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Using twisted Alexander polynomials to
detect fiberedness

Azadeh Rafizadeh

Abstract. In this paper we discuss how certain algebraic invariants of
3-manifolds can be effectively used in the study of fiberedness and the
Thurston norm of links. In particular we use twisted Alexander poly-
nomials to prove that the exterior of a certain graph knot, whose splice
diagram is given, is not fibered. Then we consider three 2-component
graph links built out of this knot. For these links we use the same tech-
nique, involving twisted Alexander polynomials to discuss their fibered-
ness and Turston norm. This allows us to demonstrate the effectiveness
of twisted Alexander polynomials in this context (links in homology
spheres different from S3), where no calculations exist in the literature.
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1. Introduction

In 1990 X. S. Lin introduced a generalization of Alexander polynomials
called twisted Alexander polynomials for knots [13]. His definition was later
generalized to 3-manifolds by B. Jiang and S. Wang [11], M. Wada [17], P.
Kirk and C. Livingston [12], and J. Cha [2]. Twisted Alexander polynomials
can be used to investigate other properties of 3-manifolds such as fiberedness.
In particular S. Friedl and S. Vidussi [8], and J. Cha [2] have used them in
relation with fiberedness of 3-manifolds. These polynomials can also be
helpful in investigating the Thurston norm, [16].

The main purpose of this paper is to find explicit applications of the
relationship between twisted Alexander polynomials and fiberedness. In
particular we study a knot K that is included in a homology sphere Σ (dif-
ferent from the 3-dimensional sphere S3), and three different 2-component
links that have K as one of their components. In such cases the Wirtinger
presentation can not be used directly to find the fundamental group of the
exterior of the knot K or of the aforementioned links.

Our knot K is the result of gluing the exteriors of two right-handed trefoil
knots to the 3-component necklace in a special way that is called splicing.
Using the Wirtinger presentation for the three pieces together with the splic-
ing relations, we calculate the fundamental group of the exterior of the knot
K. We use a similar technique for the aforementioned links to calculate
the fundamental group of their exterior. We will be using the method of
splice diagrams as introduced by Eisenbud and Neumann [3] for describing
the graph links studied in this paper. Using the combinatorial informa-
tion included in the splice diagram, Eisenbud and Neumann show that K
is not fibered. However, the technique they use to show this fact only ap-
plies to graph links, whereas we recast this result using twisted Alexander
polynomials. The method of this paper can theoretically be applied to any
3-manifold. Although this has been done in some cases (mostly knots in
S3 with few crossings) prior to this work, these techniques have never been
applied to knots (or links) which are included in homology spheres differ-
ent from S3. We have used the computer program Knottwister created by
S. Friedl [4]. Knottwister requires the fundamental group of the 3-manifold,
N along with a cohomology class φ. It uses Fox differential calculus to
compute the Alexander polynomial and twisted Alexander polynomials via
representations of the fundamental group. The technique used in this paper
to determine fiberedness does not depend on the fact that K is a graph knot.

Acknowledgement. This work was done in preparation for the author’s
dissertation. I would like to thank my advisor, Stefano Vidussi.

2. Preliminaries

In this section we will introduce graph links and discuss the necessary
definitions and concepts to clarify how splice diagrams represent graph links.
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The material in this section is a summary of work that appears in [3]. In
this work, we follow the definition of [10] for Seifert fibration.

For us, an n-component link is an embedding of a disjoint collection of n
copies of S1 in a homology sphere Σ. (A homology sphere is an n-manifold
whose homology groups are the same as the homology groups of the n-sphere,
Sn.) The knot K and the links Lα, Lβ, and Lγ , which we will introduce in
Sections 2.1 and 2.2, are contained in homology spheres different from S3.

Definition 2.1. A Seifert link is an n-component link L = (Σ,K), where
K = S1 ∪ .... ∪ Sn ⊂ Σ, Si’s being copies of S1, and Σ a homology sphere,
whose exterior Σ0 = Σ \ int(ν(K)) admits a Seifert fibration, when ν(K)
denotes a neighborhood of K and int(ν(K)) is its interior.

We know by Lemma 7.1 in [3] that Σ itself must be Seifert fibered and
(with one family of exceptions corresponding to the necklaces), the link
components are singular or regular fibers of the fibration. (For examples of
what we call a necklace, see Figure 9.)

