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The stable concordance genus

M. Kate Kearney

Abstract. The concordance genus of a knot is the least genus of any
knot in its concordance class. Although difficult to compute, it is a useful
invariant that highlights the distinction between the three-genus and
four-genus. In this paper we define and discuss the stable concordance
genus of a knot. The stable concordance genus describes the behavior
of the concordance genus under connected sum, and can be a valuable
tool in calculating the concordance genus for certain families of knots.
We will present several computations of the stable concordance genus
and give a realization result.
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1. Introduction

In studying knot concordance, a question immediately arises: For a given
knot K, what is its simplest representative in the concordance group? From
a geometric perspective, simplicity is most naturally described in terms of
the genus of a knot. We therefore wish to find the least genus of a represen-
tative of K, the so-called concordance genus of K, gc(K).

Studying gc was initially motivated by two observations. First, it clearly
bounds the four-genus: g4 ≤ gc. Secondly, Casson and Nakanishi indepen-
dently observed that this inequality is not necessarily an equality. Casson
observed that for the knot 62, g4 = 1 and gc = 2 (unpublished). Nakanishi
constructed an infinite family of examples [11].
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Techniques for studying individual knots are well-developed. For instance,
in [6, 7] Livingston determined gc for all prime knots with 10 or fewer cross-
ing, and in [5] the case of 11 crossings was, with a few exceptions, resolved.

The problem of determining gc for naturally occurring families of knots
is much more difficult. In this paper we will introduce a new tool to study
the concordance genus, called the stable concordance genus, gc−→

. It will be

clear that gc−→
≤ gc and that they are not always equal. However, we will

identify a number of settings where they turn out to be equal. Section 3 will
show calculations for several examples and determine the stable concordance
genus for all prime knots of eight or fewer crossings except 77, 81, 813 and
821. We will use this framework to determine the concordance genus of large
families of knots.

In Section 4 we will determine gc for arbitrary linear combinations of sim-
ple torus knots. The comparison to the four-genus of these knots produces
Theorem 3, discussed in Section 5. This is a realization result for the four-
genus relative to the concordance-genus. In the following, C denotes the
knot concordance group, and CQ = C ⊗Q.

Theorem 3. For any j, k ∈ Q, for which 1 ≤ j ≤ k, there is some K ∈ CQ
for which

g4−→
(K) = j, gc−→

(K) = k.

Furthermore, if K ∈ C, given any l ≥ k then for some knot K ′ in the
concordance class of K, g3(K ′) = l.

Furthermore and as important, gc−→
provides a new perspective that opens

up a host of interesting questions to investigate. In Section 5 we will discuss
several questions for further research.

Acknowledgements. Gratitude is owed to Chuck Livingston and Pat Gilmer
for many helpful conversations on this topic. The author also would like to
thank the referee for productive suggestions that have helped to improve
this paper.

2. Definition and properties

The stable four-genus, g4−→
, is discussed by Livingston in [8] (notated as gst

in Livingston’s work). It is defined as

g4−→
(K) := lim

n→∞

g4(nK)

n
,

where g4 is the smooth four-genus of the knot. We define the stable concor-
dance genus, gc−→

, similarly in terms of gc, the smooth concordance genus.

Definition 1. gc−→
(K) := lim

n→∞

gc(nK)

n
.



THE STABLE CONCORDANCE GENUS 975

That this is well-defined is an immediate consequence of Theorem 1 of
Livingston’s paper [8]. It is a direct consequence of basic properties of limits
and the subadditivity of gc(K).

Since gc is subadditive, we see that the stable concordance genus is mul-
tiplicative:

gc−→
(mK) = lim

n→∞

gc(nmK)

n
= lim

nm→∞

gc(nmK)
nm
m

= m lim
nm→∞

gc(nmK)

nm

= mgc−→
(K).

