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Singular p-adic transformations for
Bernoulli product measures

Joanna Furno

Abstract. Ergodic properties of p-adic transformations have been stud-
ied with respect to Haar measure. This paper extends the study of these
properties to measures beyond Haar measure. Under these measures, co-
efficients do not appear in equal proportions. Adding a rational number
that is not an integer then takes likely strings of coefficients to one of
two unlikely strings of coefficients. It follows from this inequality that
translation by a rational number other than an integer is singular with
respect to these measures. Conjugation gives similar results for multi-
plication by rational numbers.
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1. Introduction and background

The p-adic numbers were originally developed by Kurt Hensel for use in
number theory, with p denoting a fixed prime. Recently, the ergodic proper-
ties of many transformations on the p-adic numbers have been studied with
respect to Haar measure—a natural measure that is translation-invariant.
For example, [1–3, 12, 13] have explored the ergodicity of translation and
multiplication maps with respect to Haar measure. Our goal is to exam-
ine the ergodic properties of transformations on the p-adic integers Zp with
respect to measures beyond Haar measure.

Let p be a prime number. We define the p-adic integers as a set of formal
power series:

Zp =

{ ∞∑
i=0

aip
i : ai ∈ Z and 0 ≤ ai < p for all i ≥ 0

}
.
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Addition and multiplication on Zp are defined coordinatewise with carries.
For nonzero a ∈ Zp, we define ord(a) = min {i : ai 6= 0} and use this function
to define the p-adic absolute value on Zp by

|a|p =

{
0 if a = 0,

p− ord(a) if a 6= 0.

The p-adic absolute value induces a metric that induces a topology with a
basis that consists of the empty set and balls of the form

Bp−n(a) =
{
x ∈ Zp : |x− a|p ≤ p−n

}
,

where n is a nonnegative integer and a ∈ Zp. Such a ball is determined by
the first n coordinates of a.

Let (q0, q1, . . . , qp−1) be a probability vector. For a given probability vec-
tor, let q(i) = qi for 0 ≤ i < p− 1. Then we define a probability measure µ
on the Borel σ-algebra B by taking the measure of a ball to be

µ

(
Bp−n

( ∞∑
i=0

aip
i

))
=

n−1∏
i=0

q(ai)

for n ≥ 0 and
∑∞

i=0 aip
i ∈ Zp. We call µ an independent and identically

distributed (i.i.d.) Bernoulli measure. On product spaces, i.i.d. Bernoulli
measures are well-known to be invariant under Bernoulli shifts.

Although we have defined the p-adic integers as formal power series, we
can identify certain series as natural integers or rational numbers. A p-
adic integer with a finite expansion—one that ends in repeating zeros—is
identified with an integer by summing the nonzero terms. The additive
inverse—a negative integer—ends in repeating (p − 1)’s. In general, the
elements of Q in Zp have coordinates that eventually repeat [18,20].

A measurable transformation T : X → X is nonsingular with respect to
a measure m on a σ-algebra A if, for all A ∈ A, m(A) = 0 if and only if
m(T−1A) = 0. A measurable transformation T : X → X is singular with
respect to a measure m on a σ-algebra A if this property fails to hold. In
other words, T is singular with respect to m if there exists A ∈ A such that
one of m(A) or m(T−1A) is strictly positive and the other is zero.

Nonsingular systems are of great interest. They have been studied by
many, for example, Alexandre Danilenko [4,5], Anthony Dooley [6–8] (along
with coauthors), and Stanley Eigen and Arshag Hajian [9, 10]. This paper
focuses on when translation maps

Ta : Zp → Zp

x 7→ x+ a

and multiplication maps

Ma : Zp → Zp

x 7→ ax
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are singular or nonsingular with respect to i.i.d. Bernoulli measures. In this
situation, a surprising thing occurs:

Theorem 1.1. Let a ∈ Zp be a rational number that is not an integer. Let µ
be an i.i.d. Bernoulli measure other than Haar measure. Then Ta : Zp → Zp

is singular with respect to µ.

