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Characteristic ideals and Iwasawa theory

Andrea Bandini, Francesc Bars and Ignazio Longhi

Abstract. Let Λ be a nonnoetherian Krull domain which is the inverse
limit of noetherian Krull domains Λd and let M be a finitely generated
Λ-module which is the inverse limit of Λd-modules Md. Under certain
hypotheses on the rings Λd and on the modules Md, we define a pro-
characteristic ideal for M in Λ, which should play the role of the usual
characteristic ideals for finitely generated modules over noetherian Krull
domains. We apply this to the study of Iwasawa modules (in particular
of class groups) in a nonnoetherian Iwasawa algebra Zp[[Gal(F/F )]],
where F is a function field of characteristic p and Gal(F/F ) ' Z∞p .
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1. Introduction

Let A be a noetherian Krull domain and M a finitely generated torsion A-
module. The structure theorem for such modules provides an exact sequence

(1.1) 0 −→ P −→M −→
n⊕
i=1

A/peii A −→ Q −→ 0

where the pi’s are height 1 prime ideals of A and P and Q are pseudo-
null A-modules (for more details and precise definitions of all the objects
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appearing in this Introduction see Section 2). This sequence defines an
important invariant of the module M , namely its characteristic ideal

ChA(M) :=

n∏
i=1

peii .

Characteristic ideals play a major role in (commutative) Iwasawa theory
for global fields: they provide the algebraic counterpart for the p-adic L-
functions associated to Iwasawa modules (such as class groups or duals of
Selmer groups). Here the Krull domain one works with is the Iwasawa alge-
bra Zp[[Γ]], where Γ is a commutative p-adic Lie group occurring as Galois

group (we shall deal mainly with the case Γ ' Zdp for some d ∈ N). Even if
pseudo-null modules do not contribute to characteristic ideals, they appear
in the descent problem when one wants to compare the characteristic ideal of
an Iwasawa module of a Zdp-extension with the one of a Zd−1

p -extension con-
tained in it. The last topic is particularly important when the global field has
characteristic p, because, in this case, extensions F/F with Gal(F/F ) ' Z∞p
occur quite naturally: in this situation the Iwasawa algebra is nonnoetherian
and there is no guarantee one can find a sequence such as (1.1). One strat-
egy to overcome this difficulty is to consider a filtration of Zdp-extensions for

F , define the characteristic ideals at the Zdp-level for all d and then pass to
the limit.

To deal with the technical complications of inverse limits and projections
of pseudo-null modules, in Section 2 we prove the following (see Proposi-
tions 2.7 and 2.10):

Proposition 1.1. Let A be a noetherian Krull domain and put B := A[[t]].
If M is a pseudo-null B-module, then Mt (the kernel of multiplication by t)
and M/tM are finitely generated torsion A-modules and

(1.2) ChA(Mt) = ChA(M/tM).

Moreover, for any finitely generated torsion B-module N , we have

(1.3) ChA(Nt)π(ChB(N)) = ChA(N/tN)

(where π : B → A is the canonical projection).

This immediately provides a criterion for an B-module to be pseudo-null
(Corollary 2.11), but our main application is the definition of a nonnoethe-
rian analogue of characteristic ideals in Iwasawa algebras.

Theorem 1.2. Let {Λd}d>0 be an inverse system of noetherian Krull do-
mains such that

Λd ' Λd+1/pd+1 and Λd+1 ' lim
←−
n

Λd+1/p
n
d+1 for any d > 0
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(pd+1 a principal prime ideal of Λd+1 of height 1). Let Λ := lim
←−
d

Λd and

consider a finitely generated Λ-module

M = lim
←−
d

Md

(where each Md is a Λd-module). If, for every d� 1,

1. the pd-torsion submodule of Md is a pseudo-null Λd−1-module, i.e.,
ChΛd−1

(Md[pd]) = (1),
2. ChΛd−1

(Md/pd) ⊆ ChΛd−1
(Md−1),

then the ideals ChΛd
(Md) form a projective system (with respect to the maps

πΛd
Λd−1

defining Λ).

Definition 1.3. Whenever conditions 1 and 2 of Theorem 1.2 hold, we
define the pro-characteristic ideal of M over Λ as

C̃hΛ(M) := lim
←−
d

ChΛd
(Md) ⊆ Λ.

The Iwasawa algebra associated with a Zdp-extension of a global field F
is (noncanonically) isomorphic to the Krull ring Zp[[t1, . . . , td]], hence de-

scending to a Zd−1
p -extension corresponds to the passage from A[[t]] to A.

So the results of Section 2 apply immediately to Iwasawa modules. In order
to keep the paper short, we just consider the case of class groups. We also
remark that the analogue of Proposition 1.1 for these Iwasawa algebras has
been proved by T. Ochiai in [18, Section 3] and it suffices for the arith-
metical applications we had in mind. Indeed in Section 3.1 we deal with
a global field F of characteristic p > 0 (for an account of Iwasawa theory
over function fields see [6] and the references there). We already mentioned
that here one is naturally led to work with extremely large abelian p-adic
extensions: this comes from class field theory, since, in the completion Fv
of F at some place v, the group of 1-units U1(Fv) is isomorphic to Z∞p .
As hinted above, our strategy to tackle F/F with Gal(F/F ) ' Z∞p is to

work first with Zdp-extensions and then use limits. The usefulness of The-
orem 1.2 in this procedure is illustrated in Section 3.1.1, where we define

the pro-characteristic ideal C̃hΛ(A(F)) dispensing with the crutch of the ad
hoc hypothesis [6, Assumption 5.3]. The search for a “good” definition for
it was one of the main motivations for this work.

The arithmetic significance of our pro-characteristic ideal is ensured by a
deep result of D. Burns (see [9, Theorem 3.1] and the Appendix [10]), which
shows that the characteristic ideal of the class group of a Zdp-extension Fd/F
is generated by a Stickelberger element (by some language abuse we shall call
class group of Fd the inverse limit of the class groups of the finite subexten-
sions of Fd/F ). Therefore (see Corollary 3.10) our pro-characteristic ideal is
generated by a Stickelberger element as well and this can be considered as an
instance of Iwasawa Main Conjecture for nonnoetherian Iwasawa algebras.
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Next to class groups, [6] and [4] consider the case of Selmer groups of
abelian varieties: in [6, Section 3] we employed Fitting ideals of Pontrjagin
duals of Selmer groups instead than characteristic ideals in order to avoid
the difficulties of taking the inverse limit. With some additional work, Theo-
rem 1.2 permits to define a pro-characteristic ideal for these modules as well,
allowing to formulate a more classical Iwasawa Main Conjecture (details can
be found in [7]).