The stable concordance genus is first defined for knots, but any two concor-
dant knots have the same concordance genus, and consequently the same
stable concordance genus, so we can consider gc−→

to be a function on the

concordance group, C. We can extend gc−→
, by multiplicativity, to be defined

on CQ = C ⊗Q.
Since the concordance genus is subadditive, the stable concordance genus

is also subadditive. Although it is not strictly positive, gc−→
is at least non-

negative. Hence the stable concordance genus (like the stable four-genus [8])
is a seminorm. That is, it is a nonnegative function which is multiplicative
and subadditive. Consequently, gc−→

satisfies a triangle inequality. Since gc−→
is

a semi-norm, it can be much easier to compute than gc, as will be seen in
examples in Section 4.

We aim to understand gc−→
by looking at its unit ball,

Bstc = {K ∈ C|gc−→
(K) ≤ 1}

(similarly Bst4, the unit ball for the stable four-genus) and particularly the
restriction to two-dimensional subspaces. We will explore some basic exam-
ples of computation, with the goal of finding the unit ball of collections of
knots of the form xT2,n + yT2,m.

To prepare to calculate gc−→
for basic examples, we first observe several

properties of the invariant. Detailed definitions of the Alexander polynomial
and classical knot signature can be found in many sources, such as [12], and
as such are omitted here. Instead we simply observe several useful properties,
which follow easily from properties mentioned in [7].

• g3 ≥ gc ≥ g4 ≥ 1
2 |σ|.

• Consequently, gc−→
≥ g4−→

≥ 1
2 |σ| (recall that σ(K#J) = σ(K) + σ(J)).

• The same inequalities hold for the Tristram–Levine signatures, so in
fact gc−→

≥ 1
2 |σt(K)| for t ∈ [0, 1].

• Further, Bstc ⊂ Bst4 ⊂ Bσ (where Bσ is the region in which the
Tristram–Levine signatures all have values of two or less).
• g3(K) ≥ 1

2 deg(∆K(t)), the degree of the Alexander polynomial of
K.
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Note that the Tristram–Levine signature is defined to be

σt(K) = lim
ε→0

1

2
(σ′t−ε(K) + σ′t+ε(K))

where σ′t(K) = signature((1 − e2πit)V + (1 − e−2πit)V T ) and V is a Seifert
matrix for K.

Theorem 1 (Fox–Milnor, [2]). If K is slice, then ∆K(t) = ±tkf(t)f(t−1)
for some polynomial f(t) and k ∈ Z.

As a consequence, if K is concordant to J, then

∆K(t)∆J(t) = ±tkf(t)f(t−1)

for some polynomial f(t). So if we can write ∆K(t) = ±tkh(t)h(t−1)g(t),
for some polynomials h(t) and g(t), where g(t) has no factors of the form
g1(t)g1(t−1), then we may conclude gc(K) ≥ 1

2 deg(g(t)). In Section 3 we
observe that in conjunction with jumps in the signature function, we can use
this lower bound for the concordance genus to also bound gc−→

from below.

3. Preliminary examples

To begin exploration of gc−→
we calculate values for prime knots with eight

crossings or fewer. In the following discussion, values of classical invariants
including signature and Alexander polynomial are as given on KnotInfo [1].

The following are results of basic properties of limits:

Proposition 1. The stable concordance genus is bounded above by the con-
cordance genus.

Proposition 2. If 1
2 |σ(K)| = gc(K), then gc−→

(K) = gc(K) = 1
2 |σ(K)|.

Proposition 2 applies to 15 prime knots of eight or fewer crossings:

31, 51, 52, 61, 72, 73, 74, 75, 88, 89, 810, 811, 815, 819, 820.

This includes the slice knots. In fact, as a special case of Proposition 2, all
slice knots have stable genus zero.

Corollary 1. If K is slice, K is stably slice (that is, gc−→
= g4−→

= 0).

41: The figure eight knot is negative amphichiral, so

g4(2 ∗ 41) = g4(41#− 41) = 0.

Therefore g4(2n41) = gc(2n41) = 0. Using the fact that the stable concor-
dance genus is well-defined,

gc−→
(41) = lim

n→∞

gc(n41)

n
= lim

k→∞

gc(2k41)

2k
= lim

k→∞
0 = 0.

So gc−→
(41) = 0. Since gc(41) = 1, this is an example for which gc−→

(K) 6= gc(K).
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In fact, we can use the same technique to see that the stable concordance
genus vanishes for all knots for which gc(nK) = 0 for some n. This is exactly
the knots of finite order in C.

