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Generic fibrations around multiple fibers

Kyle Larson

Abstract. Given some type of fibration on a 4-manifold X with a torus
regular fiber T , we may produce a new 4-manifold XT by performing
torus surgery on T . There is a natural way to extend the fibration to XT ,
but a multiple fiber (nongeneric) singularity is introduced. We construct
explicit generic fibrations (with only indefinite fold singularities) in a
neighborhood of this multiple fiber. As an application this gives explicit
constructions of broken Lefschetz fibrations on all elliptic surfaces (e.g.,
the family E(n)p,q). As part of the construction we produce generic
fibrations around exceptional fibers of Seifert fibered spaces.
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1. Introduction

Various types of singular fibrations have proved to be powerful tools in the
study of smooth 4-manifolds. The classical theories of Lefschetz and elliptic
fibrations are a rich source of interesting examples and provide connections
to algebraic geometry, symplectic geometry, and gauge theory. More recently
it has been shown that every smooth closed 4-manifold admits a broken
Lefschetz fibration (see, for example, Akbulut and Karakurt [1], Baykur [2] ,
Gay and Kirby [5], and Lekili [8]), or alternatively a purely wrinkled fibration
(which are also called indefinite Morse 2-functions). On the other hand,
torus surgery (also called a log transform) is perhaps the most important
surgical tool for 4-manifolds. Indeed, by a result of Baykur and Sunukjian
[4], if X ′ is an exotic (i.e., homeomorphic but not diffeomorphic) copy of
the simply-connected and closed 4-manifold X, then X ′ can be obtained
from X by some sequence of torus surgeries. In this paper we integrate
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these two perspectives by studying the result of torus surgery on a regular
fiber of a map to a surface. In particular, we construct nice fibrations in a
neighborhood of the glued in torus that agree with the original fibration on
the boundary. The existence of such fibrations follows from a more general
result of Gay and Kirby [5], but here we produce the first explicit examples.
Our work also fits nicely into the context of Baykur and Sunukjian [4], where
the authors discuss when broken Lefschetz fibrations on different manifolds
can be related by torus surgery and homotopy modifications of the fibration.
Our construction illustrates this for some specific examples.

Acknowledgments. The author would like to thank the following people
for helpful comments and conversations: İnanç Baykur, Stefan Behrens, his
advisor Robert Gompf, and Çağri Karakurt. The author also thanks the
referee for helpful suggestions.

2. Torus surgery on a fiber

Let X be a smooth 4-manifold and Σ a smooth surface, with f : X → Σ
some type of fibration map (e.g., an elliptic fibration or broken Lefschetz
fibration, but in general we just require f to be proper and smooth). If T ⊂
X is a regular fiber diffeomorphic to a torus, then we can identify a tubular
neighborhood νT with T 2 ×D2 and a neighborhood of f(T ) with D2 such
that f |T 2×D2 is projection onto the second factor. Let φ : νT → T 2 × D2

be such an identification. Torus surgery on T is the operation of cutting
out νT and gluing in T 2 ×D2 by φ−1 ◦ ψ, where ψ is a self-diffeomorphism
of ∂(T 2 ×D2). Let XT be the resulting manifold X \ νT ∪φ−1◦ψ T

2 ×D2.

Since gluing in T 2×D2 amounts to attaching a 2-handle, two 3-handles, and
a 4-handle, the diffeomorphism type of XT is determined by the attaching
sphere of the 2-handle: φ−1 ◦ ψ({pt} × ∂D2) (the framing is canonical).
The isotopy class of this curve is then determined by the homology class
γ = ψ∗[{pt} × ∂D2] ∈ H1(T

2) ⊕ Z, where the Z factor is generated by
m = [{pt} × ∂D2]. Now γ must be a primitive element, so γ = qα + pm
for relatively prime integers p and q and α a primitive element of H1(T

2).
Hence, given our identification φ, XT is determined up to diffeomorphism
by the data p, q, and α, which are called the multiplicity, the auxiliary
multiplicity, and the direction. We say the surgery is integral if q = ±1. For
more exposition see Gompf and Stipsicz [6].