Theorem 1.1 and composition of functions yield a similar result for mul-
tiplication maps:

Theorem 1.2. Let µ be an i.i.d. Bernoulli measure on Zp other than Haar
measure, defined by a probability vector (q0, q1, . . . qp−1). If a ∈ Z×p \ {1,−1}
is a rational number, then the multiplication map Ma : Zp → Zp is singular
with respect to µ. The multiplication map M−1 : Zp → Zp is nonsingular
with respect to µ if and only if the probability vector is a palindrome.

Remark 1.3. Sometimes singular measures appear naturally as limits of
nonsingular measures, as occurs in [11, 16, 17]. These papers study a para-
metrized family of maps on the interval, where each map has a unique ab-
solutely continuous invariant measure (a.c.i.m.). Each family contains a
convergent sequence of parameters such that the associated a.c.i.m.’s con-
verge to a singular measure, rather than the unique a.c.i.m. for the map with
the limiting parameter. An analogous limit measure phenomenon occurs for
translations with respect to i.i.d. Bernoulli measures.

We consider the parametrized family of translation maps Ta : Zp → Zp

defined by Ta(x) = x+a. The odometer or adding machine is well known to
be nonsingular with respect to i.i.d. Bernoulli measures and occurs in this
setting as T1, translation by 1. From the fact that T1 is nonsingular with
respect to i.i.d. Bernoulli measures, the fact that translation by any integer
is nonsingular with respect to i.i.d. Bernoulli measures on Zp follows almost
immediately from the definition of nonsingularity.

For a =
∑∞

i=0 aip
i ∈ Zp, consider the partial sums sn =

∑n−1
i=0 aip

i, a
sequence in Z. Then sn → a as n → ∞, from which it follows that Tsn(x)
converges uniformly in x to Ta(x). If a is a rational number but not an
integer and if µ is an i.i.d. Bernoulli measure other than Haar measure,
then Theorem 1.1 states that Ta is singular with respect to µ. Thus, we
have an example of a convergent sequence of parameters sn such that Tsn is
nonsingular with respect to µ for each n, but Ta is singular with respect µ
for the limiting parameter a.

Let a =
∑∞

i=0 aip
i be a rational number. Since its coordinates eventually

repeat, there exist integers l and r such that ai+r = ai for all i ≥ l. We note
that l and r are not unique, although there are unique minimal choices for
each. For a fixed rational number a ∈ Zp and a fixed choice of l and r, we

call
∑l−1

i=0 aip
i the leading part of a, c =

∑r−1
i=0 al+ip

i the repeating segment
of a, and R =

∑∞
i=0 cp

ri the repeating part of a. The proof of Theorem 1.1
requires the following proposition:
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Proposition 1.4. Let a ∈ Zp be a nonintegral rational number, and let µ be
an i.i.d. Bernoulli measure other than Haar measure. Let r be the length of
a repeating segment, and let R be the repeating part of a. Then there exists
N ∈ N and b ∈ Zp such that

(1) µ(Bp−rN (b)) > µ(TR(Bp−rN (b))) + µ(T1+R(Bp−rN (b))).

Section 2 contains the proofs of Theorem 1.1 and Theorem 1.2. Section
3 contains proof of Proposition 1.4, as well as examples of the proof and
concluding remarks.

The results in this paper are a part of the author’s Ph.D. dissertation,
completed under the supervision of Jane Hawkins at the University of North
Carolina at Chapel Hill [14].

2. Proofs for theorems on singularity

The proof of Theorem 1.1 is done when we apply the Birkhoff Ergodic
Theorem with an iterate of the shift and characteristic functions. The
Birkhoff Ergodic Theorem is a classical result, the proof of which is in books
such as [19,21]. For a fixed prime p, the shift σ on Zp acts by

σ

( ∞∑
i=0

xip
i

)
=
∞∑
i=0

xi+1p
i.