Proposition 3. Any knot which has finite order in C is stably slice. In
particular, negative amphichiral knots are stably slice.

For prime knots of eight or fewer crossings, this applies to

63, 83, 812, 817, 818

as well as several of the previously mentioned knots including the slice knots.
At this point there remain thirteen prime knots of eight or fewer cross-

ings which we have not yet calculated. We can compute nine of these by
examining the relationship between the Alexander polynomial and signature
function more closely.

Let jρ(K) denote the jump in the signature function of K at ρ. The
following lemma is the key ingredient to proving Proposition 4, as we will
see below. This lemma is a consequence of the work of Milnor [10] and
Matumoto [9]. It was first formally stated by Garoufalidis [3], although a
complete proof is not given in the literature.

Lemma 1. If ρ is a root of the Alexander polynomial on S1, then

|jρ(K)| = 2 aρ,

where:

(a) aρ is an integer.
(b) aρ ≤ mult(ρ,∆K(t)), where mult(ρ,∆K(t)) is the multiplicity of ρ in

∆K(t).
(c) aρ ≡ mult(ρ,∆K(t)) mod 2.

Moreover, jρ(K) = −jρ̄(K), where ρ̄ denotes the complex conjugate of ρ.

We relegate the proof of Lemma 1 to Appendix A. We will give a direct
proof, considering a diagonalization of the Hermitian form

Bt = (1− t−1)V + (1− t)V t.

An alternate proof considers Milnor’s definition of σθ signatures [10], which
are equivalent to the jump function defined above, as shown by Matumoto
[9].

Proposition 4. If a knot, K, has Alexander polynomial ∆K(t) = f(t)xg(t)
and jρ(K) = ±2x where f(t) is the minimal polynomial for ρ in Z[t, t−1],
then for any J concordant to K, f(t)x is a factor of ∆J(t).

Proof. This is an immediate consequence of Lemma 1. In particular, for
f(t) the minimal polynomial of ρ with jρ(K) = ±2x = jρ(J) (since the
signature function is a concordance invariant), then x ≤ mult(ρ,∆J(t)) and
hence f(t)x is a factor of ∆J(t). �
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To expedite the discussions of the application of this proposition, we define
two new polynomials.

Definition 2. The concordance polynomial of a knot, K, is the maximal
degree polynomial which divides the Alexander polynomial of all knots con-
cordant to K. We will denote it ∆c

K(t).

This is well-defined up to multiplication by ±tk. Notice that ∆c
K(t) di-

vides ∆J(t) for all J ∼ K. Since ∆c
K(t) divides ∆K(t) in particular, we see

that ∆c
K(t) is simply a product of the factors of ∆K(t) which also divide

each ∆J(t) for J ∼ K.

Definition 3. The jump polynomial of a knot, K, is given by

∆j
K(t) :=

∏
fi(t)

fi(t)
ji(K)

where fi are the irreducible factors of ∆K(t) =
∏
fi(t)

xi(t), and

ji(K) := max

{∣∣∣∣12jα(K)

∣∣∣∣ : α is a root of fi(t)

}
.

The following are immediate consequences of these definitions and the
previous results.

Proposition 5. The jump polynomial of K divides the concordance poly-
nomial of K, and both divide the Alexander polynomial of K. In particular,

deg(∆j
K(t)) ≤ deg(∆c

K(t)) ≤ deg(∆K(t))

Proposition 6. The concordance polynomial is a concordance invariant.
Furthermore, 1

2 deg(∆c
K(t)) ≤ gc(K).

Proof. We observed above that ∆c
K(t) divides ∆J(t) for all J ∼ K. Con-

sequently deg(∆c
K(T )) ≤ deg(∆J(t)) for all J ∼ K, so in particular,

deg(∆c
K(T )) ≤ min{deg(∆J(t)) : J ∼ K}.