Now fixing a specific torus surgery determined by p, q, and α, we may
change our identification φ so that the direction α corresponds to the second
S1 factor of T 2 ×D2 = S1 × S1 ×D2. To be precise, we compose φ with a
map g × id : T 2 × D2 → T 2 × D2, where g is some self-diffeomorphism of
T 2 that sends a curve representing α to {pt} × S1. We abuse notation by
renaming this new identification φ. In doing this we have not changed the
surgery, but we have changed how we look at a neighborhood of T in order
to make things more convenient for what follows.
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We are interested in which surgeries on T allow the fibration f |X\νT to

be extended over XT . By our above remarks, up to diffeomorphism we can
choose our gluing map ψ to be (thinking of ∂(T 2 ×D2) as R3/Z3):

ψ =

 1 0 0
0 (qk + 1)/p q
0 k p


where k is an integer satisfying qk + 1 ≡ 0 mod p (if p = 0, set the center
entry to 0). If we instead think of T 2 ×D2 as

{(ξ1, ξ2, z) ⊂ C3 | ξi ∈ S1 ⊂ C, z ∈ D2 ⊂ C},

then we can write ψ multiplicatively as ψ(ξ1, ξ2, z) = (ξ1, ξ
(qk+1)/p
2 ·zq, ξk2 ·zp)

(see Harer, Kas, Kirby [7] for more information). Now we can see that if

p 6= 0 the fibration extends over the glued in T 2×D2 by defining f̂ : XT → Σ
by

f̂(x) =

{
f(x) if x ∈ X \ νT
ξk2 · zp if x = (ξ1, ξ2, z) ∈ T 2 ×D2.

One can check that the fibration is exactly S1 times the fibration around a
(p,−k) exceptional fiber in a Seifert fibered space. Hence the central fiber
T = T 2 × {0} is p-times covered by nearby fibers and the homology class of
a nearby fiber [F ] = p · [T ]. Furthermore, if p > 1 then one can compute in

local coordinates that df̂ vanishes on T and is a submersion everywhere else
in T 2×D2 (if p = 1 the fibration extends over T 2×D2 with no singularity).

For p > 1 we say that T is a multiple fiber singularity of f̂ . Since df̂ vanishes
on a 2-dimensional subspace, f̂ cannot be a generic map to a surface (near
T ).

The purpose of this paper is to construct indefinite generic fibrations on
T 2 ×D2 that agree with f̂ on ∂(T 2 ×D2).

3. Constructing generic fibrations

Our strategy will be to construct generic fibrations using round han-
dles. An (n + 1)-dimensional round k-handle is S1 × hnk , where hnk is an
n-dimensional k-handle, and it is attached along S1 times the attaching re-
gion of hnk (see Baykur [3], Baykur and Sunukjian [4] for more information
about round handles). If we are attaching a round handle to a manifold
whose boundary fibers over S1, so that a single hnk is attached to each
fiber, then we can extend the boundary fibration over the round k-handle
by taking the Morse level sets of each hnk (and adjusting the fibration in a
collar neighborhood of the boundary). However, this fibration will have a
fold singularity, which by definition is a singular set that locally looks like
R times a Morse singularity. More precisely, there exist local coordinates
(t, x1, · · · , xn) around each critical point such that the fibration map is given
by (t, x1, · · · , xn) 7→ (t, x21 ± · · · ± x2n) in these coordinates. Importantly for
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Figure 1. A neighborhood of a (2,1) exceptional fiber. On
the left the ends of the solid cylinder are identified by a 180
degree twist, whereas on the right the ends are identified by
the identity map. The green arc becomes the exceptional
fiber under the identification, and the red arcs become a sin-
gle fiber on the boundary.

our purposes, fold singularities of maps to surfaces are a generic type of
singularity. The fold singularity is called indefinite if the Morse singularity
in the above coordinates is indefinite (i.e., the Morse critical point does not
have index equal to 0 or n).

Remark 1. In what follows we will abuse terminology and call a fibration
generic if its singularities consist of only indefinite fold singularities. These
fibrations are actually a very special subset of the set of generic and stable
maps (which consists of maps with definite and indefinite folds and cusps).
Indeed, maps from a 4-manifold to a surface with only indefinite fold sin-
gularities are a subset of both broken Lefschetz fibrations (which can also
contain Lefschetz singularities) and purely wrinkled fibrations (which can
also contain indefinite cusp singularities).