Remark 1.4. If a pseudo-null A[[t]]-module M is finitely generated over A
as well, then the statement of Proposition 1.1 is trivially deduced from the
exact sequence

0→Mt →M
t−→M →M/tM → 0

and the multiplicativity of characteristic ideals. As explained in [14] (see
Lemma 2 and the discussion right after it), for any Zdp-extension Fd/F and
any pseudo-null Λ(Fd)-module M it is always possible to find (at least one)
Zd−1
p -subextension Fd−1 such that M is finitely generated over Λ(Fd−1)

(where Λ(L) is the Iwasawa algebra associated with the extension L/F ).
Our search for a characteristic ideal via a projective limit does not allow
this freedom in the choice of subextensions, hence the need for an “uncon-
ditional” result like Theorem 1.2.

Acknowledgments. We thank the referee for his or her very prompt report
and for suggesting a more elegant reasoning in one of our arguments.

2. Pseudo-null modules and characteristic ideals

2.1. Krull domains. We begin by reviewing some basic facts and defini-
tions we are going to need. A comprehensive reference is [8, Chapter VII].

An integral domain A is called a Krull domain if A = ∩Ap (where p
varies among prime ideals of height 1 and Ap denotes localization), all Ap’s
are discrete valuation rings and any x ∈ A− {0} is a unit in Ap for almost
all p.1 In particular, one attaches a discrete valuation to any height 1 prime
ideal. Furthermore, a ring is a unique factorization domain if and only if it
is a Krull domain and all height 1 prime ideals are principal ([8, VII, §3.2,
Theorem 1]).

2.1.1. Torsion modules. Let A be a noetherian Krull domain. A finitely
generated torsion A-module is said to be pseudo-null if its annihilator ideal
has height at least 2. A morphism with pseudo-null kernel and cokernel
is called a pseudo-isomorphism: being pseudo-isomorphic is an equivalence
relation between finitely generated torsion A-modules (torsion is essential
here2) and we shall denote it by ∼A . If M is a finitely generated torsion

1This is not the definition in [8], but it is equivalent to it: see [8, VII, §1.6, Theorem
4].

2For example the map (p, t) ↪→ Zp[[t]] is a pseudo-isomorphism, but there is no such
map from Zp[[t]] to (p, t).
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A-module then there is a pseudo-isomorphism

(2.1) M −→
n⊕
i=1

A/peii

where the pi’s are height 1 prime ideals of A (not necessarily distinct) and
the pi’s, n and the ei’s are uniquely determined by M (see, e.g., [8, VII,
§4.4, Theorem 5]). A module like the one on the right-hand side of (2.1)
will be called elementary A-module and

E(M) :=

n⊕
i=1

A/peii ∼A M

is the elementary module attached to M .

Definition 2.1. Let M be a finitely generated A-module: its characteristic
ideal is

ChA(M) :=


0 if M is not torsion;
n∏
i=1

peii if M ∼A
n⊕
i=1

A/peii .

In particular, M is pseudo-null if and only if ChA(M) = A.

We shall denote by FgtA the category of finitely generated torsion A-
modules.

Remarks 2.2.

1. An equivalent definition of pseudo-null is that all localizations at
primes of height 1 are zero. If p and q are two different primes of
height 1 (and M is a torsion A-module) we have M ⊗AAp⊗AAq = 0.
By the structure theorem recalled in (2.1) it follows immediately that
for a finitely generated torsion A-module M , the canonical map

(2.2) M −→
⊕
p

(
M ⊗A Ap

)
(where the sum is taken over all primes of height 1) is a pseudo-
isomorphism. Actually, the right-hand side of (2.2) can be used to
compute ChA(M): a prime p appears in ChA(M) with exponent the
length of the module M ⊗A Ap.

2. The previous remark suggests a generalization of the definition of
characteristic ideal by means of supernatural divisors.3 Let M be
any torsion A-module (we drop the finitely generated assumption)
and define

ChA(M) :=
∏
p

plp(M⊗AAp)

3We recall that the group of divisors of A is the free abelian group generated by the
prime ideals of height 1 in A (see [8, VII, §1]).
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where the product is taken over all primes of height 1 and the expo-
nent of p (i.e., the length of the module M ⊗A Ap ) is a supernatural
number (i.e., belongs to N ∪ {∞} ). More precisely, for N a finitely
generated torsion Ap-module let lp(N) denote its length. Then we
put

lp(M ⊗A Ap) := sup{lp(Mα ⊗A Ap)} ,
where Mα varies among all finitely generated submodules of M . Note
that, since Ap is flat, Mα⊗AAp is still a submodule of M ⊗AAp; fur-
thermore, the length lp is an increasing function on finitely generated
torsion Ap-modules (partially ordered by inclusion).

2.1.2. Power series. In the rest of this section, A will denote a Krull
domain and B := A[[t]] the ring of power series in one variable over A.

Proposition 2.3. Let A be a Krull domain and p ⊂ A a height 1 prime.
Then B is also a Krull domain and pB is a height 1 prime of B.

This is well-known (actually, one can prove the analogue even with infin-
itely many variables: see [11]). In order to make the paper as self-contained
as possible, and for lack of a suitable reference for the second part of the
proposition, we provide a quick proof.