We can specialize the above description of Seifert fibered spaces to obtain
homology spheres as follows. We choose F to be S2 and for any choice of
an n-tuple (α1, ..., αn) of singular fibers with multiplicity αi we get a Seifert
fibered homology sphere by choosing coefficients βi to be determined module
αi by the following equation:

n∑
1

βiα1...α̂i...αn = 1.

Each Seifert fibered homology sphere is homeomorphic to (εΣ(α1, ...αn)) for
some n when ε = ±1. For the canonical orientation, ε = 1 and for the
opposite orientation, ε = −1 [3]. For example, Σ(p, q, 1, ..., 1) is S3 for all
coprime integers p, q and Σ(2, 3, 5) is the Poincaré homology sphere. The
only case when an αi may be zero is the case Σ(0, 1, ..., 1), which gives S3

(see [3]).
We can denote a Seifert link as

(εΣ(α1, ..., αn),±S1 ∪ .... ∪ ±Sm), m ≤ n
where the Si represent singular or regular fibers of the Seifert fibration with
their canonical orientation. By allowing the αi to be negative, we can recast
all Seifert links as

(±Σ(α1, ..., αn), S1 ∪ .... ∪ Sm)), m ≤ n.
Now, we describe the splicing as an operation.

Definition 2.2. Given two links L = (Σ,K) and L′ = (Σ′,K ′), let S ⊂ K
and S′ ⊂ K ′. Let µ and λ be the standard meridian and longitude of S
and µ′ and λ′ that of S′. Consider Σ′′ = (Σ \ int(ν(S))) ∪ (Σ′ \ int(ν(S′))),
which is formed by identifying λ with µ′ and λ′ with µ. This operation is
well-defined [3]. The link (Σ′′, (K \ S) ∪ (K ′ \ S′)) is called the splice of the
links L and L′ along S and S′.
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Note that if K and K ′ have n and m components respectively, K ′′ has
(n + m) − 2 components. Using the Mayer–Vietoris sequence, it can be
shown that Σ′′ is also a homology sphere.

Definition 2.3. A graph link is a link that is the result of splicing two or
more Seifert link. a graph knot is a one-component graph link.

Following Eisenbud and Neumann we shall represent graph links by us-
ing certain diagrams, which are called “splice diagrams”. Splice diagrams
encode all the information about graph links. If we consider the minimal
version of a splice diagram, there is a one to one correspondence between
splice diagrams and graph links. (The concept of minimality of diagrams is
discussed in detail in Theorem 8.1 in [3]. Using this theorem, it is straight-
forward to determine when a diagram is minimal. In what follows, all our
splice diagrams will be minimal.)

The building blocks of splice diagrams are Seifert links. The following
diagram corresponds to the Seifert link (±Σ(α1, ..., αn), S1 ∪ ... ∪ Sm)). It
is a Seifert fibered homology sphere with the first m fibers removed; Si is
regular if αi = 1, and singular otherwise.

Q
Q
Qk m���3

Q
Q
QQ

�
�
�� rr
p p p
p p pε

α1 αmαn αm+1

Figure 1. Seifert link (±Σ(α1, ..., αn), S1 ∪ ... ∪ Sm)).

It is worth mentioning that the unknot and the Hopf link have splice
diagrams that follow suitable modifications of the same rules. Other than
these two exceptions, the splice diagram of every Seifert link is made out of
three different parts, which we will explain next.

1. Nodes:

Q
Q

Q
QQ

�����
�
�
��

�
�

�
��

ε
α1 α2

αm
qqqqq

Figure 2. A node.

Here, m ≥ 3, the αi’s are pairwise coprime integers, and ε is a sign.
If we consider the canonical orientation ε is positive; otherwise it
is negative. Each node represents a Seifert link. So if the minimal
diagram has k nodes, it is the splice diagram of a graph link that is
the result of splicing k Seifert links together.
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2. Boundary vertices: u
In a splice diagram, these represent singular fibers of a fibration that
are not components of the link. Splicing cannot happen along these
vertices.

3. Arrowhead vertices:

-

These correspond to actual link components. They are regular fibers
(when αi = 1) or singular fibers (when αi 6= 1) of the Seifert fibra-
tion of the link being represented. Splicing can happen along these
vertices.

As mentioned before, every graph link is the result of splicing two or more
Seifert links together to obtain a diagram of the following form.

@
@@I

�
��	

i i
r

-+ −
2

5
3 1 1

3

r
2

Figure 3. Example of a splice diagram.

