR, there is a C0 > 0 such that

|φ̂(ξ)| ≤ C0e
−2πR‖ξ‖.

(See Theorem 3.10.) We have, finally,

(4.5) ‖Fφ(ξ)‖L(X) ≤ C0e
2πR‖=(ξ)‖.

Let

(4.6) K := {x ∈ Rn : ‖x‖ ≤ 2πR} .

The Paley–Wiener Theorem, Theorem 3.12, then tells us that the operator-
valued distribution

(4.7) Tφ(f) :=

∫
Rn
Fφ(ξ)f̂(x) dx (f ∈ S(Rn))

has compact support contained in K.
We now proceed to investigate the distribution Tφ. Using the definition

(4.2) of Fφ, and the series (4.1) for the disentangling of the exponential
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function, we have, for f ∈ S(Rn),

Tφ(f) =

∫
Rn
Fφ(x)f̂(x) dx

=

∫
Rn

{
φ̂(x)

∞∑
m1,...,mn=0

(2πix1)m1 · · · (2πixn)mn

m1! · · ·mn!

· Pm1,...,mn
µ1,...,µn (A1(·), . . . , An(·))

}
f̂(x) dx

By the obvious vector-valued version of Corollary 12.33 of [4], we may in-
terchange the integral and the sum, leading to

Tφ(f)

(4.8)

=

∞∑
m1,...,mn=0

1

m1! · · ·mn!


∫
Rn

(2πix1)m1 · · · (2πixn)mn φ̂(x)f̂(x) dx

 ·
Pm1,...,mn
µ1,...,µn (A1(·), . . . , An(·))

=

∞∑
m1,...,mn=0

1

m1! · · ·mn!


∫
Rn

(2πix1)m1 · · · (2πixn)mn φ̂ ∗ f(x) dx

 ·
Pm1,...,mn
µ1,...,µn (A1(·), . . . , An(·))

=
∞∑

m1,...,mn=0

1

m1! · · ·mn!

∂m1+···+mn(φ ∗ f)

∂xm1
1 · · · ∂x

mn
n

(0)Pm1,...,mn
µ1,...,µn (A1(·), . . . , An(·))

where we’ve used Theorem 3.7. We are therefore able to write

(4.9) Tφ(f) = (φ ∗ f)µ1,...,µn(A1(·), . . . , An(·)),
provided that the series in (4.8) converges. However, since φ ∈ G and since
f ∈ S(Rn), the series in (4.8) does indeed converge absolutely. This is most

easily seen using the norm estimate (4.5) as well as the fact that f̂ ∈ S(Rn).

Remark 4.1. As is apparent, we are restricting Fφ to Rn and so the series in
(4.8) is a real-valued series. However, we do have the disentangled monomial

Pm1,...,mn
µ1,...,µn (A1(·), . . . , An(·))

present in each term of the series and so, following Feynman’s rules, the series
derived for Tφ(f), f ∈ S(Rn), is indeed a sum of time-ordered products;
i.e., it is a disentangled operator. We will refer to Tφ(f) as the φ-weighted
disentangling of f ∈ S(Rn). It is these disentanglings which will enable us to
obtain the disentangled operator fµ1,...,µn(A1(·), . . . , An(·)), for f ∈ S(Rn).

We have proven the following theorem.
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Theorem 4.2. Let φ ∈ C∞(Rn) ∩ G. Define Fφ : Rn → L(X) by

(4.10) Fφ(x) := φ̂(x) expµ1,...,µn

2πi
n∑
j=1

xj

∫
[0,T ]

Aj(s)µj(ds)

 .

(Fφ is the restriction to Rn of the entire function defined in (4.2).) Then
the distribution Tφ defined by

(4.11) Tφ(f) :=

∫
Rn
Fφ(x)f̂(x) dx (f ∈ S(Rn)),

has compact support in K = {x ∈ Rn : ‖x‖ ≤ 2πR}, where

(4.12) R :=

√√√√ n∑
j=1

(∫
[0,T ]
‖Aj(s)‖L(X)µj(ds)

)2

.

Moreover, given f ∈ S(Rn), we have

(4.13) Tφ(f) = (φ ∗ f)µ1,...,µn(A1(·), . . . , An(·)),
where (φ ∗ f)µ1,...,µn(A1(·), . . . , An(·)) is given by the series in the last line
of Equation (4.8).

We now use the φ-weighted disentanglings developed above to define a
disentangled operator fµ1,...,µn(A1(·), . . . , An(·)) for f ∈ S(Rn). We start by
selecting φ ∈ C∞(Rn) ∩ G with∫

Rn
φ(x) dx = 1.