Proof. Let Q be the fraction field of A. Since A is Krull, we have A = ∩Aq

as q varies among all prime ideals of height 1. Furthermore, each Aq is a
discrete valuation ring: then [8, VII, §3.9, Proposition 8] shows that Aq[[t]]
is a unique factorization domain. In particular every Aq[[t]][t

−1] is a Krull
domain and we get

(2.3) B = A[[t]] = Q[[t]] ∩
⋂
q

Aq[[t]][t
−1] = Q[[t]] ∩

⋂
q

⋂
P∈Sq

(
Aq[[t]][t

−1]
)
P

(where Sq denotes the set of height 1 primes in Aq[[t]][t
−1]). This shows

that B is an intersection of discrete valuation rings. A power series λ =
th
∑

i>0 cit
i ∈ B (with c0 6= 0) is a unit in Aq[[t]][t

−1] unless c0 ∈ q and, in

the latter case, λ is still a unit in (Aq[[t]][t
−1])P unless it can be divided by

the generator of P. This proves that B is a Krull domain.
Since Ap is a discrete valuation ring, its maximal ideal pAp is principal:

let π be a uniformizer. Then π is irreducible in Ap[[t]], hence it generates
a height 1 prime ideal P := πAp[[t]] = pAp[[t]]. By the general theory of
Krull domains, P corresponds to a discrete valuation νP on the fraction field
Frac(Ap[[t]]); the restriction of νP to Q is precisely the discrete valuation
associated with p. Similarly, restricting νP to Frac(B) yields a discrete
valuation, with ring of integers DP and maximal ideal mP. The ring DP is
the localization of B at mP: hence it is flat over B and, by [8, VII, §1.10,
Proposition 15], the prime ideal

mP ∩B = P ∩B = pB 6= 0

has height 1. �
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2.2. Pseudo-null B-modules. Now assume that A (and hence B) is Noe-
therian. In this section P will be a pseudo-null B-module. We denote by Pt
the kernel of multiplication by t and remark that in the exact sequence

(2.4) Pt
� � // P

t // P // // P/tP ,

Pt and P/tP are finitely generated B-modules, because so is P . The former
ones are also finitely generated as A-modules, because t acts as 0 on them.
Moreover they are torsion A-modules: we have P ⊗B BtB = 0 (since the
ideal tB is prime of height 1), hence there is some x in AnnB(P ) − tB
and the projection of this x into A (via t 7→ 0) kills both Pt and P/tP .
Therefore the characteristic ideals ChA(Pt) and ChA(P/tP ) are given by
Definition 2.1 (there is no need for supernatural divisors here) and both of
them are nonzero.

2.2.1. Preliminaries. For p a prime of height one in A, define

Âp := lim
←
Ap/p

nAp.

By a slight abuse of notation, we shall denote by p also the maximal ideals

of Ap and Âp. The natural embedding of A into Âp allows to identify B

with a subring of Âp[[t]].

Lemma 2.4. The ring Âp[[t]] is a flat B-algebra.

Proof. Put Sp := A − p. We claim that Âp[[t]] is the completion of S−1
p B

with respect to the ideal generated by p and t. This is enough, since for-
mation of fractions and completion of a noetherian ring both generate flat
algebras, and the composition of flat morphisms is still flat. To verify the
claim consider the inclusions

Ap[t]/(p, t)
n ⊂ S−1

p B/(p, t)n ⊂ Âp[[t]]/(p, t)
n

and note that they are preserved by taking the inverse limit with respect to

n. To conclude observe that lim
←
Ap[t]/(p, t)

n = Âp[[t]]. �

The advantage of working over Âp[[t]] is that one can apply the Weierstrass
Preparation Theorem (for a proof see, e.g., [8, VII, §3.8, Proposition 6]):

given α =
∑
ait

i ∈ Âp[[t]] such that not all coefficients are in p, there exist

u ∈ Âp[[t]]
∗ and a monic polynomial β ∈ Âp[t] such that α = uβ (the degree

of β is equal to the minimum of the indices i such that ai 6∈ p). Actually,
as it is going to be clear from the proof of Lemma 2.6 below, we shall need
just a weaker form of this statement.

2.2.2. Characteristic ideals. Now we deal with the equality between
ChA(Pt) and ChA(P/tP ).
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Lemma 2.5. For any finitely generated torsion Ap-module N one has the
equality of lengths

lAp(N) = l
Âp

(N ⊗Ap Âp).

Proof. Since both Ap and Âp are discrete valuation rings and

Ap/p
n ' Âp/p

n ' (Ap/p
n)⊗ Âp,

the statement follows directly from the structure theorem for finitely gener-
ated torsion modules over principal ideal domains. �

Lemma 2.6. Let P be a pseudo-null B-module. Then P ⊗B Âp[[t]] is a

finitely generated Âp-module for any height 1 prime ideal p ⊂ A.

Proof. We consider P as an A-module and work separately with primes p
belonging or not belonging to the support of P . If the prime p is not in this

support, there is some r ∈ AnnA(P ) which becomes a unit in Ap ⊂ Âp[[t]],

hence P ⊗B Âp[[t]] = 0 and the statement is trivial. Thus, from now on, we
assume p ∈ SuppA(P ) (i.e., AnnA(P ) ⊂ p). Since pB is a height 1 prime
ideal in B, the hypothesis on P yields AnnB(P ) 6⊂ pB. Hence there exists
α ∈ AnnB(P )− pB, i.e.,

α =
∑
i>0

ait
i ∈ AnnB(P ) (with ai ∈ A for any i)

with at least one ai 6∈ p. For such an α, let n be the smallest index such that
an /∈ p. Then, by [8, VII, §3.8, Proposition 5] (which is a key step in the
proof of the Weierstrass Preparation Theorem), one has a decomposition

Âp[[t]] = αÂp[[t]]⊕

(
n−1⊕
i=0

Âpt
i

)
.

Now one just uses P ⊗B αÂp[[t]] = α · (P ⊗B Âp[[t]]) = 0. �

Proposition 2.7. Let P be a pseudo-null B-module. Then

ChA(Pt) = ChA(P/tP ).

Proof. By Remark 2.2 and Lemma 2.5, we need to show that

l
Âp

(Pt ⊗A Âp) = l
Âp

((P/tP )⊗A Âp)

for any height 1 prime ideal p of A. By Lemma 2.4, the functor ⊗BÂp[[t]] is
exact. Applying it to (2.4), we get an exact sequence

(2.5) Pt ⊗B Âp[[t]] ↪→ P ⊗B Âp[[t]]
t−→P ⊗B Âp[[t]]� (P/tP )⊗B Âp[[t]].