We will now describe how this is represented in terms of splice diagrams.
Recall that we can represent Seifert links L(1) = (Σ(1),K(1)) and L(2) =

(Σ(2),K(2)) by the following diagrams.

&%
'$

Γ(1) -
S(1)

&%
'$

Γ(2)�
S(2)

Figure 4. Seifert links before splicing.

where S(1) and S(2) are components of K(1) and K(2) respectively, along
which we do splicing. The graph link that is the result of this splicing is the
following.

&%
'$

Γ(1) &%
'$

Γ(2)

S(1) S(2)

Figure 5. The resulting graph link.

As we see here, the components along which splicing happens disappear
as arrowhead vertices, and appear as an edge in the diagram of the resulting
graph link. When we speak of “the vertices of the diagram” we will include
nodes as well as boundary vertices and arrowhead vertices.
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In this work, our definition of twisted Alexander polynomial is consistent
with that appearing in [6].

3. Main results

The following theorem of C. McMullen shows the ability of the (ordinary)
Alexander polynomial to provide information on the Thurston norm and
fiberedness for a general 3-manifold N . If φ = (m1, ...,mn) ∈ H1(N ;Z),
then div(φ) is the greatest common divisor of m1, ...,mn.

Theorem 3.1 (McMullen, [14]). Let N be a compact connected orientable
3-manifold whose boundary (if any) is a union of tori. Then for any φ ∈
H1(N ;Z)

deg(∆N,φ) ≤ ‖φ‖T +

{
0, b1(N) ≥ 2

div(φ) · (1 + b3(N)), b1(N) = 1.

Moreover, if φ is fibered ∆N,φ is monic and equality holds.

It is well-known that the converse of Theorem 3.1 is not true as we will
show for the graph knot K, which has the splice diagram shown in Figure 6.

Proposition 3.2. The genus of the knot K is 1, it has Alexander polynomial
equal to t2 − t+ 1 and it is not fibered.

u m
u

m

?

m
u

u+2 1

3

+1 0

1

+1 2

3

Figure 6. Splice diagram of the knot K.

S. Friedl and T. Kim have generalized the result in Theorem 3.1 by con-
sidering the collection of twisted Alexander polynomials in the following
theorem.

Theorem 3.3 (Friedl–Kim, [5]). Let N be a 3-manifold different from S1×
D2 and S1×S2. Let φ ∈ H1(N ;Z) be such that (N,φ) fibers over S1. Then
for every representation α : π1(N)→ GLk(Z),

(3.1) ∆α
N,φ is monic and deg(∆α

N,φ) = k‖φ‖T + deg(∆N,φ,0) + deg(∆N,φ,2).

∆N,φ,0 and ∆N,φ,2 are determined by the Alexander modules H0(N ;Zk[F ])

and H2(N ;Zk[F ]).

Theorem 3.3 leads one to believe that the collection of twisted Alexan-
der polynomials gives stronger obstructions to fiberedness. This, in fact is
confirmed by the following theorem of S. Friedl and S. Vidussi.
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Theorem 3.4 (Friedl–Vidussi, [8]). Let N be a compact connected ori-
entable 3-manifold whose boundary (if any) is a union of tori. Let φ be
non-trivial in H1(N ;Z). Then if φ is not fibered, there is a representation
α : π1(N)→ GLk(Z) for which the conditions in (3.1) are not satisfied.

For knots of genus 1 this result has been enhanced to show that there is
some representation α for which the twisted Alexander polynomial vanishes,
[7]. This result has been further generalized to any 3-manifold pair (N,φ),
where φ ∈ H1(N ;Z), [9].

The proof of Theorem 3.4 is not constructive. We have found explicit
representations for the knot K and one 2-component link containing K, for
which (3.1) is violated.

Theorem 3.5. For the representation α : π1(K) → S5 → GL5(Z) given in
Theorem 5.2, ∆α

K,φ is not monic.

Section 5 is dedicated to the proof of this theorem. In order to find the
explicit representation, we will first calculate the fundamental group of the
exterior of K and then use the computer program Knottwister written by
S. Friedl, [4].

4. Proof of Proposition 3.2

To prove the proposition we use various results from [3]. (More details
can be found in [15].)

