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Asymptotic translation length in the
curve complex

Aaron D. Valdivia

Abstract. We prove the minimal pseudo-Anosov translation length in
the curve complex behaves like 1

χ(Sg,n)2
for sequences where g = rn for

some r ∈ Q. We also show that if the genus is fixed as n → ∞ then
the behavior is 1

|χ(Sg,n)| . This extends results of Gadre and Tsai and

answers a conjecture of theirs in the affirmative.
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1. Introduction

Let Sg,n denote a surface with genus g and n punctures. The set of
homotopy classes of nontrivial simple closed curves on the surface is denoted
by S. The curve complex C(Sg,n), written C when there is no ambiguity,
is the simplicial complex with a 0-simplex for each element c ∈ S and an
n-simplex for each n−1 tuple of disjoint elements of S where each 1-simplex
is given length 1.

The mapping class group, Mod+(Sg,n), is the group of isotopy classes of
orientation preserving homeomorphisms of the surface Sg,n. The mapping
class group has a natural action on the set S which gives an action on the
curve complex C as a group of isometries. The elements of Mod+(Sg,n)
are either periodic, reducible, or pseudo-Anosov by the Nielson–Thurston
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classification. A pseudo-Anosov mapping class, φ, is a mapping class for
which there exists a pair of measured singular foliations, (F±, µ±) such that
φ(F±, µ±) = (F±, λ±1µ±) where λ > 1 is called the dilatation. In this
paper we will investigate the pseudo-Anosov elements of the mapping class
group in terms of their action on the curve complex. We will be concerned
with an invariant called the asymptotic translation length of pseudo-Anosov
elements in particular the minimal asymptotic translation length. The as-
ymptotic translation length of a pseudo-Anosov element φ is given by

l(φ) = lim inf
c∈S

lim
n→∞

d(c, φn(c))

n
.

The minimal translation distance for a surface Sg,n is

L(Sg,n) = min
φ∈Mod+

(Sg,n)

(l(φ)).

The dilatation λ of a pseudo-Anosov mapping class is an invariant which
gives the translation distance in the Teichmuller space of the surface in
question. The asymptotic translation distance is the analagous translation
in the curve complex. Our results show that the asymptotic bounds differ in
the same way for the action on the Teichmuller space and the curve complex.

We write A is asymptotic with B or the asymptotic behavior of A is B
by A � B, meaning that there is a constant C > 1 such that B

C ≤ A ≤ BC.
Our results extend the work of Gadre and Tsai in [GaT11] where they

prove the asymptotic behavior of the minimal translation distance for closed
surfaces is 1

χ(Sg,0)2
where χ(Sg,n) is the Euler characteristic of the surface

Sg,n. Our first theorem extends this result to the case g = rn.

Theorem 1.1. If g = rn such that r ∈ Q then

L(Sg,n) � 1

χ(Sg,n)2
.

The proof relies on the lower bound on L(Sg,n) given in [GaT11] and an
upper bound by examples constructed in [Val12]. Furthermore we prove
Conjecture 6.2 of [GaT11]. The proof of the conjecture requires a sharper
lower bound for n >> g.

Theorem 1.2. For n >> g we have L(Sg,n) ≥ 1
(9Kg+30)|χ(Sg,n)|−10n where

Kg is a constant depending only on g.

This lower bound along with another set of examples allows us to give
the asymptotic behavior for fixed g with n varying.

Theorem 1.3. Fixing g > 1, as n→∞ the minimal translation length has
behavior,

L(Sg,n) � 1

|χ(Sg,n)|
.
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The lower bound, Theorem 1.2, mirrors Tsai’s lower bound for dilatations
of pseudo-Anosov mapping classes in [Tsa09]. We will use the nesting lemma
of [MM99] to give a lower bound but this will require a positive measure
on the train track associated to the pseudo-Anosov. The problem of finding
a positive measure reduces to finding an iterate of a given pseudo-Anosov
whose action on homology has trace larger than two. Lemma 2.2 gives us
bounds for the iterate that has the required trace and the proof will require
us to use symmetric and power symmetric polynomials.