Then since 1
2 deg(∆J(t)) ≤ g3(J) for each J ∼ K, we have

1

2
deg(∆c

K(t)) ≤ min

{
1

2
deg(∆J(t)) : J ∼ K

}
≤ min{g3(J) : J ∼ K} = gc(K). �

Proposition 7. The degree of the jump polynomial is exactly the sum

deg ∆j
K(t) =

∑
i

(deg fi(t)) ∗ ji(K)

where fi(t) and ji(K) are as given in the definition of the jump polynomial.
Moreover, one half of this value is a lower bound for the concordance genus
of K.
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62: We begin by checking the signature and Alexander polynomial. The
signature is σ(62) = −2, and ∆62(t) = 1 − 3t + 3t2 − 3t3 + t4, which is
irreducible in Z[t, t−1]. The concordance genus is gc(62) = 2. So we have
1 = 1

2 |σ(K)| ≤ gc−→
(62) ≤ gc(62) = 2. The Tristram–Levine signature jumps

at the two complex roots of ∆62(t), α and α by two. While we cannot get
a stronger bound directly from the Tristram–Levine signatures, we can use
the jump function to show that half the degree of the Alexander polynomial
of 62 (or in similar cases, a factor of the Alexander polynomial) does bound
gc−→

.

In this case, σω(n62) jumps by −2n at α (and α), i.e. jα(n62) = −2n. The
degree of the corresponding irreducible factor (which is in this case ∆62(t))
is 4. Hence by Proposition 7, for all n ≥ 1,

2n =
1

2
deg(1− 3t+ 3t2 − 3t3 + t4)n ≤ gc(n62).

Finally, we see that

2 =
1
2 deg(∆62(t)n)

n
≤ gc−→

(62) ≤ gc(62) = 2.

We conclude that gc−→
(62) = 2.

85: We can also apply Proposition 7 to Alexander polynomials which are
products of several irreducible factors. In this case, to get a sharp bound we
require that the signature function jump at roots of each factor of ∆85(t).
The Alexander polynomial of 85 is

∆85(t) = 1− 3t+ 4t2 − 5t3 + 4t4 − 3t5 + t6

= (1− t+ t2)(1− 2t+ t2 − 2t3 + t4).

The signature functions jumps by 2 at α (and ᾱ), the root of 1− t+ t2, and
also by 2 at β (and β̄), where β is one of the roots of 1− 2t+ t2 − 2t3 + t4.
Hence by a similar argument to above, applied to both factors, and we may
conclude that

3n =
1

2
[deg(1− t+ t2)n + deg(1− 3t+ 3t2 − 3t3 + t4)n] ≤ gc(n85).

So we have 3 = 1
2 deg(∆85(t)) ≤ gc−→

(85) ≤ gc(85) = 3.

We can similarly calculate the stable concordance genus of

76, 82, 84, 86, 87, 814, 816.

In each of these cases the stable concordance genus is equal to the concor-
dance genus. There are four prime knots of eight or fewer crossings for which
the stable concordance genus is as of yet undetermined: 77, 81, 813, 821.
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4. Torus knots

The stable concordance genus is particularly interesting when we use it to
examine larger collections of knots under connect sum. Here we will look for
the stable concordance genus unit ball restricted to sums of the form xK +
yJ , with K, J torus knots. Richard Litherland has dealt with the 4-genus
of such sums of torus knots xT2,n+yT2,m. Here we will present a calculation
of the concordance genus, stable and unstable, for these knots, and contrast
to the 4-genus calculation. The 4-genus calculation mirrors Livingston’s
calculation of xT2,7 + yT2,11 in [8]. This is summarized in Theorem 2 below

Having calculated the stable concordance genus of T2,3 = 31 and T2,5 = 51

in the previous section, we begin with sums of these two knots.
xT2,3 + yT2,5: The signature function of xT2,3+yT2,5 jumps at 1/10, 1/6,

and 3/10 in [0, 1/2], taking on the values: 0 ∈ [0, 1/10), 2y ∈ [1/10, 1/6),
2x + 2y ∈ [1/6, 3/10), and 2x + 4y ∈ [3/10, 1/2]. We will first look at the
stable four-genus for this family of knots. The signature function gives us
the bounds

g4−→
≥ |y|

g4−→
≥ |x+ y|

g4−→
≥ |x+ 2y|.