Proof. As we can see in the diagram in Figure 7 there is one arrowhead
vertex, we will call this vertex v1. Considering the conventions in [3], this
knot has 8 vertices. So n = 1 and k = 8. First we will find lij for i = 1 and
1 < j ≤ 8 : l12 = l13 = l14 = l15 = 0, l16 = 6, l17 = 3, l18 = 2.

tv2 kv3
t
v4

kv5

?
v1

kv6
t
v8

tv7+ + +

Figure 7. Vertices of the knot K.

For boundary vertices and arrowhead vertices, δi = 1. For this particular
knot each node has 3 arrowhead vertices and/or boundary vertices attached
to it. So we have the following values for δi where 1 < i ≤ 8:

δ2 = δ4 = δ7 = δ8 = 1 and δ3 = δ5 = δ6 = 3.

Now we use Theorem 12.1 in [3] to compute the Alexander polynomial:

∆ = (t− 1)(t0 − 1)−1(t0 − 1)(t0 − 1)−1(t0 − 1)(t6 − 1)(t3 − 1)−1(t2 − 1)−1.
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Following the convention mentioned in [3] we cancel the terms (t0 − 1) and
(t0 − 1)−1. Doing so we get

∆ =
(t− 1)(t6 − 1)

(t3 − 1)(t2 − 1)
=
t3 + 1

t+ 1
= t2 − t+ 1.

To find the genus of the knot, we calculate the Thurston norm of the class
φ = (1) ∈ H1(Σ \ (ν(K),Z) ' Z. By Theorem 11.1 in [3],

‖φ‖T = ‖(1)‖T =

8∑
j=2

(δj − 2)|l1j | = 1.

So this knot has genus equal to 1 as claimed since ‖φ‖T = 2g − 1. It
remains to show it is not fibered. To show this, we use Theorem 11.2 in [3],
which assets that if some of the terms in the summation are zero, as in our
case, then K is not fibered. �

5. Proof of the main theorem

5.1. The fundamental group. To find the explicit representation α we
first need to calculate the fundamental group of its exterior. For a knot in S3

one can use the Wirtinger presentation of any blackboard projection of the
knot to compute its fundamental group. Given that the knot K is contained
in a homology sphere Σ, this method is not directly available, because we
do not have access to any blackboard presentation. The route we will follow
uses instead the Seifert–van Kampen theorem and the decomposition of the
knot exterior into three components reflected by the splice diagram of K
given in Figure 6.

From now on, for the sake of simplicity, when we talk about the fun-
damental group of the exterior of a link or a knot L, we will call it the
fundamental group of L. We will follow this convention in our notation as
well. For example we will denote the fundamental group of the exterior of
the knot K as π1(K) instead of π1(Σ \ (ν(K))).

Lemma 5.1. The exterior of the knot K has the following fundamental
group:

π1(K) = 〈x, y, s, t, b | xyx = yxy, stbst = bstb, xs = sx, xt = tx,

s = x−1yx2yx−3, x = (st)−1b(st)2b(st)−3〉.

Proof. First we will look at the three building blocks of the splice diagram.
If we separate the middle node from the rest, we get the following splice
diagram.

The three-component necklace that this splice diagram represents is the
one in Figure 9. The arrowhead vertex with weight 0 is the main loop and
the ones with weight 1 are the two hanging loops. We will call the main
loop N0, the loop hanging on the left N1 and the one hanging on the right
N2. The following is its projection.
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m
?

-� 0

1

+1

Figure 8. Splice diagram of the 3-component necklace.

∧
∧ ∧

m

ts

n

N0
N2N1

Figure 9. 3-component necklace.

t k
t

-+2 1

3

Figure 10. Splice diagram of the trefoil on the left.

To avoid making the diagrams busy we put the names of the meridians
on the arc and will not include the actual meridians in pictures. For this
necklace, let µ(N1) = s, and µ(N2) = t be the meridians of N1 and N2. Also
since N0 is made of two arcs m and n, we can choose as meridian of this
component either m or n. Using the Wirtinger presentation for links we see
that the (simplified) fundamental group of this link is

π1(N) = 〈n, s, t | ns = sn, nt = tn〉.

The node on the left is the (2, 3) cable on the unknot, as we can read
from its splice diagram (Proposition 7.3 in [3]). Hence it represents the
right-handed trefoil knot with the canonical orientation. We will call it TL.
The diagram in Figure 10 shows the node on the left separated from the
rest.