Lemma 2.6 shows that all terms of (2.5) are finitely generated Âp-modules.
Hence, the first and last term of the sequence have the same length. Finally,
just observe that if N is a B-module annihilated by t then

N ⊗B Âp[[t]] = N ⊗A Âp. �
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Example 2.8. If P happens to be finitely generated over A then the state-
ment of the proposition is obvious. We give a few examples of pseudo-null
B := Zp[[s, t]]-modules which are not finitely generated as A := Zp[[s]]-
modules, providing nontrivial examples in which the above theorem applies.
However we remark that the main consequence of Lemma 2.6 is exactly the
fact that we can ignore the issue of checking whether a pseudo-null B-module
is finitely generated over A or not.

1. P = B/(p, s) . Then P ' Fp[[t]] is not finitely generated over A. In
this case Pt = 0 and P/tP ' Fp (both A-pseudo-null), so that

ChA(Pt) = ChA(P/tP ) = A.

2. P = B/(s, pt) . Then P ' Zp[[t]]/(pt) is not finitely generated over
A and elements in P can be written as

m =
∑
i>0

ait
i a0 ∈ Zp and ai ∈ {0, ..., p− 1} ∀ i > 1.

Moreover

Pt = pZp[[t]]/(pt) ' pZp ' Zp ' A/(s)

and

P/tP = Zp[[s, t]]/(t, s, pt) ' Zp ' A/(s),
so both have characteristic ideal (s) (as A-modules).

3. With P = B/(p, st), a similar reasoning shows that

ChA(P/tP ) = ChA(Pt) = (p).

Remark 2.9. The hypothesis that P is pseudo-null is necessary: if M
is a torsion B-module then it is not true, in general, that ChA(Mt) =
ChA(M/tM). We give an easy example: let again B = Zp[[s, t]] with
A = Zp[[s]], and consider M = Zp[[s, t]]/(p2 + s + t), which is a torsion
B-module. Observe that Mt is trivial (so ChA(Mt) = A) and

M/tM = Zp[[s, t]]/(t, p2 + s) ' A/(p2 + s)

has characteristic ideal over A equal to (p2 + s). Moreover ChA(M/tM) =
(p2+s) is the image of ChB(M) = (p2+s+t) under the projection π : B → A,
t 7→ 0. Hence, in this case,

ChA(Mt)π (ChB(M)) = ChA(M/tM)

which anticipates the general formula of Proposition 2.10.

As mentioned in the Introduction, the following proposition will be crucial
in the study of characteristic ideals for Iwasawa modules under descent.

Proposition 2.10. Let π : B → A be the projection given by t 7→ 0 and let
M be a finitely generated torsion B-module. Then

(2.6) ChA(Mt)π (ChB(M)) = ChA(M/tM).
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Moreover,

ChA(Mt) = 0⇐⇒ π (ChB(M)) = 0⇐⇒ ChA(M/tM) = 0

and in this case Mt and M/tM are A-modules of the same rank.

Proof. Recall that the structure theorem (2.1) provides a pseudo-isomor-
phism between M and its associated elementary module E(M). As noted
above, being pseudo-isomorphic is an equivalence relation for torsion mod-
ules: therefore one has a (noncanonical) sequence

E(M) �
�

// M // // P

where P is pseudo-null over B and the injectivity on the left comes from the
fact that elementary modules have no nontrivial pseudo-null submodules
(just use the valuation on Bp to check that the annihilator of any x ∈
B/pe − {0} must be contained in p). The snake lemma sequence coming
from the diagram

E(M) �
�

//

t
��

M // //

t

��

P

t

��

E(M) �
�

// M // // P

reads as

(2.7) E(M)t ↪→Mt −→ Pt −→ E(M)/tE(M) −→M/tM � P/tP.

As we remarked at the beginning of Section 2.2, both Pt and P/tP are
finitely generated torsion A-modules. It is also easy to see that all modules
in the sequence (2.7) are finitely generated over A. Now observe that (B/pe)t
is zero if p 6= (t) and isomorphic to A if p = (t); similarly, (B/pe)/t(B/pe) is
either pseudo-null or isomorphic to A. Thus, putting E(M) = ⊕B/peii , we
find E(M)t ' Ar and

E(M)/tE(M) = ⊕B/(peii , t) ' ⊕A/(π(pi)
ei) ' Ar ⊕ •,

where r := #{i | pi = tB} and • is a pseudo-null B-module. Moreover (2.7)
shows that E(M)/tE(M) is A-torsion if and only if M/tM is A-torsion and
E(M)t is A-torsion if and only if Mt is A-torsion. Therefore we have two
cases:

1. If r > 0, then (t) divides ChB(M), so π(ChB(M)) = 0 and, since Mt

and M/tM are not A-torsion, ChA(Mt) = ChA(M/tM) = 0 as well
(the statement on A-ranks is immediate from (2.7): e.g., apply the
exact functor ⊗A Frac(A)).

2. If r = 0, then, because of the equivalent conditions above, all the
characteristic ideals involved in (2.6) are nonzero; moreover we have

ChA(E(M)/tE(M)) = π(ChB(E(M))) = π(ChB(M))

and (2.6) follows from the sequence (2.7), Proposition 2.7 and the
multiplicativity of characteristic ideals. �
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Corollary 2.11. In the above setting assume that M/tM is a finitely gen-
erated torsion A-module. Then M is a pseudo-null B-module if and only if
ChA(Mt) = ChA(M/tM) . Moreover if M/tM ∼A 0, then M ∼B 0.

Proof. The “only if” part is provided by Proposition 2.7. For the “if”
part we assume the equality of characteristic ideals (which are nonzero by
hypothesis). By (2.6) we have π(ChB(M)) = A, hence there is some f ∈
ChB(M) such that π(f) = 1. But then f =

∑
i>0 cit

i with c0 = 1, which is
an obvious unit in B = A[[t]]. Therefore ChB(M) = B , i.e., M is pseudo-
null over B. For the last statement just note that ChA(M/tM) = A yields
ChA(Mt)π(ChB(M)) = A, so ChA(Mt) = A as well. �

Remarks 2.12.
1. When R ' Zp[[t1, . . . , td]] (i.e., the Iwasawa algebra for a Zdp-exten-

sion of global fields), the statement of the previous corollary appears
in [20, Lemme 4]. Note anyway that the proof given there relies on
the choice of a Zd−1

p -subextension (i.e., on the strategy mentioned in
Remark 1.4).