Define, for each k ∈ N,

(4.14) φ1/k(x) = k−nφ
(x
k

)
.

As is easily seen, ∫
Rn
φ1/k(x) dx = 1,

for all k ∈ N. Therefore, following [3, Example 1.2.16, page 24], {φ1/k}∞k=1 is
an approximate identity. Moreover, it is easy to see that φ1/k ∈ C∞(Rn)∩G
for every k ∈ N. Hence, for f ∈ S(Rn) and every k ∈ N, we have

Tφ1/k(f) =
(
φ1/k ∗ f

)
µ1,...,µn

(A1(·), . . . , An(·));

that is, we have sequence
{
Tφ1/k(f)

}∞
k=1

of L(X)-valued distributions of

compact support (Theorem 4.2).
For k, l ∈ N, we have, using (4.8),
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∥∥∥Tφ1/k(f)− Tφ1/l(f)
∥∥∥
L(X)

≤
∞∑

m1,...,mn=0

1

m1! · · ·mn!

·
∣∣∣∣∂m1+···+mn(φ1/k ∗ f)

∂xm1
1 · · · ∂x

mn
n

(0)−
∂m1+···+mn(φ1/l ∗ f)

∂xm1
1 · · · ∂x

mn
n

(0)

∣∣∣∣
·
∥∥Pm1,...,mn

µ1,...,µn (A1(·), . . . , An(·))
∥∥
L(X)

.

Next, using Proposition 3.8 and the fact that φ ∈ G, we have, for k ∈ N,

∂m1+···+mn(φ1/k ∗ f)

∂xm1
1 · · · ∂x

mn
n

= φ1/k ∗
{
∂m1+···+mnf

∂xm1
1 · · · ∂x

mn
n

}
.

It follows from Theorem 1.2.19 of [3] (concerning approximate identities),
that ∣∣∣∣∂m1+···+mn(φ1/k ∗ f)

∂xm1
1 · · · ∂x

mn
n

(0)−
∂m1+···+mn(φ1/l ∗ f)

∂xm1
1 · · · ∂x

mn
n

(0)

∣∣∣∣(4.15)

=

∣∣∣∣(φ1/k ∗
∂m1+···+mnf

∂xm1
1 · · · ∂x

mn
n

)
(0)−

(
φ1/l ∗

∂m1+···+mnf

∂xm1
1 · · · ∂x

mn
n

)
(0)

∣∣∣∣
≤
∥∥∥∥φ1/k ∗

∂m1+···+mnf

∂xm1
1 · · · ∂x

mn
n
− φ1/l ∗

∂m1+···+mnf

∂xm1
1 · · · ∂x

mn
n

∥∥∥∥
L∞(B(0,R))

→ 0

as k, l → ∞, where B(0, R) is the ball of radius R centered at 0 in Rn.
Finally, an application of the dominated convergence theorem tells us that∥∥∥Tφ1/k(f)− Tφ1/l(f)

∥∥∥
L(X)

→ 0

as k →∞; i.e., the sequence
{
Tφ1/k(f)

}∞
k=1

is a Cauchy sequence of opera-

tors in L(X). It follows at once that there is an element Tµ1,...,µnf ∈ L(X)
such that

Tφ1/k(f)→ Tµ1,...,µnf

in L(X)-norm as k → ∞. We have obtained the following theorem. It
is this theorem that spells out how we can determine the disentangling of
f ∈ S(Rn).

Theorem 4.3. Let φ ∈ C∞(Rn) ∩ G be such that

(4.16)

∫
Rn
φdx = 1.

For k ∈ N, define

φ1/k(x) := k−nφ
(x
k

)
.
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Then φ1/k ∈ C∞(Rn) ∩ G for all k ∈ N and is an approximate identity. For

each f ∈ S(Rn), the sequence
{
Tφ1/k(f)

}∞
k=1

of φ1/k-weighted disentanglings

is a Cauchy sequence in L(X) and so has a (norm) limit Tµ1,...,µnf ; this limit
is independent of the choice of approximate identity φ1/k, φ ∈ C∞(Rn) ∩ G
and satisfying (4.16).

Remark 4.4. The independence of the choice of φ results from the limit in
(4.15), the definition of an approximate identity and Theorem 1.2.19 of [3].

In view of Theorems 4.2 and 4.3, we can now accomplish the main goal of
this paper, the disentangling of an arbitrary element f ∈ S(Rn). We do this

using the corresponding sequence
{
Tφ1/k(f)

}∞
k=1

of compactly supported

operator-valued distributions.