The shift σ is measure-preserving and totally ergodic with respect to i.i.d.
Bernoulli measures. Thus, for all n ∈ N and for all i.i.d. Bernoulli measures
µ, the iterate σn is measure-preserving and ergodic with respect to µ. The
balls from Proposition 1.4 are used to define characteristic functions. We
now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Assuming that a ∈ Zp is a nonintegral rational
number and that µ is an i.i.d. Bernoulli measure other than Haar measure,
our goal is to show that Ta is singular with respect to µ. Since Ta is invertible,
we do this by finding a set X such that µ(X) > 0, but µ(TaX) = 0. We

fix a choice of l and r, so that the leading part of a is
∑l−1

i=0 aip
i and the

repeating part of a is R =
∑∞

i=0(
∑r−1

j=0 al+jp
j)pri.

Let B = Bp−rN (b) be the ball found in Proposition 1.4. Then TR(B) and

T1+R(B) are disjoint balls of radius p−rN centered at b+ R and b+ 1 + R,
respectively. Since B and TRB ∪ T1+RB are measurable sets and since σ is
measure-preserving, the functions 1B ◦σl and 1TRB∪T1+RB ◦σl are in L1(µ).
Since the shift σ is totally ergodic and measure-preserving with respect to the
i.i.d. Bernoulli measure µ, the iterate σrN is ergodic and measure-preserving
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with respect to µ. By the Birkhoff Ergodic Theorem, the sets

X =

{
x ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1B(σl+rNix) = µ(B)

}
and

Y =

{
x ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1TRB∪T1+RB(σl+rNix) = µ(TRB ∪ T1+RB)

}
have full measure.

For x ∈ X, if σl+rNix ∈ B, then there are two possibilities for σl+rNiTax.
If adding a to x does not result in a carry after the l+ rNi−1st coordinate,
then σl+rNiTax ∈ TRB. If adding a to x does result in a carry after the
l + rNi− 1st coordinate, then σl+rNiTax ∈ T1+RB. In either case,

σl+rNiTax ∈ TRB ∪ T1+RB.

This inclusion implies that

lim
n→∞

1

n

n−1∑
i=0

1TRB∪T1+RB(σl+rNiTax) ≥ lim
n→∞

1

n

n−1∑
i=0

1B(σl+rNix)

= µ(B) > µ(TRB ∪ T1+RB).

Thus, Ta(x) is not in Y . Since Ta(X) ⊂ Zp \Y and µ(Y ) = 1, it follows that
µ(Ta(X)) = 0. Since µ(X) = 1 > 0 but µ(TaX) = 0, the translation Ta is
singular with respect to µ. �

Since the proof of Theorem 1.1 depends heavily on the repetitive structure
of rational numbers, the proof does not generalize to Zp \Q. It is still an
open question as to whether or not translation by a ∈ Zp \Q is nonsingular
with respect to i.i.d. Bernoulli measures other than Haar measure.

We define a transformation P : Zp → Zp by (P (x))i = p − 1 − xi. A
probability vector (q0, q1, . . . qp−1) is a palindrome if q(k) = q(p− 1− k) for
all 0 ≤ k ≤ p− 1.

Proposition 2.1. Let µ be an i.i.d. Bernoulli measure on Zp defined by a
probability vector (q0, q1, . . . qp−1). If the probability vector is a palindrome,
then the transformation

P : Zp → Zp

∞∑
i=0

xip
i 7→

∞∑
i=0

(p− 1− xi)pi

preserves µ. If the probability vector is not a palindrome, then P is singular
with respect to µ.

Proof. Since

P 2

( ∞∑
i=0

xip
i

)
= P

( ∞∑
i=0

(p− 1− xi)pi
)

=
∞∑
i=0

xip
i,
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we have P−1 = P . If the probability vector is a palindrome, then

q(k) = q(p− 1− k)

for all 0 ≤ k ≤ p− 1. On balls in Zp, we have

µ

(
PBp−n

( ∞∑
i=0

aip
i

))
=

n−1∏
i=0

q(p− 1− ai)

=
n−1∏
i=0

q(ai) = µ

(
Bp−n

( ∞∑
i=0

aip
i

))
.