The rest of the paper is organized as follows. In Section 2 we will discuss
background material including train tracks, Lefschetz numbers, and sym-
metric polynomials. In Section 3 we will give a give the proof of our lower
bound, Theorem 1.2, and in Section 4 we will provide examples for the up-
per bounds of Theorems 1.1 and 1.3 and will then finish the proofs of these
theorems.

Acknowledgements. The author is indebted to Ian Agol for establishing
the proof of Lemma 2.2, to Ira Gessel for helpful clarifications on symmetric
polynomials, and to Nathaniel Stambaugh for helpful converstations.

2. Background

2.1. Train tracks. A train track, σ, is a one dimensional CW complex
embedded in a surface Sg,n with a some extra conditions attached to it. The
vertices are called switches and the edges are called branches. Each branch
is embedded smoothly in Sg,n and there is a definable tangent direction at
each switch for all branches meeting at that switch. Choosing a tangent
direction at each switch we can then define incoming and outgoing branches
at each switch. We refer the reader to [PH92] for a more detailed treatment
of train tracks.

A train route is an immersed path on σ where at each switch the path
passes from an outgoing branch to an incomming branch or vice versa. We
say that a train track σ1 is carried by a track σ2, or σ1 < σ2 if there is a
homotopy f : Sg,n × I→ Sg,n of Sg,n such that f(σ1, 0) = σ1, f(σ1, 1) ⊂ σ2
and each train route is taken to another train route. A smooth simple
closed curve γ is said to be carried by σ if the homotopy f : Sg,n× I→ Sg,n
f(γ, 0) = γ and f(γ, 1) is a train route.

To each train track σ with n branches we can also associate the set of n-
tuples, called measures, of nonnegative numbers wi, called weights. Further
we require that at each switch the sum of weights on the incoming branches
is equal to the sum weights on the outgoing branches. We denote this set
of n-tuples by P (σ). If there is a measure on σ which is positive then σ is
called recurrent. The set of all positive measures is int(P (σ)).

A train track is called large if all the complementary regions are polygons
or once punctured polygons. Every pseudo-Anosov φ has a large train track,
σ, such that φ(σ) < σ, this train track is called an invariant train track.
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The carrying induces a transition matrix M that records the train route that
each branch is taken to under the pseudo-Anosov followed by the carrying
map. The Bestvina Handel Algorithm [BH95] gives one such train track,
σ, and transition matrix, M , associated to the mapping class φ. Each of
the branches of σ fall into one of two catagories, either real or infinitesi-
mal. There are at most 9|χ(Sg,n)| real braches and at most 24|χ(Sg,n)| − 8n
infinitesimal branches [GaT11] (cf [BH95]).

The infinitesimal branches are permuted by the mapping class while the
real branches stretch over the rest of the train track. The transition matrix,
M , has the form

M =

(
A B
0 MR

)
.

Here A is a permutation matrix corresponding to how the infinitesimal
edges are permuted. On the other hand there is a positive integer m such
that Mm

R is a positive matrix. The matrix, MR, is called the Markov par-
tition matrix for the pseudo-Anosov, φ, and keeps track of the transistion
between the real edges.

If a train track, σ, is large then a diagonal extesion of σ is a train track
which contains σ as a subset and the branches not in σ meet switches at
the cusps of complementary regions of σ. We denote the set of all diagonal
extensions, which is finite, by E(σ) and

P (E(σ)) = ∪σi∈E(σ)P (σi).

By intP (E(σ)) we mean all measures that are positive on the braches of σ.
In their investigation of the geometry of the curve complex Masur and

Minsky [MM99] give a nesting behavior for the measures on train tracks
of a surface. In [GaT11] Gadre and Tsai prove that the requirement that
the train track be birecurrent can be replaced by only recurrent, giving the
following theorem.