Considering each of these inequalities for g4−→
≤ 1, we bound a region in

the plane (this is the signature ball Bσ defined in Section 2). We then
check the corner points of this region, and see that since g4−→

(T2,3) = 1,

g4−→
(−T2,3 + T2,5) = 1 and g4−→

(−2T2,3 + T2,5) = 1. Since g4−→
(xK + yJ) =

g4−→
(−xK − yJ) this is enough to determine that this region is in fact the

unit ball for the stable 4-genus (Figure 1). Although it does not represent
a corner point, g4−→

(T2,5) = 2 as we saw earlier, which is consistent with this

calculation.

-2 -1 1 2

-2

-1

1

2

Figure 1. Stable four-genus unit ball for xT2,3 + yT2,5.
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To calculate the stable concordance genus unit ball, we generalize the
calculation given in the previous section for the knot 62. Notice that

∆xT2,3+yT2,5(t) = (1− t+ t2)|x|(1− t+ t2 − t3 + t4)|y|

and since σω(t) jumps at the roots of each factor by 2x and 2y, the jump

polynomial is ∆j
xT2,3+yT2,5

= ∆xT2,3+yT2,5 . So, by Proposition 7, we have

gc−→
(xT2,3 + yT2,5) ≥ |x| + 2|y|. Thus the unit ball for gc−→

(xT2,3 + yT2,5) is

contained in the ball defined by these equations, but furthermore, gc−→
(T2,3) =

1, and gc−→
(T2,5) = 2, so by linearity this is the unit ball (Figure 2).

-2 -1 1 2

-2

-1

1

2

(a) Stable concor-
dance genus unit
ball.

-2 -1 1 2

-2

-1

1

2

(b) Stable concor-
dance genus unit
ball overlaid stable
four-genus unit ball.

Figure 2. The stable concordance genus unit ball for xT2,3+
yT2,5 is different from the stable four-genus unit ball.

We observe in particular that the unit ball for the stable four-genus is
different from the unit ball for the stable concordance genus. This is the
primary observation that motivates Theorem 3.

T2,n: For any torus knot of the form T2,n, gc−→
(T2,n) = |n|−1

2 . For any

such knot, there is a surface of genus |n|−1
2 whose boundary is the knot,

so gc−→
(T2,n) ≤ g3(T2,n) ≤ |n|−1

2 . On the other hand, σ(T2,n) = |n|−1
2 , so

gc−→
(T2,n) ≥ g4−→

(T2,n) ≥ |n|−1
2 . This will assist us in a general calculation of

knots of the form xT2,n + yT2,m. We conclude that gc−→
(T2,n) = |n|−1

2 .

xT2,n + yT2,m: As long as the Alexander polynomials of T2,n and T2,m

have distinct factors, then the argument for xT2,3 + yT2,5 follows through
with any family of knots of the form xT2,n + yT2,m. We claim the following:
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Theorem 2. The stable concordance genus of a knot of the form xT2,n +
yT2,m is

|n| − 1

2
|x|+ |m| − 1

2
|y|

for any n,m ∈ Z with n < m, kn 6= m for any k ∈ Z and any x, y ∈ Q.

For ease of exposition, we’ll assume n,m > 0 in the following proof, and
continuing throughout the paper. The results for negative n and m follow
similarly with appropriate absolute value signs peppered in.

Proof. The Alexander polynomial for these knots is ∆T2,n(t) = (t2n−1)(t−1)
(t2−1)(tn−1)

(recall further that ∆K#J(t) = ∆K∆J). Notice, ∆T2,n is a product of the
cyclotomic polynomials Φi(t) for i a factor of 2n other than 2 or n. Since n
is odd, Φ2n(t) is a factor of ∆T2,n(t). And, if n 6= mk then Φ2n(t) is not a

factor of ∆T2,m(t). Recall that Φ2n(t) is the minimal polynomial of the 2nth

primitive roots of unity, ξk2n (for 1 ≤ k < n and gcd(k, n) = 1).
For each of the primitive 2nth roots of unity, the signature function jumps

(specifically, jξ2n(xT2,n + yT2,m) = ±2x and jξ2m(xT2,n + yT2,m) = ±2y).
Thus, so as long as n and m are have factors distinct from the other (that
is, n 6= mk and m 6= nk), then the signature function for K jumps at a
root of ∆T2,n(t) which is not a root of ∆T2,m(t) and vice versa. Applying

