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Doubling construction of Calabi–Yau
threefolds

Mamoru Doi and Naoto Yotsutani

Abstract. We give a differential-geometric construction and examples
of Calabi–Yau threefolds, at least one of which is new. Ingredients in
our construction are admissible pairs, which were dealt with by Kovalev,
2003, and further studied by Kovalev and Lee, 2011. An admissible pair
(X̄,D) consists of a three-dimensional compact Kähler manifold X̄ and
a smooth anticanonical K3 divisor D on X̄. If two admissible pairs
(X̄1, D1) and (X̄2, D2) satisfy the gluing condition, we can glue X̄1 \D1

and X̄2\D2 together to obtain a Calabi–Yau threefold M . In particular,
if (X̄1, D1) and (X̄2, D2) are identical to an admissible pair (X̄,D), then
the gluing condition holds automatically, so that we can always construct
a Calabi–Yau threefold from a single admissible pair (X̄,D) by doubling
it. Furthermore, we can compute all Betti and Hodge numbers of the
resulting Calabi–Yau threefolds in the doubling construction.
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1. Introduction

The purpose of this paper is to give a gluing construction and examples
of Calabi–Yau threefolds. Before going into details, we recall some historical
background behind our gluing construction.

The gluing technique is used in constructing many compact manifolds
with a special geometric structure. In particular, it is effectively used in
constructing compact manifolds with exceptional holonomy groups G2 and
Spin(7), which are also called compact G2- and Spin(7)-manifolds respec-
tively. The first examples of compact G2- and Spin(7)-manifolds were ob-
tained by Joyce using Kummer-type constructions in a series of his papers
[10, 11, 12]. Also, Joyce gave a second construction of compact Spin(7)-
manifolds using compact four-dimensional Kähler orbifolds with an anti-
holomorphic involution. These constructions are based on the resolution of
certain singularities by replacing neighborhoods of singularities with ALE-
type manifolds. Later, Clancy studied in [5] such compact Kähler orbifolds
systematically and constructed more new examples of compact Spin(7)-
manifolds using Joyce’s second construction.

On the other hand, Kovalev gave another construction of compact G2-
manifolds in [15]. Beginning with a Fano threefold V with a smooth an-
ticanonical K3 divisor D, he showed that if we blow up V along a curve
representing D ·D to obtain X̄, then X̄ has an anticanonical divisor isomor-
phic to D (denoted by D again) with the holomorphic normal bundle ND/X̄

trivial. Then X̄ \D admits an asymptotically cylindrical Ricci-flat Kähler
metric. (We call such (X̄,D) an admissible pair of Fano type.) Also, Kovalev
proved that if two admissible pairs (X̄1, D1) and (X̄2, D2) satisfy a certain
condition called the matching condition, we can glue together (X̄1 \D1)×S1

and (X̄2 \D2) × S1 along their cylindrical ends in a twisted manner to ob-
tain a compact G2-manifold. In this construction, Kovalev found many new
examples of G2-manifolds using the classification of Fano threefolds by Mori
and Mukai [19, 20]. Later, Kovalev and Lee [16] found admissible pairs of
another type (which are said to be admissible pairs of nonsymplectic type)
and constructed new examples of compact G2-manifolds. They used the
classification of K3 surfaces with a nonsymplectic involution by Nikulin
[22].

In our construction, we begin with two admissible pairs (X̄1, D1) and
(X̄2, D2) as above. Then each (X̄i \Di) × S1 has a natural asymptotically
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cylindrical torsion-free G2-structure ϕi,cyl using the existence result of an
asymptotically cylindrical Ricci-flat Kähler form on X̄i \Di. Now suppose
X̄1 \D1 and X̄2 \D2 have the same asymptotic model, which is ensured by
the gluing condition defined later. Then as in Kovalev’s construction, we can
glue together (X̄1\D1)×S1 and (X̄2\D2)×S1, but in a non-twisted manner
to obtain MT × S1. In short, we glue together X̄1 \D1 and X̄2 \D2 along
their cylindrical ends D1×S1×(T−1, T+1) and D2×S1×(T−1, T+1), and
then take the product with S1. Moreover, we can glue together torsion-free
G2-structures to construct a d-closed G2-structure ϕT on MT × S1. Using
the analysis on torsion-free G2-structures, we shall prove that ϕT can be
deformed into a torsion-free G2-structure for sufficiently large T , so that
the resulting compact manifold MT × S1 admits a Riemannian metric with
holonomy contained in G2. But if M = MT is simply-connected, then M
must have holonomy SU(3) according to the Berger-Simons classification of
holonomy groups of Ricci-flat Riemannian manifolds. Hence this M is a
Calabi–Yau threefold.