2. The possibility of lifting pseudo-nullity from M/tM to M has been
used to prove some instances of Greenberg’s Generalized Conjecture
(for statement and examples see, e.g., [2], [3] and [19]).

2.3. Pro-characteristic ideals. We can now define an analogue of char-
acteristic ideals for finitely generated modules over certain nonnoetherian
Krull domains Λ. We need Λ to be the inverse limit of noetherian Krull
domains and we limit ourselves to finitely generated modules because char-
acteristic ideals are usually defined only for them.

Let {Λd}d>0 be an inverse system of noetherian Krull domains such that

Λd ' Λd+1/pd+1 and Λd+1 ' lim
←−
n

Λd+1/p
n
d+1 for any d > 0

(pd+1 a principal prime ideal of Λd+1 of height 1). Let Λ := lim
←

Λd and note

that, by hypothesis, Λd+1 ' Λd[[td+1]], where the variable td+1 corresponds
to a generator of the ideal pd+1 . Take a finitely generated Λ-module M
which can be written as the inverse limit of Λd-modules M = lim

←
Md (all

the relevant arithmetic applications to Iwasawa modules satisfy this require-
ment).

Theorem 2.13. Let notations be as above. If, for every d� 1,

1. (Md)td (the pd-torsion submodule of Md ) is a pseudo-null Λd−1-mod-
ule,

2. ChΛd−1
(Md/tdMd) ⊆ ChΛd−1

(Md−1),

then the ideals ChΛd
(Md) form a projective system (with respect to the maps

πΛd
Λd−1

defining Λ).
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Proof. We can assume that the Md are torsion Λd-modules (at least for
d� 0), otherwise the ChΛd

(Md) are zero and there is nothing to prove. By
Proposition 2.10, applied to A = Λd−1 , B = Λd and M = Md , we get

ChΛd−1
((Md)td)πΛd

Λd−1
(ChΛd

(Md)) = ChΛd−1
(Md/tdMd).

For d� 1 the hypotheses yield

πΛd
Λd−1

(ChΛd
(Md)) ⊆ ChΛd−1

(Md−1),

which shows that the ideals ChΛd
(Md) form a projective system with respect

to the maps defining Λ. �

As mentioned in the Introduction, this shows that we can define the pro-
characteristic ideal of M as

C̃hΛ(M) := lim
←−
d

ChΛd
(Md) ⊆ Λ.

Our pro-characteristic ideal maintains two classical properties of charac-
teristic ideals.

Corollary 2.14. Let M , M ′ and M ′′ be finitely generated Λ-modules which
verify the hypotheses of Theorem 2.13.

1. The pro-characteristic ideals are multiplicative, i.e., if there is an
exact sequence

(2.8) M ′ �
�

// M // // M ′′ ,

then

C̃hΛ(M) = C̃hΛ(M ′)C̃hΛ(M ′′).

2. C̃hΛ(M) 6= 0 if and only if Md is a finitely generated torsion Λd-
module for d� 0.

Proof. 1. For any d > 0 we have exact sequences (arising from (2.8) )

M ′d
� � // Md

// // M ′′d ,

for which the equality ChΛd
(Md) = ChΛd

(M ′d) ChΛd
(M ′′d ) holds. The previ-

ous theorem allows to take limits on both sides maintaining the equality.
2. Obvious. �

Remark 2.15. In the previous corollary it is enough to assume that M ′

and M ′′ verify the hypotheses of Theorem 2.13. Indeed, using the snake
lemma exact sequence

(M ′d)td ↪→ (Md)td → (M ′′d )td →M ′d/tdM
′
d →Md/tdMd �M ′′d /tdM

′′
d ,

one immediately has that

(M ′d)td and (M ′′d )td ∼Λd−1
0 =⇒ (Md)td ∼Λd−1

0
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and

ChΛd−1
(Md/tdMd) = ChΛd−1

(M ′d/tdM
′
d) ChΛd−1

(M ′′d /tdM
′′
d )

⊆ ChΛd−1
(M ′d−1) ChΛd−1

(M ′′d−1) = ChΛd−1
(Md−1).

3. Class groups in global fields

For the rest of the paper we adjust our notations a bit to be more consis-
tent with the usual ones in Iwasawa theory. We fix a prime number p and a
global field F (note that for now we are not making any assumption on the
characteristic of F ). For any finite extension E/F let M(E) be the p-adic
completion of the group of divisor classes of E, i.e.,

M(E) := (E∗\IE/ΠvO∗Ev
)⊗ Zp

where IE is the group of finite ideles of E, v varies over all nonarchimedean
places of E and OEv is the ring of integers of the completion of E at v.
When L/F is an infinite extension, we put M(L) := lim

←
M(E) as E runs

among the finite subextensions of L/F (the limit being taken with respect
to norm maps). Class field theory yields a canonical isomorphism

(3.1) M(E)
∼−→ X(E) := Gal(L(E)/E),

where L(E) is the maximal unramified abelian pro-p-extension of E. Passing
to the limit shows that (3.1) is still true for infinite extensions.

Finally, for any infinite Galois extension L/F , let Λ(L) := Zp[[Gal(L/F )]]
be the associated Iwasawa algebra. We shall be interested in the situation
where Gal(L/F ) is an abelian p-adic Lie group: in this case, both M(L)
and X(L) are Λ(L)-modules (the action of Gal(L/F ) on X(L) is the natu-
ral one via inner automorphisms of Gal(L(L)/F ) ) and these structures are
compatible with the isomorphism (3.1). Furthermore, if Gal(L/F ) ' Zdp
then Λ(L) ' Zp[[t1, .., td]] is a Krull domain.

Lemma 3.1. Let F/F be a Zdp-extension, ramified only at finitely many
places. If d > 2, one can always find a Zp-subextension F1/F such that
none of the ramified places splits completely in F1.