Proposition 7, we have gc−→
(xT2,n + yT2,m) ≥ n−1

2 |x|+
m−1

2 |y|. As computed

above, gc−→
(T2,n) = n−1

2 . We conclude then that the unit ball for such knots is

defined by the inequality 1 ≥ gc−→
(xT2,n + yT2,m) ≥ n−1

2 |x|+
m−1

2 |y|. Hence,

more generally, gc−→
(xT2,n + yT2,m) = n−1

2 |x|+
m−1

2 |y|. �

In fact, we see that for x, y ∈ Z, this is the same as g3(xT2,n + yT2,m), so
we have proven the following.

Corollary 2. For any knot of the form xT2,n + yT2,m with n,m ∈ Z with
n < m, kn 6= m for any k ∈ Z and any x, y ∈ Z,

gc(xT2,n + yT2,m) = gc−→
(xT2,n + yT2,m) =

|n| − 1

2
|x|+ |m| − 1

2
|y|.

5. A realization result

We observed in the case of xT2,3 + yT2,5, the unit ball for the stable four-
genus is not the same as that for the stable concordance genus. A similar
calculation in the more general case of xT2,n + yT2,m allows us to construct
examples that show the following theorem.

Theorem 3. For any j, k ∈ Q, for which 1 ≤ j ≤ k, there is some K ∈ CQ
for which g4−→

(K) = j, gc−→
(K) = k.



THE STABLE CONCORDANCE GENUS 983

Proof. We will use the fact, from Theorem 2, that the stable concordance
genus of the sum of torus knots xT2,2n+1 + yT2,2m+1 is n|x| + m|y| (for
n,m ∈ Z with n < m, k(2n + 1) 6= (2m + 1)). We also will use that the
stable four genus calculation from the previous section generalizes to certain
connect sums of knots T2,n.

According to a calculation by Rick Litherland, for these knots the sta-
ble four-genus is determined by the signature function [8]. The signature
function gives a set of bounds of the form:

g4−→
(K) ≥ |y|

...

g4−→
(K) ≥ |n′x+m′y|

...

g4−→
(K) ≥ |nx+ (m− 1)y|

g4−→
(K) ≥ |nx+my|

where 0 ≤ n′ ≤ n and 0 ≤ m′ ≤ m, and where the sequence above has
increasing values of n′ and m′. While the particular sequence of inequalities
depends on n and m and the relative orders of their corresponding roots of
unity, we can determine the order of a few based on the fact that n < m.
Since n < m, the mth root of unity occurs before the nth root of unity.
Since these roots give the jumps in the signature function, we know that the
signature jumps first at 1

m by 2y, and that the last jump before t = 1
2 occurs

at t = m−1
2m and is also a jump by 2y. In particular, we know the signature

in the interval t = m−1
2m to t = 1

2 gives the bound g4−→
(K) ≥ |nx + my|. We

claim that this is the highest bound given by the signature function (and
hence by [8] is equal to the stable four genus) for small negative values of x.

Proof of Claim. Amongst all of the lines n′x + m′y = 1 with 0 ≤ n′ ≤ n
and 0 ≤ m′ ≤ m, the lowest y-intercept occurs for lines with m′ = m. As
discussed above, the only such line given by the signature function bounds
will be the line nx + my = 1. So in fact the line nx + my = 1 gives the
upper boundary of the unit ball on the y-axis. Furthermore, all other lines
have an y-intercept of at least 1

m−1 . Hence, in the second quadrant the line
nx + my = 1 must continue to be the upper boundary until it crosses one
of these lines. Each of these lines has negative slope, so they are all above
the line y = 1

m−1 in the second quadrant. Thus, for d(n,m) := 1
n(1−m) (the

x-coordinate of intersection of the line nx+my = 1 with the line y = 1
m−1),

we have that for any x with d(n,m) ≤ x ≤ 0, the line nx+my = 1 gives the
upper boundary of the stable four-genus unit ball, restricted to the plane
xT2,2n+1 +yT2,2m+1. Thus we have proven the claim that g4−→