For two given admissible pairs (X̄1, D1) and (X̄2, D2), it is difficult to
check in general whether the gluing condition holds or not. However, if
(X̄1, D1) and (X̄2, D2) are identical to an admissible pair (X̄,D), then the
gluing condition holds automatically. Therefore we can always construct a
Calabi–Yau threefold from a single admissible pair (X̄,D) by doubling it.

Our doubling construction has another advantage in computing Betti and
Hodge numbers of the resulting Calabi–Yau threefolds M . To compute Betti
numbers of M , it is necessary to find out the intersection of the images
of the homomorphisms H2(Xi,R) −→ H2(Di,R) for i = 1, 2 induced by
the inclusion Di × S1 −→ Xi, where we denote Xi = X̄i \ Di. In the
doubling construction, the above two homomorphisms are identical, and the
intersection of their images is the same as each one.

With this construction, we shall give 123 topologically distinct Calabi–
Yau threefolds (59 examples from admissible pairs of Fano type and 64 from
those of nonsymplectic type). Moreover, 54 of the Calabi–Yau threefolds
from admissible pairs of nonsymplectic type form mirror pairs (24 mirror
pairs and 6 self mirrors). In a word, we construct Calabi–Yau threefolds
and their mirrors from K3 surfaces. This construction was previously inves-
tigated by Borcea and Voisin [3] using algebro-geometric methods. Thus,
our doubling construction from nonsymplectic type can be interpreted as a
differential-geometric analogue of the Borcea–Voisin construction. Further-
more, the remaining 10 examples from nonsymplectic type contain at least
one new example. See ‘Discussion’ in Section 6.2 for more details. Mean-
while, 59 examples from admissible pairs of Fano type are essentially the
same Calabi–Yau threefolds constructed by Kawamata and Namikawa [14]
and later developed by Lee [18] using normal crossing varieties. Hence our
construction from Fano type provides a differential-geometric interpretation
of Lee’s construction [18].
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This paper is organized as follows. Section 2 is a brief review of G2-
structures. In Section 3 we establish our gluing construction of Calabi–
Yau threefolds from admissible pairs. The rest of the paper is devoted to
constructing examples and computing Betti and Hodge numbers of Calabi–
Yau threefolds obtained in our doubling construction. The reader who is
not familiar with analysis can check Definition 3.6 of admissible pairs, go
to Section 3.4 where the gluing theorems are stated, and then proceed to
Section 4, skipping Section 2 and the rest of Section 3. In Section 4 we
will find a formula for computing Betti numbers of the resulting Calabi–Yau
threefolds M in our doubling construction. In Section 5, we recall two types
of admissible pairs and rewrite the formula given in Section 4 to obtain
formulas of Betti and Hodge numbers of M in terms of certain invariants
which characterize admissible pairs. Then the last section lists all data of
the Calabi–Yau threefolds obtained in our construction.

The first author is mainly responsible for Sections 1–3, and the second
author mainly for Sections 4–6.

Acknowledgements. This joint work was partially developed when the
second author attended “2012 Complex Geometry and Symplectic Geometry
Conference” which was held at Ningbo University, Zhejian Province, China
in July, 2012. He thanks Professor Xiuxiong Chen for an invitation to give
a talk in the conference. Also, he thanks Professor Yuguang Zhang for a
helpful comment during the conference. The authors thank Dr. Nam-Hoon
Lee for pointing out that our construction partially covers the Borcea–Voisin
method [3]. Also, they would like to thank the referee and Dr. Shintaro
Kuroki for valuable comments. Especially, the referee pointed out a gap of
the proof of Lemma 3.14 and advised them how to correct it, giving a good
reference [29].

2. Geometry of G2-structures

Here we shall recall some basic facts about G2-structures on oriented 7-
manifolds. For more details, see Joyce’s book [13] .

We begin with the definition of G2-structures on oriented vector spaces
of dimension 7.

Definition 2.1. Let V be an oriented real vector space of dimension 7. Let
{θ1, . . . ,θ7} be an oriented basis of V . Set

ϕ0 = θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356,(2.1)

g0 =
7∑
i=1

θi ⊗ θi,
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where θij...k = θi ∧ θj ∧ · · · ∧ θk. Define the GL+(V )-orbit spaces

P3(V ) = { a∗ϕ0 | a ∈ GL+(V ) } ,
Met(V ) = { a∗g0 | a ∈ GL+(V ) } .

We call P3(V ) the set of positive 3-forms (also called the set of G2-structures
or associative 3-forms) on V . On the other hand, Met(V ) is the set of
positive-definite inner products on V , which is also a homogeneous space
isomorphic to GL+(V )/SO(V ), where SO(V ) is defined by

SO(V ) = { a ∈ GL+(V ) | a∗g0 = g0 } .

Now the group G2 is defined as the isotropy of the action of GL(V ) (in
place of GL+(V )) on P3(V ) at ϕ0:

G2 = { a ∈ GL(V ) | a∗ϕ0 = ϕ0 } .