First we do our construction for a neighborhood of an exceptional fiber in
a Seifert fibered space. Recall that the neighborhood of a (p, q) exceptional
fiber can be formed by taking a solid cylinder and identifying the two ends
with a 2πq/p twist. In fact, we start with the simplest possible case: the
neighborhood of a (2,1) exceptional fiber. Let N be a tubular neighborhood
of a (2,1) exceptional fiber. Then N is diffeomorphic to a solid cylinder with
ends identified with a 180 degree twist (see Figure 1). The exceptional fiber
is the circle formed by identifying the two ends of the central arc. A regular
fiber of N consists of two arcs opposite each other and equidistant from the
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Figure 2. The fibering on ∂N . The top edges are identified
with the bottom edges with a 1/2 shift to the right. The red
arcs form a single fiber (note that the gray middle arc is not
part of the fibration), and we see the result of the isotopy
of the fibration on ∂N in the second picture. The diagonal
strips form the attaching region for the 3-dimensional round
1-handle, and the two horizontal sections of the red fiber are
the attaching regions for the 2-dimensional 1-handle.

central arc, which form a single circle after the identification of the ends of
the cylinder. We can also view N as a solid cylinder with ends identified by
the identity map, but now regular fibers twist around the central fiber (see
the second picture of Figure 1). Let f : N → D2 be the fibration map (note
that f is not simply the projection of the solid cylinder; we have to compose
with the 2 to 1 branched covering map of the disk).

Lemma 2. N admits a generic fibration f̂ : N → D2 such that

f̂
∣∣∣
∂N

= f |∂N ,

with indefinite fold singular locus. The image of the critical set is an em-
bedded circle in D2, and the preimage of a point in the interior of this circle
is two disjoint circles.

Proof. Our strategy will be to delete intN , and then fill it back in (relative
to the boundary) with one round 1-handle and two trivially fibered solid
tori in such a way as to extend the fibration on ∂N . Recall a 3-dimensional
round 1-handle is a copy of S1 × D1 × D1 attached along an embedding
of S1 × ∂D1 × D1. We can think of this as adding a circle’s worth of 2-
dimensional 1-handles. In our case we attach a single 2-dimensional 1-handle
to each S1 fiber of ∂N . Now there are two ways to attach a 2-dimensional
1-handle to S1, resulting in either one or two components (depending on
whether the 1-handle preserves or reverses orientation). We will attach the
round 1-handle so that the resulting fibers have two components. Before we
attach the round 1-handle we modify the fibration on ∂N by an isotopy.
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Figure 3. Extending the fibration across R. The top and
bottom of the cylinders are identified by the identity map,
and we see R as the rectangular prism with top and bot-
tom identified. In each picture the red arcs form a sin-
gle fiber. The first picture shows the fibration on ∂N (af-
ter the isotopy), and in the following pictures the fiber gets
pushed across the 2-dimensional 1-handle (while the arcs on
the boundary of the cylinder actually live in a collar ∂N×I).
In the first two pictures the fiber is a single circle wrapping
twice around the cylinder. The third picture is the singu-
lar level, where the fiber consists of the wedge of two circles.
The last picture shows a fiber past the singular level, and the
fiber consists of two disjoint circles. Here we see that after
extending the fibration across R we get two “chambers” with
torus boundaries, each fibered by (1,1) curves.
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If we restrict our attention to the fibration on ∂N , thought of as the
boundary of the cylinder with top and bottom identified with a 180 degree
twist, then we can cut the cylinder open and think of ∂N as a square with
left and right edges identified by the identity map and the top edge identified
to the bottom edge by a 1/2 unit shift to the right (see Figure 2). We see the
fibers of ∂N as a pair of vertical arcs separated by 1/2 units in the horizontal
direction. Our modification of the fibration on ∂N involves isotoping the
fibers (in a collar ∂N × I) so that each fiber is horizontal along the two
diagonal strips in the second picture of Figure 2. The diagonal strips will
form the attaching region of the round 1-handle, and the two horizontal
sections of each fiber will be the attaching region of the 2-dimensional 1-
handle to each fiber.