(K) ≥ |nx+my|
is a tight bound for small negative values of x. �
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By multiplicativity, if we choose a pair (x, y) on this line, which satisfies
k
j = n(−x)+my = n|x|+m|y|, then for K = jxT2,2n+1 +jyT2,2m+1, we have

that gc−→
(K) = k and g4−→

(K) = j. A simple linear algebra computation shows

us that (x, y) should be ( 1
2n(1− k

j ), 1
2m(1 + k

j )). Then by choosing n and m

sufficiently large, so that d(n,m) ≤ 0 (note that x is already negative, and
by simplifying the left inequality, we see that such an n and m can always
be chosen), we guarantee that such an (x, y) produces the desired values of
gc−→

and g4−→
. �

Corollary 3. In the case of Theorem 3 where K ∈ C (so in particular, K
is a Z linear combination of torus knots), then given any l ≥ k, there is a
knot K ′ in the concordance class of K, such that g3(K ′) = l, g4−→

(K ′) = j,

and gc−→
(K ′) = k.

Proof. Suppose K as calculated above is a knot (in particular x and y are
integers). It may be that g3(K) 6= l. If necessary, we may lower the three-
genus to k, by definition of gc−→

(K) (without changing gc−→
or g4−→

). Let K ′ ∼ K
be such that g3(K ′) = gc−→

(K) = k. Let J be a slice knot with g3(J) = 1

(for instance 61). The three-genus is additive, so g3(xJ) = x. Then if
K ′′ = K ′#(l−k)J , we have g3(K ′′) = g3(K ′)+g3((l−k)J) = k+(l−k) = l.
Since J was slice, we still have gc−→

(K ′′) = k and g4−→
(K ′′) = j. �

Note. In the proof of Theorem 3, we have not required (and in fact usually
may not assume) that x and y be integer values. Hence, we have only com-
pleted the proof in CQ and only claim it to be true for the stable invariants,
not the concordance genus and four genus (since these are not defined for
CQ). A more detailed examination of the stable four genus may yield differ-
ent examples in which we can demand integer values of our coefficients. In
this case, we can refine the result to give an actual knot.

Conjecture 1. For any j, k, and l ∈ Z, for which 1 ≤ j ≤ k ≤ l, there is
some knot K for which g4(K) = j, gc(K) = k, and g3(K) = l.

It has been previously observed in work by Casson and also in work of
Nakanishi [11] that the gap between g4(K) and gc(K) can be made arbitrar-
ily large. A proof of this conjecture would confirm that we can additionally
construct K to have a given value for gc(K). On the other hand, it is evi-
dent that for any K ∈ CQ, some integer multiple of K is a knot. Since gc−→

is

multiplicative, as a consequence of Theorem 3, we have found the following
result, similar to that of Casson and Nakanishi:

Corollary 4. The difference of the invariants gc−→
(K) − g4−→

(K) for K ∈ C
can be made arbitrarily large.

There are many other open questions raised by this invariant. We’ll con-
clude with listing several of them.
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• In the examples in the Section 4 we observed that g4−→
(K) = g4(K)

and gc−→
(K) = gc(K). We saw in Section 3 that this is not always the

case. It is unknown whether this gap can be made arbitrarily large.
• Livingston gives an example in [8] of a knot with rational (non-

integer) stable four genus. On the other hand, there are no known
knots with rational (non-integer) stable concordance genus.
• In all of the examples calculated in this paper, if gc−→

(K) = k, then for

some integer multiple of K, gc(nK)
n = k. Of course, it is not necessar-

ily true that a limit of a sequence must appear in that sequence. It
is an open question whether there is a knot K for which gc−→

(K) = k,

but there is no multiple n of K such that gc(nK)
n = k.

• A special case of the previous question: Does there exist a knot K
which is not finite order in the concordance group but gc−→

(K) = 0?