Proof. Let S denote the set of primes of F which ramify in F and, for any
place v in S let Dv ⊂ Gal(F/F ) =: Γ be the corresponding decomposition
group. Getting F1 amounts to finding α ∈ Hom(Γ,Zp) such that α(Dv) 6= 0
for all v ∈ S. By hypothesis, for such v’s the vector spaces Dv ⊗ Qp are
nonzero, hence their annihilators are proper subspaces of Hom(Γ⊗Qp,Qp)
and since a Qp-vector space cannot be union of a finite number of proper
subspaces, we deduce that the required α exists. �

The following lemma is mostly a restatement of [13, Theorem 1].

Lemma 3.2. Let F/F be a Zdp-extension, ramified only at finitely many

places, and F ′ ⊂ F a Zd−1
p -subextension, with d > 2. Let I be the kernel
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of the natural projection Λ(F) → Λ(F ′). Then X(F)/IX(F) is a finitely
generated torsion Λ(F ′)-module and X(F) is a finitely generated torsion
Λ(F)-module. This holds also for d = 2, provided that no ramified place in
F/F is totally split in F ′.

Proof. The idea is to proceed by induction on d. Choose a filtration

F =: F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 := F ′ ⊂ Fd := F
so that Gal(Fi/Fi−1) ' Zp for all i and no ramified place in F/F is totally
split in F1 (by Lemma 3.1, this can always be achieved when d > 2).

Now one proceeds as in [13, Theorem 1]. Namely, a standard argument
yields that a Λ(Fi)-module M is in FgtΛ(Fi) if M/Iii−1M is in FgtΛ(Fi−1)

(where Iii−1 is the kernel of the projection Λ(Fi) → Λ(Fi−1) ) and Green-

berg’s proof shows that X(Fi−1) ∈ FgtΛ(Fi−1) implies X(Fi)/Iii−1X(Fi) ∈
FgtΛ(Fi−1). So it is enough to prove that X(F1) is a finitely generated

torsion Λ(F1)-module. This follows from Iwasawa’s classical proof ([15],
exposed, e.g., in [22]; the function field version can be found in [17]). �

Remarks 3.3.
1. In a Zp-extension of a global field, only places with residual character-

istic p can ramify: thus the finiteness hypothesis on the ramification
locus is automatically satisfied unless char(F ) = p. Note, however,
that in the latter case this hypothesis is needed (see, e.g., [12, Remark
4]).

2. Among all Zp-extensions of F there is a distinguished one, namely,
the cyclotomic Zp-extension Fcyc if F is a number field and the arith-
metic Zp-extension Farit (arising from the unique Zp-extension of the
constant field) if F is a function field. The condition on F ′ (when
d = 2) is satisfied if it contains either Fcyc or Farit.

3. For d = 1, we have F ′ = F and Λ(F ′) = Zp. Thus the analogue
of Lemma 3.2 would state that X(F)/IX(F) is finite. This holds
quite trivially if F is a global function field and F = Farit (note also
that if char(F ) = ` 6= p then Farit is the only Zp-extension of F , see,
e.g., [5, Proposition 4.3]). In this case the maximal abelian exten-
sion of F contained in L(F) is exactly L(F ), hence X(F)/IX(F) '
Gal(L(F )/Farit) which is known (e.g., by class field theory) to be
finite.

3.1. Iwasawa theory for class groups in function fields. In this sec-
tion F will be a global function field of characteristic p and Farit its arith-
metic Zp-extension as defined above. Let F/F be a Z∞p -extension unramified
outside a finite set of places S, with Γ := Gal(F/F ) and associated Iwasawa
algebra Λ := Λ(F). We fix a Zp-basis {γi}i∈N for Γ and for any d > 0 we let
Fd ⊂ F be the fixed field of {γi}i>d. Also, we assume that our basis is such
that no place in S splits completely in F1 (Lemma 3.1 shows that there is
no loss of generality in this assumption).
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Remark 3.4. If F contains Farit we can take the latter as F1. The ad-
ditional hypothesis on F1 appears also in [16, Theorem 1.1]: the authors
enlarge the set S and the extension Fd in order to get a Zp-extension veri-
fying that hypothesis and use this to get a monomial Stickelberger element.
This is a crucial step in the proof of the Main Conjecture provided in [10].

For notational convenience, let ti := γi − 1. Then the subring

Zp[[t1, . . . , td]] ⊂ Λ

is canonically isomorphic to Λ(Fd) and, by a slight abuse of notation, the
two shall be identified in the following. In particular, for any d > 1 we
have Λ(Fd) = Λ(Fd−1)[[td]] and we can apply the results of Section 2. We
shall denote by πdd−1 the canonical projection Λ(Fd)→ Λ(Fd−1) with kernel

Idd−1 = (td) (the augmentation ideal of Fd/Fd−1 ) and by Γdd−1 the group
Gal(Fd/Fd−1).

For two finite extensions L ⊃ L′ ⊃ F , the degree maps degL and degL′ fit
into the commutative diagram (with exact rows)

(3.2) A(L) �
�

//

NL
L′
��

M(L)
degL // //

NL
L′
��

Zp

��

A(L′) �
�

//M(L′)
degL′ // // Zp ,

where NL
L′ denotes the norm and the vertical map on the right is multi-

plication by [FL : FL′ ] (the degree of the extension between the fields of
constants). For an infinite extension L/F contained in F , taking projective
limits one gets an exact sequence

(3.3) A(L) �
�

//M(L)
degL // Zp .

Remark 3.5. The map degL above becomes zero exactly when L contains
the unramified Zp-subextension Farit.