Since the collection of balls in Zp form a semi-algebra that generates the
Borel sets, the transformation P preserves µ.

If the probability vector is not a palindrome, then there exists an index k
such that q(k) 6= q(p − 1 − k). Without loss of generality, we suppose that
q(k) > q(p − 1 − k). Since 1Bp−1 (k),1Bp−1 (p−1−k) ∈ L1(µ) and σ is ergodic

and measure-preserving, the sets

X =

{
x ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1Bp−1 (k)(σ
ix) = q(k)

}
,

Y =

{
x ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1Bp−1 (p−1−k)(σ
ix) = q(p− 1− k)

}
,

have full measure under µ, by the Birkhoff Ergodic Theorem. If x ∈ X,
then σix ∈ Bp−1(k) implies that σiPx ∈ Bp−1(p− 1− k). Thus,

lim
n→∞

1

n

n−1∑
i=0

1Bp−1 (p−1−k)(σ
iPx) ≥ q(k) > q(p− 1− k).

It follows that P (X) ⊂ Zp \Y , so µ(P (X)) = 0. Since µ(X) = 1 but
µ(P (X)) = 0, the transformation P is singular with respect to µ. �

Applying Theorem 1.1 and Proposition 2.1, we can use compositions in-
volving multiplication maps, translations, and P to determine when a mul-
tiplication map is singular or nonsingular with respect to an i.i.d. Bernoulli
measure. If µ is Haar measure and a ∈ Z×p , then Ma preserves Haar mea-
sure, as shown in [2, 3, 12, 13]. If Ma preserves Haar measure, then Ma is
certainly nonsingular with respect to Haar measure. Also, if a = 1, then
Ma is the identity map, which is nonsingular with respect to any measure.
Theorem 1.2 addresses the singularity of other i.i.d. Bernoulli measures.

Proof of Theorem 1.2. Suppose that µ is not Haar measure and that
a ∈ Z×p

⋂
(Q \ {1,−1}). Since Ma is invertible, Ma is nonsingular with

respect to µ if and only if M−1a = Ma−1 is nonsingular with respect to µ.
If a is an integer other than 1 or −1, then a−1 is not an integer. Thus,
without loss of generality, we can assume that a is not an integer. Note that
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Ta = Ma ◦ T1 ◦M−1a . By Theorem 1.1, Ta is singular with respect to µ,
because µ is not Haar measure and a is a nonintegral rational number. On
the other hand, the translation T1 is nonsingular with respect to µ. Thus,
Ma is singular with respect to µ.

Next, we examine the case of M−1. If x =
∑∞

i=0 xip
i, then

(Px+ x)i = p− 1− xi + xi = p− 1

for all integers i ≥ 0. Thus, we have Px + x = −1 for all x ∈ Zp, so
P (x) = −x − 1 = M−1 ◦ T1(x) for all x ∈ Zp. Since T1 is nonsingular
with respect to µ, the multiplication M−1 is nonsingular with respect to µ
if and only if P is nonsingular with respect to µ. By Proposition 2.1, P
is nonsingular with respect to µ if and only if the probability vector is a
palindrome. �

Although translation by a nonintegral rational number is singular with
respect to every i.i.d. Bernoulli measure other than Haar measure, the trans-
lation Ta is nonsingular with respect to a related averaged measure. For a
rational number a ∈ Zp, there exist integers r and s such that a = r/s. If r
and s are relatively prime and s > 0, then we say that a = r/s is in reduced
form. Let µ be an i.i.d. Bernoulli measure on the Borel sigma-algebra A.
We define an averaged measure µa by µa(A) = (1/s)

∑s−1
i=0 µ(T−ia A) for all

A ∈ A. Since r is an integer, Tr is nonsingular with respect to µ. Thus, for
all A ∈ A,

µa(T−1a (A)) =
1

s

(
µ(T−1r (A)) +

s−1∑
i=1

µ(T−ia (A))

)
,

so Ta is nonsingular with respect to µa.
If a is an integer, then it is shown in [14,15] that Ta is ergodic with respect

to an i.i.d. product measure µ if and only if a is not divisible by p. This fact
easily implies a more general statement for Ta with respect to µa.