Theorem 2.1 ([GaT11] cf. [MM99]). Given a large recurrent train track σ

N1(intP (E(σ))) ⊂ P (E(σ)).

Where N1(X) is the 1-neighborhood of X.

2.2. Lefschetz numbers. We will now review the definition and basic
properties of Lefschetz numbers. A more detailed discussion can be found
in [BT82] and [GP74].

If X is a compact oriented manifold and φ : X → X is a continuous map
then the graph of φ is given as the set

graph(φ) = {(x, φ(x))|x ∈ X} ⊂ X ×X.

The diagonal of X × X = ∆ and the algebraic intersection number
i(∆, graph(φ)) is the global Lefschetz number also denoted Lf(φ). The Lef-
schetz number is invariant up to homotopy and can be computed by the
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trace formula,
n∑
i=0

(−1)iTr(f∗i ),

where f∗i is the induced map on the homology group Hi(X,R).
Since the Lefschetz number of a mapping class is a homotopy invariant

the Lefschetz number of φ : Sg,n → Sg,n can be computed by forgetting the
marked points.

Lemma 2.1 ([Tsa09]). If a mapping class φ is the identity or multitwist(after
forgetting the marked points) then

Lf(φ) = 2− 2g.

We would like to have some similar statement about the Lefschetz num-
bers for pseudo-Anosov mapping classes as well. The next section will dis-
cuss symmetric polynomials and finish with Lemma 2.2 which begins to
addresses this problem.

2.3. Symmetric polynomials. Here we will review the definitons of sym-
metric polynomials and power symmetric polynomials and develop a few key
components of our proof for the new lower bound in Theorem 1.2. For a
more complete discussion of symmetric ploynomials we refer the reader to
[Mac95].

Definition 2.1. A partition is an n-tuple of nonnegative integers λ =
(λ1, . . . , λn) such that λ1 ≥ λ2 ≥ · · · ≥ λn. Each λi is called a part of
λ. The length of λ is denoted l(λ) = n, and the weight is the sum of the

components, |λ| =
∑
i

λi.

The power symmetric polynomials, pk, for N variables, x1, . . . , xN are
defined as

pk(x) =

N∑
i=1

xki .

Furthermore we can define for any partition λ the polynomial pλ =
pλ1 . . . pλn .

A symmetric polynomial in N variables is a polynomial that is invariant
under the action of the symmetric group SN on those N variables. These
polynomials are generated by the elementary symmetric polynomials en, the
sum of all products of n distinct variables and we additionally define e0 = 1.
For n > 0 we have

en =
∑

i1<i2<···<in

xi1xi2 . . . xin ,

and en = 0 for n > N .
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The generating function, E(t), for en gives a way to relate the elementry
symmetric polynomials to polynomials of 1 variable.

E(t) =
∑
n≥0

ent
n =

∏
n≥1

(1 + xit)

Lastly we will need Newton’s formula,

nen =
n∑
r=1

(−1)r−1pren−r,

in conjunction with another formula for en given by (2.14’) in [Mac95].

en =
∑
|λ|=n

ελz
−1
λ pλ

Here ελ = (−1)|λ|−l(λ) and zλ =
∏
i≥1 i

mimi! where mi = mi(λ) is the
number of parts of λ equal to i.

We can obtain from a formula for pN+1 in terms of the polynomials
p1 . . . pn using Newtons formula for n = N + 1 and the formula for en.

pN+1 =
N∑
r=1

∑
|λ|=N+1−r

(−1)2N+1−l(λ)z−1λ pλpr

Since we are concerned with the action a pseudo-Anosov has on homology
we are considering reciprocal polynomials, p(x) = xnp(x−1), where n is the
degree of p(x).