Now we can extend the fibration on ∂N across the round 1-handle (which
we will denote by R) as follows (see Figure 3): ∂N consists of a circle’s worth
of S1 fibers, and attaching R has the effect of attaching a 2-dimensional 1-
handle to each fiber. We extend the fibration over each of these 1-handles by
taking the level sets corresponding to the natural Morse function on 1-handle
∪ (fiber×I), where the I factor comes from a collar neighborhood ∂N×I. So
before the critical level the fibers will be circles, the critical level will be the
wedge of two circles, and after the critical level the fibers will be a disjoint
union of two circles. Therefore, adding the round 1-handle R introduces
a fold singularity C (S1× the Morse critical point of the 2-dimensional 1-

handle), and f̂ maps C to an embedded circle. The boundary ∂(∂N ∪ R)
is two disjoint tori (here we are only considering the “interior” part of the
boundary, the exterior of course consists of another torus). Furthermore,
as we can see in Figure 3, each of these tori are fibered with multiplicity
1 (i.e., fibered by (1,1) curves). So we see that adding the round 1-handle
reduces the multiplicity from 2 to 1 at the expense of increasing the number
of components of a fiber from 1 to 2. Now we can fill in these two tori with
two trivially fibered solid tori (the (1,1) fibration on the boundary extends
over the solid torus without singularities). Topologically we are just gluing
back in the two solid tori of N \(∂N ∪R), but in such a way as to extend the
fibration. This completes our construction of a generic fibration on N . �

It is quite easy to extend our construction to the case of a (p, 1) exceptional
fiber:

Proposition 3. If N is a tubular neighborhood of a (p, 1) exceptional fiber
and f : N → D2 is the fibration map, then N admits a generic fibration

f̂ : N → D2 constructed with p − 1 round handles such that f̂
∣∣∣
∂N

= f |∂N .

The image of the critical set is p−1 embedded circles in D2, and the preimage
of a point in the interior of this circle is p disjoint circles.

Proof. We proceed as before, by starting with the fibration on ∂N , and
attaching a 3-dimensional round 1-handle along the two strips as in Figure 4
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Figure 4. Attaching a 3-dimensional round 1-handle to ∂N .
The diagonal strips form the attaching region for the first
round 1-handle. Here we draw the case for a (5,1) excep-
tional fiber, but the picture obviously generalizes to a (p, 1)
exceptional fiber.

(after isotoping the fibration in a collar ∂N × I so that fibers are horizontal
across the diagonal strips). We extend the fibration across the round handle
as before, and the resulting interior boundary is again two tori, but this time
one has multiplicity 1 and the other has multiplicity p−1. The torus fibered
with multiplicity 1 can be filled with a trivially fibered solid torus, and we
repeat this procedure inductively with the torus fibered with multiplicity
p − 1. The result is that we consecutively attach p − 1 round 1-handles
(each one increasing the number of components of a fiber by 1) and glue in
p− 1 trivially fibered solid tori. This gives the required generic fibration on
N . �

One can construct generic fibrations in a neighborhood of a (p, q) excep-
tional fiber in a similar manner, but the author has not worked out a general
algorithm.

We now proceed to the construction of generic fibrations around a torus
multiple fiber. Here we describe the process for singular fibrations resulting
from integral surgeries (which will suffice for our applications), but again,
one could apply these techniques to nonintegral surgeries as well.

Theorem 4. The fibration around a multiple fiber singularity resulting from
an integral torus surgery of multiplicity p can be replaced with a generic
fibration (extending the fibration on the boundary) composed of (p−1) round
1-handles and (p − 1) round 2-handles. The image of the indefinite fold
critical set is 2 · (p− 1) consecutively embedded circles and the preimage of
an interior point consists of p disjoint tori.

Proof. As before, we will start with the multiplicity 2 case and then gen-
eralize to multiplicity p. Let M be the neighborhood of the multiple fiber
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singularity. By our remarks in Section 2, M is fiber-preserving diffeomor-
phic to S1 ×N , where N is the fibered neighborhood of a (2,1) exceptional
fiber. Let us assume that the fibration on ∂M = S1×∂N has been modified
by isotopy so that the fibration is S1 times the modified fibration on ∂N .
We will use our generic fibration on N to construct a generic fibration on
M , however, the fibration is not just S1 times the generic fibration on N .
In that case the singular set would be S1×C, where C is the singular circle
of the generic fibration on N , and 2-dimensional singular sets do not occur
generically. In what follows it will be helpful to refer to Figure 3 and think
of M = S1 ×N as a “movie” where time is the S1 direction.