Theorem 2.2. Let a = r/s ∈ Zp be a rational number in reduced form. Let
µ be an i.i.d. Bernoulli measure on the Borel sigma-algebra A. Define µa by
µa(A) = (1/s)

∑s−1
i=0 µ(T−ia A) for all A ∈ A. Then Ta is ergodic with respect

to µa if and only if |a|p = 1.

Proof. If |a|p < 1, thenBp−1(0) is an invariant set for Ta. Now T−ia (Bp−1(0))

is another ball of radius p−1, so the measure µ(T−ia (Bp−1(0))) is strictly be-
tween 0 and 1, for all 0 ≤ i < s. Thus µa(Bp−1(0)) is strictly between 0 and
1, so Ta is not ergodic with respect to µa.

If |a|p = 1, then r is not divisible by p. Thus, µ is ergodic for Tr. If A is
an invariant set for Ta, then T−ia (A) = A for all i ∈ Z. Since T−sa = T−1r ,
the set A is also invariant for Tr. By ergodicity, it follows that µ(A) is either
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0 or 1. Moreover, T−ia (A) = A implies that

µa(A) =
1

s

s−1∑
i=0

µ(T−ia (A))

=
1

s

s−1∑
i=0

µ(A) = µ(A).

Hence, µa(A) is either 0 or 1, so Ta is ergodic with respect to µa. �

Let a = r/s ∈ Zp be a rational number such that |a|p = 1, and let µ be an
i.i.d. Bernoulli measure. Since Ta is nonsingular and ergodic with respect to
µa, we can investigate the orbit equivalence class of Ta with respect to µa, as
is done for translation by integers with respect to i.i.d. Bernoulli measures
in [14, 15]. The orbit equivalence class of Ta with respect to µa is still
unknown for all examples other than those that reduce to known results—
translation by an integer or with respect to Haar measure. We may ask
whether the orbit equivalence class of Ta with respect to µa is related to the
orbit equivalence class of Tr or Ts with respect to µ, and if so, how they are
related.

3. Proof of Proposition 1.4

In this final section, we give the proof of Proposition 1.4, an example to
illustrate parts of the proof, and some concluding remarks. Although Propo-
sition 1.4 is stated in terms of measures of balls, the proof focuses on strings
of coefficients determined by balls of a particular radius. Heuristically, we
are trying to find a string of coefficients that is likely to occur often in x ∈ Zp

with respect to the i.i.d. Bernoulli measure µ, but the corresponding strings
of coefficients in Ta(x) are unlikely to occur with respect to µ.

Proof of Proposition 1.4. Let a ∈ Zp be a nonintegral rational number,
and let µ be an i.i.d. Bernoulli measure other than Haar measure. Let r be
the length of a repeating segment c, and let R =

∑∞
i=0 cp

ir be the repeating
part of a. We want to find N ∈ N and b ∈ Zp such that

(2) µ(Bp−rN (b)) > µ(TR(Bp−rN (b))) + µ(T1+R(Bp−rN (b))).

We begin by considering balls of radius p−r with center x ∈ Z ⊂ Zp

such that 0 ≤ x < pr. Since translations are invertible isometries, we have
TR(Bp−r(x)) = Bp−r(TR(x)). Since a ball of radius p−r is determined by the
first r coordinates of its center, we also have Bp−r(TR(x)) = Bp−r(c + x).
Similarly, we have T1+R(Bp−r(x)) = Bp−r(1 + c + x). For a ball Bp−r(x)

that has maximal measure among the balls of radius p−r, we set

M = µ(Bp−r(x)),

m0 = µ(Bp−r(c+ x)), and

m1 = µ(Bp−r(1 + c+ x)).
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Using this notation, we define the following three conditions on the ball
Bp−r(x):

(i) M > m0, M > m1, and x = pr − c− 1,
(ii) M > m0 and 0 ≤ x < pr − c− 1, or
(iii) M > m1 and pr − c− 1 < x < pr.