It is clearly true that if K is torsion in the concordance group, then
gc−→

(K) = 0. If the converse is true, it could prove to be a very useful

tool to identify torsion in the concordance group. It is known that
there is two-torsion in the concordance group, but it is still unknown
whether there is any other torsion in the concordance group.
• We observed that if g4(K) = 0 then gc(K) = 0. Does the same hold

for g4−→
and gc−→

? This is in fact related to the previous question. If it

is true that gc−→
(K) = 0 only when K is torsion in the concordance

group, and similarly that g4−→
(K) = 0 only when K is torsion in the

concordance group, then it must also be true that whenever g4−→
(K) =

0 then gc−→
(K) = 0 as well. Otherwise, there may be a distinction

between the stable invariants which cannot arise for the classical
invariants.

Appendix A. Proof of Lemma 1

Recall, Lemma 1, as stated in Section 3:

Lemma 1. If ρ is a root of the Alexander polynomial on S1, then

|jρ(K)| = 2 aρ,

where:

(a) aρ is an integer.
(b) aρ ≤ mult(ρ,∆K(t)), where mult(ρ,∆K(t)) is the multiplicity of ρ in

∆K(t).
(c) aρ ≡ mult(ρ,∆K(t)) mod 2.

Moreover, jρ(K) = −jρ̄(K), where ρ̄ denotes the complex conjugate of ρ.

Proof. We begin by proving part (b). Consider the Q(t) Hermitian form
given by Bt = (1−t−1)V +(1−t)V t. Notice that (1−t−1)n∆K(t) = det(Bt).
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The matrix Bt can be diagonalized. In particular, there is a matrix A
with det(A) = 1 and ABtA

∗ is diagonal, where A∗ is the conjugate trans-
pose. Choosing A carefully, one can insist that the diagonal matrix ABtA

∗

has rational functions on the diagonal, and avoid having factors p(t) of the
Alexander polynomial as denominators. Then we can see a direct relation-
ship between jumps in the signature function and factors of the Alexander
polynomial. The following argument shows that the matrix can in fact be
diagonalized in such a way. This argument is a special case of a result proved
by Gilmer and Livingston [4].

For ease of exposition, we will work over the real numbers. Then we can
guarantee that the irreducible factor corresponding to the jump at ρ = eiθ

is p(t) = t2 − 2 cos(θ)t+ 1. We hope to see that any Hermitian matrix with
entries in R(t) can be diagonalized (using simultaneous row and conjugate
column operations) over the field of fractions so that no diagonal entry has
a power of p(t) in its denominator. We will call this relation congruence.

Let R be the ring formed from R(t) by inverting all nonzero elements that
are not multiples of p = p(t). In R, every element can be written as r

sp
m

for some r, s, relatively prime to p, and some m ≥ 0. Note that Bt has
entries in R. So our goal is to see we can diagonalize Bt (or more generally,
a matrix B with entries in R) over R.

Consider all congruent matrices to B. Choose one with a diagonal entry
of the form apk with k minimal. If necessary, transpose rows and columns
so that this minimum occurs at the (1, 1) entry. If k = 0, we can use this
diagonal entry to clear out a row and column and proceed by induction on
a smaller matrix. So suppose k > 0.

We consider the top left 2× 2 corner. Following the Euclidean algorithm,
we perform row operations on all rows but the first (and corresponding
column operations), so that the upper left corner is of the form(

apk bpm

bpm cpn

)
(where a, b, and c are units in R and b denotes the complex conjugate of b),
and all other entries in the first row and column are 0.

Suppose k > m. We also have k < n by minimality of k, so m < k < n.
Multiply the second row by 1/b and add it to the first row and perform the
corresponding column operation. We now have(

apk + 2pm + αpn ∗
∗ ∗

)
where α is a unit in R. Since m < k < n, we can write the (1, 1) entry as
pm(apk−m + 2 + αpn−m). Since apk−m + 2 + αpn−m is clearly prime to p
(we can evaluate at the roots of p and get 2), we now have a new diagonal
entry with p exponent less than k, contradicting our assumption that k was
minimal.
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It follows that we must have k ≤ m. In this case we can clear the (1, 2)
and (2, 1) entries, and complete our argument by induction. This concludes
the proof of part (b).

Part (a) is an immediate consequence of the fact that knot signatures are
always even.

Part (c) follows directly from considering the diagonalized matrix from
the proof of part (b).

�
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