Definition 4.5 (Definition of the disentangling of f ∈ S(Rn)). The disen-
tangling of a function f ∈ S(Rn) is defined by

(Tµ1,...,µnf) (Ã1(·), . . . , Ãn(·)) := lim
k→∞

Tφ1/k(f),

for any φ ∈ C∞(Rn) ∩ G.

With this definition, we have extended the operational calculi from func-
tions of n complex variables which are analytic on a polydisk to the space
of Schwartz functions on Rn.

Remark 4.6. As is clear from Theorem 4.3, the disentangling

fµ1,...,µn(A1(·), . . . , An(·))
is obtained via a limit of L(X)-valued distributions of compact support.
However, it may not be that fµ1,...,µn(A1(·), . . . , An(·)) has compact support.

5. Discussion

We have, in Theorems 4.2 and 4.3, shown that it is possible to obtain, for
f ∈ S(Rn), a disentangled operator fµ1,...,µn(A1(·), . . . , An(·)). Moreover,
this operator is determined via a limit of a sequence of compactly supported
operator-valued distributions. Of course, while each distribution Tφ1/k has
compact support, the limit as k → ∞ may not. On the other hand, while
we have derived an explicit disentangling series for the φ-weighted disentan-
glings (φ∗f)µ1,...,µn(A1(·), . . . , An(·)) (see Equation (4.8)), we did not record
a series expansion for fµ1,...,µn(A1(·), . . . , An(·)); indeed, due to the fact that
we would need to compute, for a given Silva function φ, the convolution
φ1/k ∗ f , this would be difficult to compute explicitly. However, the inter-
est here is in the construction of a version of the operational calculus for
Schwartz functions, as opposed to functions f : Cn → C which are analytic
on a particular polydisk. That is, we extend the operational calculi to the
Schwartz space.
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Our extension of the domain of Feynman’s operational calculi to the
Schwartz class is similar in some ways to the approach taken in the pa-
per [12]. Let µ = (µ1, . . . , µn) be an n-tuple of continuous Borel probabil-
ity measures on [0, 1] (or [a, b]). In [12], an n-tuple A = (A1, . . . , An) of
bounded linear operators on a Banach space is said to be of Paley–Wiener
type (s, r, µ) if there exists C, r, s ≥ 0 such that

‖Tµ1,...,µn
(
ei〈ζ,Ã〉

)
‖L(X) ≤ C (1 + |ζ|)s er|=ζ|, for all ζ ∈ Cn.

Of course, if this estimate holds, then there is a unique L(X) - valued
distribution Fµ,A ∈ L(C∞(Rn),L(X)) such that

Fµ,A(f) =

∫
Rn
Tµ1,...,µn

(
ei〈ζ,Ã〉

)
f̂(ζ) dζ,

for f ∈ S(Rn). Moreover, the distribution so defined is compactly supported.
The support γµ(A) of Fµ,A is referred to in [12] as the µ-joint spectrum of
A. (A similar result can be found in [5].) The main result of [12] is that
any n-tuple of bounded self-adjoint operators on a Hilbert space is of Paley–

Wiener type (0, r, µ) with r =
√∑n

j=1 ‖Aj‖2. It is, then, apparent that the

approach taken in this paper has some similarities with the approach taken
in [12]. Indeed, recall that the distributions Tφ1/k , k ∈ N, have compact
support and are reminiscent of the distribution Fµ,A. Also, the distribution

Fµ,A is defined by using the disentangling of the exponential ei〈ζ,Ã〉; what
we have done above is in the same spirit, although here we have “weighted”
the disentangling of the exponential with a Silva function φ1/k.

Nevertheless, what has been done in the current paper differs markedly
in several respects from the approach taken in [12]:

(1) There is no requirement that the operators be time independent; i.e.,
fixed operators. As the reader will recall, we work with measurable
L(X)-valued functions.

(2) There is no requirement in the present paper that the operators be
self-adjoint (or act on a Hilbert space).

(3) There is no need in the current paper to require that the n-tuple of
operators is of Paley–Wiener type.

(4) The time-ordering measures involved do not need to be continu-
ous measures. The results above will accommodate both continuous
measures and measures with nonzero (finitely supported) discrete
parts.

(5) We define the operational calculi on the Schwartz space by defining
the disentangling of f ∈ S as the limit of a sequence of φ-weighted
disentanglings. (Because of the quite general setting of the current
paper, it might have been expected that obtaining fµ1,...,µn , f ∈ S,
would be more difficult.)
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It is hoped, then, that the approach taken in this paper to extend the domain
of Feynman’s operational calculus to the Schwartz space will allow new
directions to be taken in the study of the operational calculus.
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