Lemma 2.2 ([Ago13]). Consider the monic, reciprocal, degree N polynomial

q(x) =
∏N
i=1(x−µi) ∈ R[x] where µi ∈ R are the roots of q(x). If pk(µ) ≤ δ

where δ > 0 for all k ≤ N(N + 1) then the polynomial q(x) has bounded
coefficients.

Proof. We have the following cases. Case one is p1 . . . pN ≤ δ and pk < −R
for some R >> 0 and 1 ≤ k ≤ N . Case two is when −R < p1 . . . pN ≤ δ.

We will address the case one first. We observe that there is a term
(−1)N+1pN+1

1 in the expression for pN+1.
Now assume that p1 . . . pN < 0 and p1 < −R for some R >> 0. Then

each term is positive since there are l(λ) + 1 power symmetric factors in

each term and a factor of (−1)l(λ)−1. Then we see that pN+1 >
RN+1

N ! > δ
for large enough R.

If some subset of p2 . . . pN ≤ δ are positive and p1 < −R then the nega-
tive terms come from terms with an odd number positive power symmetric
factors. The group of terms with j positive power symmetric factors can be
paired with a term which replaces each positive power symmetric factor pqj
with p

qj
1 , this term is positive and dominates the negative terms if R is large

enough.
If instead pk < −R for some 1 < k ≤ N then from above we have that

pk(k+1) > δ and k(k + 1) ≤ N(N + 1).
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Now we address case two. Each monic, reciprocal polynomial of degree
N can be written with the elementary symmetric polynomials through the
generating function as

∏N
1 (µit − 1) =

∑N
0 eit

i. In turn we can write each
elementary symmetric polynomial as function of the power symmetric poly-
nomials of whose values we have restricted to a compact set. Therefore the
polynomial q(x) has bounded coefficients.

�

3. The lower bound

The proof of the lower bound for curve complex translation length follows
Tsai and Gadre’s proof for their lower bound but includes elements of Tsai’s
proof of the lower bound on minimal dilitation in order to acheive a lower
bound when n >> g.

Lemma 3.1 ([Tsa09]). For any pseudo-Anosov mapping class φ ∈ Mod(Sg,n)
equipped with a Markov partition, if Lf(φ) < 0 then there exists a rectangle
R of the Markov partition such that R and φ(R) intersect(i.e. there is a
positive entry on the diagonal of the Markov partition matrix).

Lemma 3.2 ([Tsa09, Lemma 3.2]). Given φ ∈ Mod(Sg,n) let φ̂ ∈ Mod(Sg,0)
be the mapping class induced by forgetting the marked points. Then there
exists a constant 0 < α ≤ F (g) such that φ̂α satisfies one of the following.

(1) φ̂α is pseudo-Anosov on a connected subsurface.

(2) φ̂α = id.

(3) φ̂α is a multitwist.

Here, the upper bound on α, F (g), is a function only of g.

Lemma 3.3. In either of cases (1), (2), or (3) we have Lf(φ̂αq) < 0 and
αq ≤ Kg where Kg is a constant depending only on g.

Proof. We address cases (2) and (3) first. If φ̂α is the identity or a multi-

twist map then so is φ̂αq and so Lf(φ̂αq) < 0 by Lemma 2.1.
In case (1) we have φα is a pseudo-Anosov mapping class on a connected

subsurface Sg0,n0 such that 2g0 + n0 < 2g. Therefore the action of φα on
H1(Sg0,n0 ,Z) is given by a matrix A of dimension at most 2g × 2g. Lem-
ma 2.2 tells us there are finitely many monic reciprocal polynomials with
roots µ = (µ1 . . . µ2g0+n0) such that pk(µ) ≤ 2 for some k < 2g(2g + 1). Let
that finite set of polynomials be C. If the characteristic polynomial of φn

never leaves the set of polynomials, C, for all n then the roots are periodic
and some iterate, m, of φ will have action on homology with all eigenvalues
equal to 1. Therefore 2− tr(φm) = 2− (2g0 + n0) < 0.