First, we show that if there is a ball of maximal measure satisfying one of
these conditions, then we can find a ball satisfying (2). Next, we consider
various cases for the measure µ, showing that in each case we can find at
least one ball of maximal measure satisfying one of the three conditions.

If there is a ball of maximal measure Bp−r(x) that satisfies Condition (i),
then we define m = max {m0,m1} and fix an integer

N > logM/m 2.

The ball B = Bp−rN (
∑N−1

i=0 xpir) has measure

µ(B) =

N−1∏
i=0

µ(Bp−r(x)) = MN .

If x = pr − c− 1, then c+ x = pr − 1 < pr, so adding the first r coefficients
of R to the first r coefficients of x does not result in a carry. Thus, each
of the following groups of coefficients taken r at a time from R + x are the
same as the first group of r coefficients of c+x, so µ(TRB) = mN

0 . Similarly,
we have 1 + c + x = pr, so adding the first r coefficients of 1 + R to the
first r coefficients of x does result in a carry. Thus, each of the next groups
of coefficients taken r at a time from 1 + R + x are the same as the first r
coefficients of 1+c+x, so µ(T1+RB) = mN

1 . Finally, the choice of N implies
that

µ(B) = MN > 2mN

≥ µ(TRB) + µ(T1+R(B)),

so (2) is satisfied.
If there is a ball of maximal measure Bp−r(x) that satisfies Condition (ii),

then we fix an integer

N > logM/m0

m0 +m1

m0
.

Again, the ball B = Bp−rN (
∑N−1

i=0 xpir) has measure MN . If x < pr − c− 1,
then c+x < pr, so adding the first r coefficients of R to the first r coefficients
of x does not result in a carry. Thus, it again follows that µ(TRB) = mN

0 .
Similarly, we have 1 + c+ x < pr, so adding the first r coefficients of 1 +R
to the first r coefficients of x does not result in a carry. Thus, each of the
following groups of coefficients taken r at a time from 1 + R + x are the
same as the first r coefficients of c + x, so µ(T1+RB) = m1m

N−1
0 . Finally,
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the choice of N implies that

µ(B) = MN >
m0 +m1

m0
mN

0

= µ(TRB) + µ(T1+R(B)),

so (2) is satisfied.
A similar argument proves that Condition (iii) implies that (2) is satis-

fied. The only changes are switching m0 and m1, switching the defining
inequalities for x, and observing that the additions do result in carries after
each group of coefficients taken r at a time.

So far, we know that each of the three conditions on a ball of radius p−r

implies that we can find a ball, possibly of smaller radius, that satisfies (2).
Now, we show that it is always possible find a ball of radius p−r that satisfies
one of the three conditions. We split the remainder of the proof into cases
that depend on the measure µ. Since µ is not Haar measure, it is determined
by a probability vector (q0, q1, . . . , qp−1) such that the weights qi are not all
equal. We let Q = maxi qi be the largest weight. Either the probability
vector that defines µ has a unique largest weight or it does not. If there is a
unique largest weight, then a ball satisfying one of the three conditions has
an explicit description. We now prove this case.