By (3.1), Lemma 3.2 shows that M(Fd) is a finitely generated torsion
Λ(Fd)-module, so the same holds for A(Fd). Hence, by Proposition 2.10,
one has, for all d > 1,
(3.4)

ChΛ(Fd−1)(A(Fd)td)πdd−1(ChΛ(Fd)(A(Fd))) = ChΛ(Fd−1)(A(Fd)/tdA(Fd))

and note that

A(Fd)td = A(Fd)Γd
d−1 , A(Fd)/tdA(Fd) = A(Fd)/Idd−1A(Fd).
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Consider the following diagram

(3.5) A(Fd) �
�

//

td
��

M(Fd)
deg

// //

td
��

Zp
td
��

A(Fd) �
�

//M(Fd)
deg

// // Zp

(note that the vertical map on the right is 0) and its snake lemma sequence

(3.6) A(Fd)Γd
d−1
� � //M(Fd)Γd

d−1
deg

// Zp

��

Zp M(Fd)/Idd−1M(Fd)
deg

oooo A(Fd)/Idd−1A(Fd)oo

For d > 2 (which implies that Zp is a torsion Λ(Fd−1)-module), (3.6)

and Lemma 3.2 show that A(Fd)/Idd−1A(Fd) is in FgtΛ(Fd−1) as well. By

Proposition 2.10 it follows that no term in (3.4) is trivial.

3.1.1. Totally ramified extensions and the Main Conjecture. The
main examples we have in mind are extensions satisfying the following:

Assumption 3.6. The (finitely many) ramified places of F/F are totally
ramified.

In what follows an extension satisfying this assumption will be called
a totally ramified extension. A prototypical example is the a-cyclotomic
extension of Fq(T ) generated by the a-torsion of the Carlitz module (a an
ideal of Fq[T ], see, e.g., [21, Chapter 12]). As usual in Iwasawa theory
over number fields, most of the proofs will work (or can be adapted) simply
assuming that ramified primes are totally ramified in F/Fe for some e > 0,
but, in the function field setting, one would need some extra hypothesis on
the behaviour of these places in Fe/F .

Under this assumption any Zp-subextension can play the role of F1 .
Moreover M(F) is defined using norm maps and norms are surjective on
class groups in totally ramified extensions, so

M(Fd) = NFFd
(M(F)) :=M(F)d and M(F) = lim

←−
d

M(F)d = lim
←−
d

M(Fd)

(in the notations of Theorem 2.13). The same holds for the modules A(F)
and A(Fd).

Let L0(Fd−1) be the maximal abelian extension of Fd−1 contained in
L(Fd), we have

FdL(Fd−1) ⊆ L0(Fd−1) and Gal(L(Fd)/L0(Fd−1)) = Idd−1M(Fd)
(see [24, Lemma 13.14]). Galois theory provides a surjection

Gal(L0(Fd−1)/Fd)� Gal(FdL(Fd−1)/Fd),
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i.e.,

M(Fd)/Idd−1M(Fd)�M(Fd−1),

which yields

(3.7) ChΛd−1
(M(Fd)/Idd−1M(Fd)) ⊆ ChΛd−1

(M(Fd−1)).

The same relation holds for the characteristic ideals of the A(Fd) for d > 3,
because of (3.6). In particular if we have only one ramified prime, the sur-
jection above is an isomorphism (just adapt the proof of [24, Lemma 13.15])
and (3.7) is an equality. This takes care of hypothesis 2 in Theorem 2.13.

A little modification of the proof of [6, Lemma 5.7] (note that [6, Lem-
mas 5.4 and 5.6] still hold in the present setting), shows that elements of

M(Fd)Γd
d−1 are represented by divisors supported on ramified primes. Hence

M(Fd)Γd
d−1 (and A(Fd)Γd

d−1 ) are finitely generated Zp-modules, i.e., pseudo-
null Λ(Fd−1)-modules for d > 3. From (3.4) we obtain:

Corollary 3.7. Let Fd be a Zdp-extension of F contained in a totally ramified

extension. Then, for any Zd−1
p -extension Fd−1 contained in Fd , one has

πdd−1(ChΛ(Fd)(A(Fd))) = ChΛ(Fd−1)(A(Fd)/Idd−1A(Fd))(3.8)

⊆ ChΛd−1
(A(Fd−1)).

Hence the modules A(Fd) verify the hypotheses of Theorem 2.13 and we
can define:

Definition 3.8. Let F/F be a totally ramified Z∞p -extension. The pro-
characteristic ideal of A(F) is

C̃hΛ(A(F)) := lim
←−
Fd

ChΛ(Fd)(A(Fd)).

Remark 3.9. Definition 3.8 only depends on the extension F/F and not on
the filtration of Zdp-extension we choose inside it. Indeed take two different
filtrations {Fd } and {F ′d } and define a new filtration containing both by
putting

F ′′0 := F and F ′′n = FnF ′n ∀n > 1

(note that F ′′n is not, in general, a Znp -extension and F ′′n/F ′′n−1 is a Zip-
extension with 0 6 i 6 2, but these details are irrelevant for the limit
process we need here). By Corollary 3.7, the limits of the characteristic ideals
of the filtrations we started with coincide with the limit on the filtration
{F ′′n }. This answers questions a and b of [6, Remark 5.11]: we had a similar
definition there but it was based on the particular choice of the filtration.

We recall that, in [9, Theorem 3.1] (and [10]), the authors prove an Iwa-
sawa Main Conjecture (IMC) at “finite level”, which (in our simplified set-
ting and notations) reads as

(3.9) ChΛ(Fd)(A(Fd)) = (θFd/F,S),
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where θFd/F,S is the classical Stickelberger element (defined, e.g., in [6, Sec-
tion 5.3]). By [23, Proposition IV.1.8], the elements θFd/F,S form a coherent

sequence with respect to the maps πde , so, taking inverse limits in (3.9), one
obtains:

Corollary 3.10 (IMC in nonnoetherian algebras). In the previous setting
we have

C̃hΛ(A(F)) = lim
←−
Fd

(θFd/F,S) := (θF/F,S),

as ideals in Λ.

More details on the statement and its proof (now independent from the
filtration {Fd}d>0 ) can be found in [6, Section 5].

Remark 3.11. A different approach, using a more natural filtration of
global function fields for the Carlitz p-cyclotomic extension of Fq(T ) and
Fitting ideals of class groups, will be carried out in [1]. It leads to a similar
version of the Iwasawa Main Conjecture in the algebra Λ, but it has the
advantage of having more direct and relevant arithmetic applications (see
[1, Section 6]).

References

[1] Anglès, B.; Bandini, A.; Bars, F.; Longhi, I. Iwasawa main conjecture for the
Carlitz cyclotomic extension and applications. In progress.