Otherwise some iterate leaves the finite set, so there is a constant |C|+ 1

depending only on g such that Tr(A|C|+1) > 2 and therefore L(φα(|C|+1)) <
0. �
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This gives a positive diagonal entry in the Markov partition’s transition
matrix for the mapping class φαq by Lemma 3.1. The number αq is only
dependent on the genus of the surface in question and so there is a bound
αq ≤ Kg.

Proposition 3.1 ([GaT11, Lemma 5.2 case 2]). If σ0 ∈ E(τ) and µ ∈ P (σ0)
then in at most j ≤ 6|χ(Sg,n)| − 2n iterates φj(µ) is positive on some real
branch of σj ∈ E(τ).

Lemma 3.4. There exists a positive integer k ≤ (9Kg + 30)|χ(Sg,n)| − 10n

such that φk(µ) is positive on every branch of τ where µ ∈ P (σ0) and σ0 ∈
E(τ).

Proof. By Lemma 3.3 above we see that φαq has a positive entry on the
diagonal of the transition matrix for the Markov partition. By Proposition
2.4 of [Tsa09] we see that the Markov partition matrix for φαqr is positive for
some r ≤ 9|χ(Sg,n)| and by Proposition 3.1 we require at most 6|χ(Sg,n)|−2n
iterates to be positive on a real branch. Therefore in

(9αq + 6)|χ(Sg,n)| − 2n ≤ (9Kg + 6)|χ(Sg,n)| − 2n

iterations we will be positive on all real branches of τ . Since there are at most
24|χ(Sg,n)| − 8n infinitesimal branches we require an aditional 24|χ(Sg,n)| −
8n iterations to be positive on every branch. �

Proof of Theorem 1.2. let φ : Sg,n → Sg,n be a pseudo-Anosov with in-
variant train track σ. Then by Lemma 3.4 there is an iterate

k ≤ 9Kg|χ(Sg,n)|+ 30|χ(Sg,n)| − 10n

such that given a measure µ on σ0 ∈ E(σ), φk(µ) ∈ int(P (E(σ))) giving
the inclusion φ(PE((σ))) ⊂ int(P (E(σ))). Then using the nesting lemma
(Theorem 2.1) we get the sequence of inclusions

P (σi+1) ⊂ int(P (E(σi))) ⊂ N1(int(P (E(σi)))) ⊂ · · ·
int(P (E(σ2))) ⊂ N1(P (E(σ2))) ⊂ int(P (E(σ))) ⊂ N1(int(P (E(σ))))

⊂ P (E(σ)).

Then if we choose a curve γ ∈ C(Sg,n)\P (E(σ)) we have φik(γ) ∈ P (E(σi))

but not in P (E(σi+1)). We then have dC(γ, φ
ik(γ)) ≥ i giving

l(φk) = lim inf
i→∞

dC(γ, φ
ik(γ))

i
≥ lim inf

i→∞

i

i
= 1.

Then using the formula l(φn) = nl(φ) we get

l(φ) ≥ 1

k
. �

This gives us a better lower bound for n >> g, the lower bound for
Theorem 1.3.
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4. Upper bounds by example and asymptotic behavior

In this section we will describe 2 types of examples for the upper bound.
The first are the examples defined in [Val12] for rational rays defined by
g = rn for r ∈ Q. The second are a series of examples giving upper bounds
for rays with fixed g. The second set of examples are the ones we use to
answer Conjecture 6.2 of [GaT11].

The first set of examples we will consider are called Penner sequences.
These examples are generalize the examples Penner uses to give asymptotic
conditions for the minimal dilatation on closed surfaces. Before defining a
Penner sequence we will need to build some notation. First we pick a surface
Sg,n,b with 2g−2+n > 0 where g is the genus, n is the number of fixed points,
and b is the number of boundary components. Let Σ be homeomorphic to
the surface Sg,n,b and then consider Σi to be a homeomorphic copy of Σ for
each integer i with homeomorphism

hi : Sg,n → Σi.