If there exists a unique largest weight, then there exists a weight qj such

that qj = Q and qi < qj for all i 6= j. Then Bp−r(
∑r−1

i=0 jp
i) is the unique ball

of radius p−r that has maximal measure. If a is a positive integer or zero,
then a ends in repeating zeros, which gives R = 0. If a is a negative integer,
then a ends in repeating p − 1’s, which gives R = −1. By the assumption
that a is not an integer, R is not equal to 0 or −1. Since R is not zero,
Bp−r(R+

∑r−1
i=0 jp

i) is not equal to Bp−r(
∑r−1

i=0 jp
i). Uniqueness then implies

that M > m0. Similarly, since R is also not −1, Bp−r(1+R+
∑r−1

i=0 jp
i) is not

equal to Bp−r(
∑r−1

i=0 jp
i). Again, uniqueness implies that M > m1. Thus,

Bp−r(
∑r−1

i=0 jp
i) satisfies Condition (i) if

∑r−1
i=0 jp

i = pr − c − 1, Condition

(ii) if
∑r−1

i=0 jp
i < pr − c− 1, or Condition (iii) if

∑r−1
i=0 jp

i > pr − c− 1.
If p = 2 and µ is not Haar measure, then the two weights are not equal.

Thus, there is a unique largest weight and the proof of the case p = 2 is
complete. Thus, we can assume that p ≥ 3 for the remainder of the proof
of the proposition.

Let I be the set of indices such that q(i) = Q, the largest weight. Let k be
the cardinality of I. If there is not a unique largest weight, then k > 1. Since
µ is not Haar measure, we must also have k < p. Since we have k possibilities
for maximal coefficients and since a ball of radius p−r is determined by r
coefficients, there are kr distinct balls of radius p−r of maximal measure.
By not requiring that r is the minimal period, we can assume that r ≥ 2. If
k ≥ 2 and r ≥ 2, then kr ≥ 2k. Thus, either it is the case that

A0 =
{
Bp−r(x) : 0 ≤ x < pr − c− 1

}
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contains at least k balls of maximal measure or it is the case that

A1 =
{
Bp−r(x) : pr − c− 1 < x < pr − 1

}
contains at least k balls of maximal measure. Any balls that satisfy Condi-
tion (ii) are in A0, and any balls that satisfy Condition (iii) are in A1.

Before we consider these two cases, we prove a fact about divisibility.
For the collection Ai, we suppose that for each j ∈ I there exists a ball of
maximal measure Bp−r(xj) in Ai such that xj = j mod p and

Ti+c(Bp−r(xj)) = Bp−r(Ti+c(xj))

has maximal measure. We define a group homomorphism Ti+c mod p on
Fp by j 7→ j + i + c mod p. If a ball has maximal measure, then the
first coordinate must also have maximal weight. Thus, the orbit of each
j ∈ I under Ti+c mod p is contained in I. Since Ti+c mod p is a group
homomorphism of Fp, the minimal period of each j ∈ I divides p. Since
µ is not Haar measure, I does not contain all indices. Hence, the minimal
period is not p, so every j ∈ I is a fixed point. Since j + (i+ c) = j mod p,
it follows that p divides i+ c.

The previous paragraph shows that if there are k maximal balls in Ai

that map to maximal balls under Ti+c, such that every maximal index is
equal modulo p to the center of one of these balls, then i+ c is divisible by
p. For future reference, we give the contrapositive of this statement. For
a collection of k maximal balls in Ai such that every maximal index is the
first coordinate of the center of one of the balls, if i + c is not divisible by
p, then one of the balls of maximal measure in Ai does not map to another
ball of maximal measure under Ti+c. With these observations, we proceed
to prove the last two cases.

First, we show that if A0 contains all balls of maximal measure, then
there exists a ball of maximal measure that satisfies Condition (ii). Since Tc
mod pr is a group homomorphism of the finite group Fpr , we can consider it
as a group homomorphism on the balls of radius p−r, which are determined
by the first r coordinates of the centers. Thus, the balls are periodic under Tc
mod pr, with periods that are divisible by p. Since p is prime and 1 < k < p,
the number of balls of maximal measure, kr, is not divisible by p. Hence,
there must be a cycle of balls that contains both a ball of maximal measure
and a ball of smaller measure. In other words, there is a ball of maximal
measureBp−r(x) such that Tc(Bp−r(x)) = Bp−r(c+x) does not have maximal
measure. Since we assumed that all balls of maximal measure are in A0, it
follows that the ball Bp−r(x) satisfies Condition (ii).