Considering the projection of the right-handed trefoil shown in Figure 11,
we can use the Wirtinger presentation for knots to calculate the fundamental
group. Doing so will give us the following (simplified) fundamental group:

π1(TL) = 〈x, y | xyx = yxy〉.

For this knot, we will choose the meridian to be µ(TL) = x. Then by the
details discussed in Remark 3.13 of [1], the longitude will be

λ(TL) = zxyx−3 = x−1yx2yx−3.



822 AZADEH RAFIZADEH

@@

@
@
@
@

�
�
�

�
��A

A
A
AA

�
�
�
��

<x

yz

Figure 11. The trefoil knot on the left, TL.

Splicing on the left we identify the longitude of TL with the meridian of
N1 and the meridian of TL with the longitude of N1. Doing so will yield the
relations s = x−1yx2yx−3 and x = n respectively.
Since the node on the right is another copy of the right-handed trefoil knot,
we will call it TR. This knot has the fundamental group

π1(TR) = 〈a, b | aba = bab〉.

If we choose its meridian to be a, then the longitude is caba−3 = a−1ba2ba−3.
The splicing on the right happens along the N0 component of the necklace
with meridian µ(N0) = n and longitude λ(N0) = st. Hence after splicing on
the right we will have the relations st = a and n = a−1ba2ba−3.
Given the fundamental groups of each of the building blocks, along with the
relations due to the splicing, the Seifert–van Kampen Theorem states that
the fundamental group of the knot K is:

π1(K) = 〈x, y, n, s, t, a, b | xyx = yxy, aba = bab, ns = sn, nt = tn, x = n,

s = x−1yx2yx−3, st = a, n = a−1ba2ba−3〉.

Simplifying this group, we get:

π1(K) = 〈x, y, s, t, b | xyx = yxy, stbst = bstb, sx = xs, xt = tx,

s = x−1yx2yx−3, x = (st)−1b(st)2b(st)−3〉. �

5.2. Finding an explicit representation α that shows K is not
fibered. In this section, using the above presentation of π1(K) we find an
explicit representation of π1(K)→ GL5(Z) for which the twisted Alexander
polynomial is not monic. To do so, we use the computer program Knot-
twister.

Theorem 5.2. For the representation α : π1(K)→ S5 → GL5(Z) given by

α(a) = (15234), α(b) = (13524), α(n) = (14523), α(s) = (12345)

α(t) = (15234), Fα(x) = (14523), α(y) = (34125),

∆α
K,φ is not monic. (Here, one-line permutation notation is used.)

Proof. Knottwister takes the fundamental group of K along with a coho-
mology class φ as the input data. For knots, φ can be chosen to be the
abelianization map φ : π1(K)→ Z. To identify explicitly the abelianization
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map φ we add the commutator relations to the fundamental group found in
Lemma 5.1. Then the map φ is given explicitly as:

φ(x) = φ(y) = φ(s) = 0 and φ(b) = φ(t) = 1.

It can be easily checked that α is a homomorphism, meaning that it
respects the relations of the fundamental group. The ordinary Alexander
polynomial is t2 − t+ 1, which is identical to that of the trefoil knot. How-
ever, Knottwister gives the twisted Alexander polynomial ∆α

K,φ with co-
efficients modulo p for different prime numbers. The twisted Alexander
polynomial given by this particular representation α over F5[t

±1], F7[t
±1],

F11[t
±], F13[t

±1], F17[t
±1], F19[t

±1], F23[t
±1] and F29[t

±1] is equal to 0. Since
the twisted Alexander polynomial associated with any one of these repre-
sentations vanishes, it is not monic. �

We can conclude from the previous theorem and Theorem 3.3 that the
knot K is not fibered. Clearly, having the polynomial vanish over any of the
fields above would be sufficient to show it is not monic. However, the fact
that it vanishes over all these fields is a strong evidence that it is indeed 0.
Since the genus of K is 1 as we saw in Proposition 3.2, this observation is
consistent with the enhanced version of Theorem 3.4 appearing in [7].

6. 2-component links containing K

In this section we discuss three 2-component links that contain the knot
K as a component. These links are the result of adding an arrowhead vertex
to the three nodes of the splice diagram of K.

6.1. The link Lα. First we put the second arrowhead vertex on the last
node. The following is the splice diagram of this 2-component link. From
now on we call this link Lα. Since this link contains the knot K as a com-
ponent, we can denote it as Lα = Kα

⋃
K, when Kα is the new component

of the link.

s i
s

i
?

i
s

s+2 1

3
+1 0

1
+1 2

3

6
1

Figure 12. Splice diagram of the link Lα.