We then pick two disjoint homeomorphic subsets of the boundary com-
ponents, a+ and a−, on Σ which gives homeomorphic copies on Σi, a

+
i and

a−i . Then we have orientation reversing homeomorphisms

ιi : a+i → a−i+1.

We can then construct a surface F∞ which is the collection of the Σi with
identifications made corresponding to the ιj . There is homeomorphism of
F∞ to itself given by

ρ(x) = hi+1(h
−1
i (x))

where x ∈ Σi. We can also define the surfaces Fm = F∞/ρ
m and the

quotient map πm : F∞ → Fm. The map ρ then pushes forward to a map
ρm : Fm → Fm which is periodic on Fm. After the construction Fm may
have boundary components or punctures that are left invariant by the action
of ρm this may be filled in by points or discs.

We then make a choice of 2 multicurves C and D on Σ1 and multicurve
γ ⊂ Σ1 ∪ Σ2 such that

{ρn(C ∪ γ)}∞n=−∞
is a multicurve and

{ρn(C ∪ γ ∪D)}∞n=−∞
fills F∞ and intersects efficeintly. Last given the semigroup R(C+, D−)
generated by positive Dehn twists about curves in C and negative Dehn
twists about curves in D we pick a pseudo-Anosov word ω ∈ R(C+, D−).
By pseudo-Anosov word we mean that it is pseudo-Anosov on Σ1.

Definition 4.1. A Penner sequence is a sequence of mapping classes φm
such that for some choice of ω ∈ R(C+, D−) and γ

φm = ρmdπm(γ)πm(ω).
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Figure 1. Curves ci for the mapping class ψ3,5.

Mapping classes of this form are all pseudo-Anosov [Val12] (cf. [Pen88])
and there is a sequence for any sequence of surfaces with g = rn for some
r ∈ Q.

In [Val12] the train track transition matrix for these mapping classes is
also given. Let M be the train track transition matrix for the pseudo-Anosov
φm. Then each mapping class φmm has the following form as a block matrix
where the nth block corresponds to the measures induced by

ρnm(πm(C ∪D ∪ γ)).

Mm =



A D 0 0 . 0 F
B E G 0 . 0 F 2

0 F H G . 0 0
. 0 F H . 0 .
. . 0 F . 0 .
. . . 0 . G .
. . . . . H G
C 0 0 0 . F H


Where Mm is a m ×m block matrix of r × r blocks. Given a standard

basis vector ei such that r(n − 1) < i ≤ rn and n 6= 1 or m, Mmei is
the sum of basis vectors {ej} such that r(n − 2) < j ≤ r(n + 1). This
means that if we pick a standard basis vector ek such that if m > 3 is even
r(bm2 c − 1) < k ≤ bm2 c then we have M b

m
2
c−1ek is zero in the last r entries.

If m > 3 is odd then we pick ek such that rbm2 c < k ≤ dm2 e and we also then

get that M b
m
2
c−1ek is zero in the last r entries. Using this fact we see that

dC(ek, φ
m(bm

2
c−1)

m (ek)) ≤ 2

Therefore we have l(φ
m(bm

2
c−1)

m ) ≤ 2 and

l(φm) ≤ 2

m(bm2 c − 1)
≤ 4

m2 − 2m
.
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This gives an upper bound for all rational rays through the origin finishing
the proof of Theorem 1.1.

The second set of examples is simpler. If you consider the curves in
Figure 1 with numerical labeling c1 . . . c2g+n from left to right we can easliy
see that the mapping class, ψg,n defined by a positive or negative Dehn twist
about each curve ci starting with c1 and ending with c2g+n where we perform
a positive twist about each odd curve and a negative twist about each even
curve then we see that dC(ψng,n(c2g+n), c2g+n) = 2 giving l(ψg,n) ≤ 2

n . This
gives the upper bound for Theorem 1.3 which completes the proof.
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