The generic fibration on N was constructed using a 3-dimensional round
1-handle R, which we thought of as a circle’s worth of 2-dimensional 1-
handles. We use this family of 2-dimensional 1-handles to construct a 4-
dimensional round 1-handle R4

1 and a 4-dimensional round 2-handle R4
2 as

follows: Let θ parametrize the S1 factor of R = S1 × D1 × D1 (hence
θ parametrizes the family of 2-dimensional 1-handles) and let x and t be
coordinates on the two D1 factors. Define two subsets I1, I2 ⊂ S1 by I1 =
{(cos θ, sin θ) ∈ R2 | θ ∈ [−π/4, π/4]} and I2 = S1 \ I1. Let g : R ↪→ N
denote the embedding map from our previous construction (note this is not
simply the attaching map, but in fact embeds the entire round handle into
N), and let R4

1 = S1 × I1 ×D1 ×D1 where ϕ parametrizes the S1 factor.
Embed R4

1 into M by the map G1 : S1 × I1 × D1 × D1 ↪→ S1 × N ,
G1(ϕ, θ, x, t) = (ϕ+ θ, g(ϕ, x, t)) (It is important to note that g now takes ϕ
as input instead of θ). We can think of attaching R4

1 to ∂M = S1 × ∂N by
G1|S1×I1×∂D1×D1 . For a fixed value of ϕ, say ϕ0, g|{ϕ0}×∂D1×D1 maps to a

single circle fiber c of ∂N , and so G1|{ϕ0}×I1×∂D1×D1 is an attaching map

for a 3-dimensional 1-handle to the torus fiber S1 × c ⊂ S1 × ∂N = ∂M .
Indeed we see that G1|{ϕ0}×I1×D1×D1 embeds a 3-dimensional 1-handle into

M by embedding the 2-dimensional 1-handle “slices” {θ} × D1 × D1 into
{ϕ0 + θ}×N ⊂M for θ ∈ I1 (see Figure 5). Letting ϕ range over S1 shows
that attaching R4

1 amounts to adding a 3-dimensional 1-handle to each torus
fiber of S1 × ∂N , so that the genus of the fibers increases by one. However,
this is done in a way such that if we look at the result of attaching R4

1 in a
single frame of our “movie,” (∂M ∪R4

1)∩ ({pt}×N), we see a 3-dimensional
1-handle attached to ∂N , but which is composed of 2-dimensional 1-handle
“slices,” each slice belonging to a different G1|{ϕ}×I1×D1×D1 . The result is

that the fold singular set of R4
1 intersects a frame of our movie, {pt}×N , in

a single point, corresponding to the Morse singularity of the 3-dimensional
1-handle G1|{pt}×I1×D1×D1 (which occurs at θ = 0 ∈ I1).

We embed the 4-dimensional round 2-handle R4
2 = S1×I2×D1×D1 into

M similarly, by the map G2(ϕ, θ, x, t) = (ϕ+ θ, g(ϕ, x, t)) (indeed this is the
same map, except θ now takes values in I2). We can think of attaching R4

2 to
∂(∂M ∪R4

1) by G2|S1×∂(I2×D1)×D1 , and one can check that this amounts to
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attaching a 3-dimensional 2-handle G2|{ϕ}×I2×D1×D1 to each genus 2 fiber of

∂(∂M ∪ R4
1). Now G2|{ϕ}×I2×D1×D1 is actually a separating 3-dimensional

2-handle, and we can see this by looking at Figure 5 (here we again consider
a fixed ϕ = ϕ0). As θ varies over I2 we add more 2-dimensional 1-handle
slices to the picture whose attaching regions fill out the remainder of the
two annuli. We see that this amounts to attaching a 3-dimensional 2-handle
to the genus 2 fiber whose attaching circle runs twice over the 1-handle.
From the picture we see that this is a separating 2-handle that results in
two disjoint torus components.