Using the theorems in [3], we can easily prove the following proposition.
The proof is similar to that of 3.2 and hence is omitted.

Proposition 6.1. The 2-component link Lα in Figure 12 has the following
properties:
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1. Its multivariable Alexander polynomial is:

∆Lα(t1, t2) = (t121 − t61 + 1)(t41t
4
2 + t21t

2
2 + 1)(t31t

3
2 + 1).

2. For a general φ = (p, q), the Thurston norm is:

‖φ‖T = 7|p+ q|+ 12|p|.
3. If N is the exterior of the link, the pairs (N, (0, 1)) and (N, (1,−1))

are not fibered.

Remark 6.2. From Proposition 6.1, we can observe that for the class φ =
(1,−1) the single variable Alexander polynomial is

∆Lα,φ = 6(t− 1)(t12 − t6 + 1).

Even though deg(∆Lα,φ) = ‖φ‖T + 1, the polynomial is not monic. So
Theorem 3.1 states that this class is not fibered. However, for φ = (0, 1),
we have the following ordinary Alexander polynomial:

∆Lα,φ = (t− 1)(t4 + t2 + 1)(t3 + 1) = (t6 − 1)(t2 − t+ 1).

In this case the Alexander polynomial is monic and deg(∆Lα,φ) = 8. Ac-
cording to Theorem 3.1 this result is compatible with fiberedness, but we
showed in Proposition 6.1 that it is not fibered.

6.2. Fundamental group of the exterior of Lα. In order to use twisted
Alexander polynomials to discuss the fiberedness of Lα, we need to calculate
the fundamental group of its exterior.

Lemma 6.3. The fundamental group of the exterior of Lα is:

π1(Lα) = 〈c, d, e, f, g, h, i, j, k, l, o, p, q, r, u, v, w, a, x, y, n, s, t | xyx = yxy,

ns = sn, nt = tn, s = x−1yx2yx−3, e = st, gd = cg, ve = dv,

cf = ec, pg = fp, vh = gv, wi = hw, aj = ia, ek = je, rc = kr,

eo = le, rp = or, gq = pg, vr = qv, cu = rc, pv = up, hw = vh,

ia = wi, jl = aj〉.

Proof. Again, we need to decompose the link over its three nodes. For the
node on the left and the one in the middle the calculations are identical to
those of the knot K. For Lα, the node on the right before splicing is shown
in Figure 13.

i
s

s� +1 2

3

6
1

Figure 13. Splice diagram of the link D on the right.

The splice diagram in Figure 13 represents a 2-component link as it has
two arrowhead vertices. It is the (2, 3) cable on the right-handed trefoil (see
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Proposition 7.3 in [3]). Hence each component is a copy of the right-handed
trefoil knot, such that they have linking number 6. We call this 2-component
link D. The blackboard projection of the link D is shown in Figure 14. We
only need to discuss the splicing relations on the right, as the ones on the
left are identical to those of K. As for K, splicing on the right happens
along the main loop of the necklace, N0. If we choose to splice along the
outer trefoil of D, and choose its meridian to be µ(D) = e, the longitude
will be λ(D) = cpvwxergve−3. Hence the splicing relations are:

n = cpvwxergve−3, and e = st.

Therefore, considering the fundamental groups of the three building blocks
of Lα and the relations that result from splicing, we see that the fundamental
group of the exterior of Lα is:

π1(Lα) = 〈c, d, e, f, g, h, i, j, k, l, o, p, q, r, u, v, w, a, x, y, n, s, t | xyx = yxy,

ns = sn, nt = tn, s = x−1yx2yx−3, e = st, gd = cg, ve = dv,

cf = ec, pg = fp, vh = gv, wi = hw, aj = ia, ek = je, rc = kr,

eo = le, rp = or, gq = pg, vr = qv, cu = rc, pv = up, hw = vh,

ia = wi, jl = aj〉. �

6.3. Finding representations for π1(Lα) in two cases. Since for all
knots the abelianization of their fundamental group is isomorphic to Z, if
one cohomology class is fibered, all are. However, it is possible that for the
same link some cohomology classes are fibered and others are not. Now we
will show that two different cohomology classes for Lα are not fibered.