[2] Bandini, Andrea. Greenberg’s conjecture for Zd
p-extensions. Acta Arith. 108 (2003),

no. 4, 357–368. MR1979904 (2004c:11201), Zbl 1091.11037, doi: 10.4064/aa108-4-5.
[3] Bandini, Andrea. Greenberg’s conjecture and capitulation in Zd

p-extensions.
J. Number Theory 122 (2007), no. 1, 121–134. MR2287114 (2007j:11150), Zbl
1106.11037, doi: 10.1016/j.jnt.2006.04.004.

[4] Bandini, A.; Longhi, I. Control theorems for elliptic curves over function fields.
Int. J. Number Theory 5 (2009), no. 2, 229–256. MR2502807 (2010a:11100), Zbl
1234.11071, arXiv:/math/0604249, doi: 10.1142/S1793042109002067.

[5] Bandini, Andrea; Longhi, Ignazio. Selmer groups for elliptic curves in Zd
l -

extensions of function fields of characteristic p. Ann. Inst. Fourier 59 (2009), no.
6, 2301–2327. MR2640921 (2011j:11101), Zbl 1207.11061, arXiv:0707.1143.

[6] Bandini, Andrea; Bars, Francesc; Longhi, Ignazio. Aspects of Iwasawa theory
over function fields. To appear in the EMS Congress Reports, 2011. arXiv:1005.2289.

[7] Bandini, Andrea; Bars, Francesc; Longhi, Ignazio. Characteristic ideals and
Selmer groups. 2014. arXiv:1404.2788.

[8] Bourbaki, Nicholas. Commutative algebra. Chapters 1–7. Elements of Mathemat-
ics. Springer-Verlag, Berlin, 1998. xxiv+625 pp. ISBN: 3-540-64239-0. MR1727221
(2001g:13001), Zbl 0902.13001.

[9] Burns, David. Congruences between derivatives of geometric L-functions. Invent.
Math. 184 (2011), no. 2, 221–256. MR2793857 (2012e:11116), Zbl 1234.11080,
doi: 10.1007/s00222-010-0286-3.

[10] Burns, D.; Lai, K. F.; Tan, K.-S. On geometric main conjectures. Appendix to [9].
[11] Gilmer, Robert. Power series rings over a Krull domain. Pacific J. Math. 29 (1969),

543–549. MR0245571 (39 #6877), Zbl 0179.34502, doi: 10.2140/pjm.1969.29.543.

http://www.ams.org/mathscinet-getitem?mr=1979904
http://zbmath.org/?q=an:1091.11037
http://dx.doi.org/10.4064/aa108-4-5
http://www.ams.org/mathscinet-getitem?mr=2287114
http://zbmath.org/?q=an:1106.11037
http://zbmath.org/?q=an:1106.11037
http://dx.doi.org/10.1016/j.jnt.2006.04.004
http://www.ams.org/mathscinet-getitem?mr=2502807
http://zbmath.org/?q=an:1234.11071
http://zbmath.org/?q=an:1234.11071
http://arXiv.org/abs//math/0604249
http://dx.doi.org/10.1142/S1793042109002067
http://www.ams.org/mathscinet-getitem?mr=2640921
http://zbmath.org/?q=an:1207.11061
http://arXiv.org/abs/0707.1143
http://arXiv.org/abs/1005.2289
http://arXiv.org/abs/1404.2788
http://www.ams.org/mathscinet-getitem?mr=1727221
http://zbmath.org/?q=an:0902.13001
http://www.ams.org/mathscinet-getitem?mr=2793857
http://zbmath.org/?q=an:1234.11080
http://dx.doi.org/10.1007/s00222-010-0286-3
http://www.ams.org/mathscinet-getitem?mr=0245571
http://zbmath.org/?q=an:0179.34502
http://dx.doi.org/10.2140/pjm.1969.29.543


CHARACTERISTIC IDEALS AND IWASAWA THEORY 777

[12] Gold, R.; Kisilevsky, H. On geometric Zp-extensions of function fields.
Manuscripta Math. 62 (1988), no. 2, 145–161. MR0963002 (90e:11160), Zbl
0662.12016 doi: 10.1007/BF01278975.

[13] Greenberg, Ralph. The Iwasawa invariants of Γ-extensions of a fixed number
field. Amer. J. Math. 95 (1973), 204–214. http://www.jstor.org/stable/2373652.
MR0332712 (48 #11038), Zbl 0268.12005.

[14] Greenberg, Ralph. On the structure of certain Galois groups. Invent.
Math. 47 (1978), no. 1, 85–99. MR0504453 (80b:12007), Zbl 0403.12004,
doi: 10.1007/BF01609481.

[15] Iwasawa, Kenkichi. On Γ-extensions of algebraic number fields. Bull. Amer.
Math. Soc. 65 (1959), 183–226. MR0124316 (23 #A1630), Zbl 0089.02402,
doi: 10.1090/S0002-9904-1959-10317-7.

[16] Kueh, Ka-Lam; Lai, King Fai; Tan, Ki-Seng. Stickelberger elements for Zd
p-

extensions of function fields. J. Number Theory 128 (2008), no. 10, 2776–2783.
MR2441076 (2009g:11158), Zbl 1225.11156, doi: 10.1016/j.jnt.2008.04.006.

[17] Li, Chaoqun; Zhao, Jianqiang. Iwasawa theory of Zd
p-extensions over global func-

tion fields. Exposition. Math. 15 (1997), no. 4, 315–337. MR1486400 (98h:11150), Zbl
0917.11058.

[18] Ochiai, Tadashi. Euler system for Galois deformations. Ann. Inst. Fourier
55 (2005), no. 1, 113–146. MR2141691 (2006a:11068), Zbl 1112.11031,
doi: 10.5802/aif.2091.

[19] Ozaki, Manabu. Iwasawa invariants of Zp-extensions over an imaginary quadratic
field. Class field theoryits centenary and prospect (Tokyo, 1998), 387–399, Adv. Stud.
Pure Math., 30. Math. Soc. Japan, Tokyo, 2001. MR1846467 (2002e:11147), Zbl
1002.11078.

[20] Perrin-Riou, Bernadette. Arithmétique des courbes elliptiques et théorie
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