Another way to see this is by considering the resulting fibration on the
boundary: if we look at a frame of our movie after attaching R4

1 and R4
2,

(∂M ∪R4
1∪R4

2)∩ ({pt}×N), we see ({pt}×∂N)∪R, but the 2-dimensional
slices of R in this frame belong to different slices of R4

1 and R4
2. The point is

that topologically ∂M ∪R4
1∪R4

2 gives a decomposition of S1×(∂N ∪R), but
in such a way that the natural fibrations on the boundaries agree. That is,
the fibers of ∂(∂M ∪R4

1 ∪R4
2) are exactly S1 times the fibers of ∂(∂N ∪R).

This means that after attaching R4
1 and R4

2 the fibers consist of two disjoint
tori. Furthermore, we observe that since the fibration on N was completed
by adding two trivially fibered solid tori to ∂(∂N ∪ R), our fibration on M
is completed by adding two trivially fibered T 2 ×D2’s to

∂M ∪R4
1 ∪R4

2 = S1 × (∂N ∪R)

(again we have reduced the multiplicity from 2 to 1).
To go from the multiplicity 2 case to the general case of multiplicity p, we

repeat the above construction inductively using the generic fibration around
a (p, 1) exceptional fiber. The result will be a generic fibration with p − 1
pairs of 4-dimensional round 1- and 2-handles added in succession. Each
round 1-handle raises the genus by one on a single component of a fiber,
and then the following round 2-handle splits the genus 2 component into
two tori. Therefore the preimage of a point in the interior of the round
singular images will be the disjoint union of p tori. �

Now that we have constructed one such generic fibration around a multiple
fiber singularity, it is easy to produce others using the homotopy moves of
Baykur [2], Lekili [8], and Williams [9]. Note that our fibrations will have
disconnected fibers. However, by the result of Gay and Kirby [5], there exist
generic fibrations extending the one on the boundary with connected fibers.
It would be interesting to produce such fibrations explicitly.

4. An application

We conclude this paper by applying our construction to give explicit bro-
ken Lefschetz fibrations (BLFs) on an important family of 4-manifolds: the
elliptic surfaces. Our construction may be helpful for studying exotic be-
havior from the point of view of BLFs.
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Figure 5. Here we change our perspective and consider the
contribution ofR4

1 to a single torus fiber S1×c ⊂ S1×∂N (the
arrow in the picture shows the S1 direction). The red circle
on the torus is a single {pt} × c, and adding R4

1 corresponds
to attaching a 2-dimensional 1-handle to the circle in a single
frame {pt}×∂N . As θ ∈ I1 varies we add an interval’s worth
of 2-dimensional 1-handles that fill out a 3-dimensional 1-
handle attached to our torus fiber.

An elliptic surface is a 4-manifold that admits a (possibly singular) fi-
bration over a surface such that a regular fiber is diffeomorphic to a torus,
and with the extra condition that the fibration is locally holomorphic. Up
to diffeomorphism we can assume that an elliptic surface is equipped with
a fibration map with only Lefschetz singularities and multiple fiber singu-
larities coming from torus surgery (see, for example, Gompf and Stipsicz
[6]). Hence we can use our construction to replace the fibration around a
multiple fiber with a fibration with only indefinite fold singularities. The
resulting fibration is by definition a BLF (since the only other singularities
are Lefschetz singularities). Of particular interest are the families of simply-
connected exotic elliptic surfaces E(n)p,q. The notation means that torus
surgery is performed on two separate regular fibers of E(n), one with multi-
plicity p and the other with multiplicity q for relatively prime p and q. These
regular fibers will lie in a cusp neighborhood, and so up to diffeomorphism
the surgeries are determined by their multiplicity. Hence we can apply our
construction using integral multiplicity p and multiplicity q surgery.

Lastly, we consider the special case of the Dolgachev surface E(1)2,3.

Example 5. We construct a BLF on E(1)2,3 by replacing the torus multi-
ple fiber of multiplicity 2 with a generic fibration with two fold singularities
coming from a round 1-handle and a round 2-handle. The torus multiple
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Figure 6. The critical image on the base S2 for a BLF on
E(1)2,3. The blue x’s are the images of the 12 Lefschetz
critical points, and the red circles are the images of the fold
singularities.

fiber of multiplicity 3 is replaced with a generic fibration with 4 fold sin-
gularities coming from two successive pairs of round 1- and 2-handles. In
Figure 6 we draw the critical image on the base S2 for the BLF on E(1)2,3
resulting from our construction.
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