In the following theorem we will find explicit representations for which
∆α
N,φ is not monic, when N is the exterior of Lα and φ is one of the classes

(0, 1) or (1,−1). Consequently by Theorem 3.3, the pair (N,φ) is not fibered
for either φ.

Theorem 6.4. Let N be the exterior of Lα. For φ1 = (0, 1) and φ2 =
(1,−1), there are corresponding representations

α1, α2 : π1(N)→ S5 → GL5(Z)

such that ∆α1
N,φ1

and ∆α2
N,φ2

are not monic.

Proof. First we need to understand what φ1 does as a map. We add all the
commutator relations to the fundamental group in Lemma 6.3. This will
result in the following relations:

c = d = e = f = g = h = i = j = k = t

o = l = p = q = r = u = v = w = a

s = 1, x = y = n = v6.

As expected for a 2-component link, the abelianization of π1(Lα) is iso-
morphic to Z⊕ Z. We can see from the splice diagram of this link that the
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Figure 14. The link D.

two components that survive are one of the hanging loops of the necklace,
N2, and the trefoil knot inside the link D. These are the arrowhead vertices
in the splice diagram. Hence φ1 is the homomorphism that sends v to 0
and t to 1. Again, Knottwister takes the fundamental group of Lα from
Lemma 6.3 along with the homomorphism φ1 as an input. In multiplicative
notation φ1 is the following map:

φ1(c) = φ1(d) = φ1(e) = φ1(f) = φ1(g) = φ1(h) = φ1(i) = φ1(j) = φ1(k)

= φ1(t) = 1

φ1(a) = φ1(l) = φ1(o) = φ1(p) = φ1(q) = φ1(r) = φ1(u) = φ1(v) = φ1(w)

= φ1(s) = φ1(x) = φ1(y) = φ1(n) = 0.

Knottwister gives the following representation

α1 : π1(N)→ S5 → GL5(Z),
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when the elements in S5 are written in on-line permutation form:

a 7→ (13245) c 7→ (23415) d 7→ (45321) e 7→ (24351)
f 7→ (32514) g 7→ (13524) h 7→ (14532) i 7→ (15234)
j 7→ (13524) k 7→ (31425) l 7→ (14325) n 7→ (45312)
o 7→ (21345) p 7→ (21345) q 7→ (42315) r 7→ (21345)
s 7→ (12345) t 7→ (24351) u 7→ (42315) v 7→ (14325)
w 7→ (15342) x 7→ (45312) y 7→ (42513).

For this twist the twisted Alexander polynomial ∆α1
N,φ1

vanishes over F7[t
±1],

F11,[t
±1], F13[t

±1], F17[t
±1], F19[t

±1], F23[t
±1] and F29[t

±1]. Since the twisted
Alexander polynomial vanishes over these finite fields, it cannot be monic.

Now, we do the same for φ2 = (1,−1). Using multiplicative notation, φ2
can be viewed as the map that acts as follows on the generators of π1(Lα):

φ2(c) = φ2(d) = φ2(e) = φ2(f) = φ2(g) = φ2(h) = φ2(i) = φ2(j) = φ2(k)

= φ2(t) = −1

φ2(a) = φ2(l) = φ2(o) = φ2(p) = φ2(q) = φ2(r) = φ2(u) = φ2(v) = φ2(w)

= 1

φ2(s) = 0

φ2(x) = φ2(y) = φ2(n) = 6.

Given this information, Knottwister gives us the following representation α2

(in one-line permutation form):

α2 : π1(M)→ S5 → GL5(Z)

a 7→ (24513) c 7→ (45132) d 7→ (35124) e 7→ (23154)
f 7→ (21534) g 7→ (24513) h 7→ (45213) i 7→ (53214)
j 7→ (54231) k 7→ (51432) l 7→ (45213) n 7→ (12345)
o 7→ (41523) p 7→ (54231) q 7→ (25431) r 7→ (54123)
s 7→ (12345) t 7→ (23154) u 7→ (54231) v 7→ (54231)
w 7→ (54123) x 7→ (12345) y 7→ (12345).

For this representation, the twisted Alexander polynomial, ∆α2
N,φ2

, vanishes

over F5[t
±1] and all of the fields previously mentioned for ∆α1

N,φ1
. Hence

neither twisted Alexander polynomial is monic as claimed. �

Again, by Theorem 3.3, the pairs (N, (0, 1)) and (N, (1,−1)) are not
fibered.