Next, we suppose that A0 contains at least k balls of maximal measure,
but none of the balls satisfy Condition (ii). By the previous paragraph there
exist balls of maximal measure Bp−r(x) such that pr − c− 1 ≤ x < pr. We
show that one of these balls must satisfy Condition (iii). If A0 contains at
least k balls of maximal measure but none of them satisfy Condition (ii),
then we have k maximal balls that map to maximal balls under Tc, such
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that every maximal index is equal modulo p to the center of one of the balls.
Thus, c is divisible by p.

We now argue that Bp−r(pr − c− 1) cannot be the only ball of maximal
measure with center x such that pr − c− 1 ≤ x < pr. Since c is divisible by
p, it follows that x = pr − c − 1 = p − 1 mod p. Thus, if Bp−r(pr − c − 1)
has maximal measure, then p− 1 must have maximal weight. Thus,

Bp−r(pr − 1) = Bp−r

(
r−1∑
i=0

(p− 1)pi

)
also has maximal measure.

We have shown that whether or not p − 1 has maximal weight, there
exists a ball of maximal measure in A1. Suppose that this ball has center∑r−1

i=0 xip
i. For all j ∈ I, the ball with center j +

∑r−1
i=1 xip

i will also have

maximal measure. Since c is a multiple of p, if pr − c− 1 <
∑r−1

i=0 xip
i < pr,

then it is also true that pr − c − 1 < j +
∑r−1

i=1 xip
i < pr. Thus, every

maximal index is equal mod p to the center of a ball in A1. Since p divides
c, it cannot divide 1 + c. This implies that there must be a maximal ball
Bp−r(x) such that M > m1 and pr − c − 1 < x < pr, so we have satisfied
Condition (iii).

If it is the case that A1 contains at least k balls of maximal measure, then
the argument is similar to the case for A0. The only changes are switching
A0 and A1, c and c+1, Conditions (ii) and (iii), and the defining inequalities
for x. �

We conclude with an example to illustrate parts of the proof of Proposi-
tion 1.4 and a discussion about extending the results in this paper.

Example 3.1. Let µ be the i.i.d. Bernoulli measure on Z5 that is defined by
the probability vector (3/14, 3/14, 1/7, 3/14, 3/14). We consider translation
by a =

∑
(0 + 3 · 5)52n and take the repeating segment c = 0 + 3 · 5 = 15. In

this example, we have pr−c−1 = 25−15−1 = 9, so balls in A0 have a center
0 ≤ x < 9 and balls in A1 have a center 9 < x < 25. Each ball of maximal
measure in A0 maps to another ball of maximal measure under T15. As we
expect from the proof of Proposition 1.4, the prime p = 5 divides c = 15 but
not c + 1 = 16. Thus, there are balls of maximal measure in A1 that map
to balls of smaller measure under T16. One of these balls is B5−2(1 + 3 · 5).
Since this ball satisfies Condition (iii), we take N = 3 > log4/3 2. Then the
ball

B5−6(1 + 3 · 5 + (1 + 3 · 5)52 + (1 + 3 · 5)54)

satisfies inequality (2).

The proof of Proposition 1.4 uses the fact that p is a prime, especially
in the divisibility arguments toward the end of the proof. For a composite
number g, it is possible to define Zg as the set of formal power series in g
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and to give it similar algebraic, topological, and measure-theoretic struc-
tures. Special cases of a ∈ Zg can be found with properties that yield the
required divisibility in the method of proof used for Proposition 1.4. How-
ever, there are also nonintegral rational numbers a ∈ Zg that do not have
these properties. Since the proof of Theorem 1.1 depends on Proposition 1.4,
it is still unknown for some nonintegral rational numbers a ∈ Zg whether or
not Ta : Zg → Zg in singular with respect to i.i.d. Bernoulli measures other
than Haar measure.
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