6.4. Links Lβ and Lγ. In this section we briefly discuss the 2-component
link that results from adding an arrowhead vertex to the middle node, Lβ,
and the one that results from adding it to the first node, Lγ . We use the
theorems in [3] to conclude the following propositions.

Proposition 6.5. For the link Lβ the following are true.

1. The Alexander polynomial vanishes.
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2. The Thurston norm of the class φ = (p, q) on Lβ is |p+ q|.
3. No cohomology class φ on Lβ is fibered.

Proposition 6.6. The link Lγ has the following properties:

1. The Alexander polynomial vanishes.
2. The Thurston norm for a class φ = (p, q) on this link is 7|p|+ |6p+q|.
3. No class φ on this link is fibered.

We can use similar techniques to find the fundamental groups of these
links. We have discussed the three “building blocks” of Lγ already. For
the link Lβ, notice that the middle node gives the splice diagram of a
4-component necklace. The following propositions give the fundamental
groups of the exteriors of these two links.

Proposition 6.7. The fundamental group of Lβ is the following:

π1(Lβ) = 〈x, y, a, b, s, r, t, n | aba = bab, xyx = yxy, nr = rn, nt = tn,

ns = sn, x = n, s = x−1yx2yx−3, a = rst, n = a−1ba2ba−3〉.

Proposition 6.8. The fundamental group of Lγ is the following group:

π1(Lγ) = 〈a, b, n, s, t, c, d, e, f, g, h, i, j, k, o, l, p, q, r, u, v, w |
gd = cg, ve = dv, cf = ec, pg = fp, vh = gv, wi = hw, xj = ix,

ek = je, rc = kr, eo = le, rp = or, gq = pg, vr = qv, cu = rc,

pv = up, hw = vh, ix = wi, jl = xj, aba = bab, ns = sn,

nt = tn, a = st, n = a−1ba2ba−3, e = n, s = cpvwxergve−3〉.

7. A “secondary” polynomial, ∆̃α
1 (t)

Since the ordinary Alexander polynomial is 0 for Lβ and Lγ , we may not
use Theorem 3.1 to get a useful bound for the Thurston norm. From now
on we will only be concerned with the single-variable version of the twisted
Alexander polynomial for simplicity. Also, since F[t±1] is a principal ideal
domain, we replace Z[t±1] by F[t±1] in the definition of the Alexander module
where F = Fp is a field. As a result, we have the following isomorphism:

H1(N,Fk[t±1]) ∼= F[t±1]r ⊕
m⊕
j=1

F[t±1]/(pj(t))

for p1(t), ..., pm(t) ∈ F[t±1]. The type of polynomials we will examine are
defined by:

∆̃α
N,φ :=

m∏
j=1

pj(t)

regardless of the rank r. Not much is known about these polynomials.
S. Friedl and T. Kim have proved the following theorem that relates these

polynomials to the Thurston norm in [5].
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Theorem 7.1 (Friedl–Kim, [5]). Let L = L1 ∪ L2 ∪ .... ∪ Lm be a link with
m components. Denote its meridian by µ1, ..., µm. Let φ ∈ H1(X(L);Z) be
primitive and dual to a meridian µi,when X(L) denotes the exterior of L.
Hence φ(µi) = 1 for some i and φ(µj) = 0 for j 6= i. Then

‖φ‖T ≥
1

k
deg(∆̃α

1 (t))− 1.

Here, k is the size of the representation α.

Theorem 7.1 will help us improve the bound of the Thurston norm for
the class (0, 1) for both Lβ and Lγ . Recall from Section 2.2 that for Lβ the
Thurston norm of a general cohomology class (p, q) is |p+q|. So for this link,

‖(0, 1)‖T = 1. In this case Knottwister computes the ∆̃α
1 (t) to be 1− t+ t2

over F13 when α is trivial (so k = 1). Therefore, for the pair (Lβ, (0, 1)) we
get

‖(0, 1)‖T ≥ 2− 1 = 1

which is a sharp bound.
Now we consider the same cohomology classes on Lγ . We know from our

calculations in section 2.2 that for this link, ‖φ‖T = ‖(p, q)‖T = 7|p|+|6p+q|.
So for this link ‖(0, 1)‖T = 1. Knottwister yields the ∆̃α

1 (t) = 1− t+ t2 over
F13 again, when α is trivial, which is again a sharp bound.
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