Then one can show that G2 is a compact Lie group of dimension 14 which
is a Lie subgroup of SO(V ) [7]. Thus we have a natural projection

(2.2) P3(V ) ∼= GL+(V )/G2
// // GL+(V )/SO(V ) ∼=Met(V ) ,

so that each positive 3-form (or G2-structure) ϕ ∈ P3(V ) defines a positive-
definite inner product gϕ ∈Met(V ) on V . In particular, (2.2) maps ϕ0 to g0

in (2.1). Note that both P3(V ) andMet(V ) depend only on the orientation
of V and are independent of the choice of an oriented basis {θ1, . . . ,θ7},
and so is the map (2.2). Note also that

dimR P3(V ) = dimR GL+(V )− dimRG2 = 72 − 14 = 35,

which is the same as dimR ∧3V . This implies that P3(V ) is an open subset
of ∧3V . The following lemma is immediate.

Lemma 2.2. There exists a constant ρ∗ > 0 such that for any ϕ ∈ P3(V ),
if ϕ̃ ∈ ∧3V satisfies |ϕ̃−ϕ|gϕ < ρ∗, then ϕ̃ ∈ P3(V ).

Remark 2.3. Here is an alternative definition of G2-structures. But the
reader can skip the following. Let V be an oriented real vector space of
dimension 7 with orientation µ0. Let Ω ∈ ∧7V ∗ be a volume form which
is positive with respect to the orientation µ0. Then ϕ ∈ ∧3V ∗ is a positive
3-form on V if an inner product gΩ,ϕ given by

ιuϕ ∧ ιvϕ ∧ϕ = 6 gΩ,ϕ(u,v)Ω for u,v ∈ V

is positive-definite, where ιu denotes interior product by a vector u ∈ V ,
from which comes the name ‘positive form’. Whether ϕ is a positive 3-form
depends only on the orientation µ0 of V , and is independent of the choice
of a positive volume form Ω. One can show that if ϕ is a positive 3-form on
(V,µ0), then there exists a unique positive-definite inner product gϕ such
that

ιuϕ ∧ ιvϕ ∧ϕ = 6 gϕ(u,v)volgϕ for u,v ∈ V,
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where volϕ is a volume form determined by gϕ and µ0. The map ϕ 7−→ gϕ
gives (2.2) explicitly. One can also prove that there exists an othogornal
basis {θ1, . . . ,θ7} with respect to gϕ such that ϕ and gϕ are written in the
same form as ϕ0 and g0 in (2.1).

Now we define G2-structures on oriented 7-manifolds.

Definition 2.4. Let M be an oriented 7-manifold. We define P3(M) −→M
to be the fiber bundle whose fiber over x is P3(T ∗xM) ⊂ ∧3T ∗xM . Then
ϕ ∈ C∞(∧3T ∗M) is a positive 3-form (also an associative 3-form or a G2-
structure) on M if ϕ ∈ C∞(P3(M)), i.e., ϕ is a smooth section of P3(M).
If ϕ is a G2-structure on M , then ϕ induces a Riemannian metric gϕ since
each ϕ|x for x ∈ M induces a positive-definite inner product gϕ|x on TxM .
A G2-structure ϕ on M is said to be torsion-free if it is parallel with respect
to the induced Riemannian metric gϕ, i.e., ∇gϕϕ = 0, where ∇gϕ is the
Levi-Civita connection of gϕ.

Lemma 2.5. Let ρ∗ be the constant given in Lemma 2.2. For any ϕ ∈
P3(M), if ϕ̃ ∈ C∞(∧3T ∗M) satisfies ‖ϕ̃− ϕ‖C0 < ρ∗, then ϕ̃ ∈ P3(M),
where ‖·‖C0 is measured using the metric gϕ on M .

The following result is one of the most important results in the geometry
of the exceptional holonomy group G2, relating the holonomy contained in
G2 with the d- and d∗-closedness of the G2-structure.

Theorem 2.6 (Salamon [26], Lemma 11.5). Let M be an oriented 7-mani-
fold. Let ϕ be a G2-structure on M and gϕ the induced Riemannian metric
on M . Then the following conditions are equivalent.

(1) ϕ is a torsion-free G2-structure, i.e., ∇gϕϕ = 0.
(2) dϕ = d ∗gϕ ϕ = 0, where ∗gϕ is the Hodge star operator induced by

gϕ.
(3) dϕ = d∗gϕϕ = 0, where d∗gϕ = −∗gϕd∗gϕ is the formal adjoint operator

of d.
(4) The holonomy group Hol(gϕ) of gϕ is contained in G2.

3. The gluing procedure

3.1. Compact complex manifolds with an anticanonical divisor. We
suppose that X̄ is a compact complex manifold of dimension m, and D is
a smooth irreducible anticanonical divisor on X̄. We recall some results in
[6], Sections 3.1 and 3.2.

Lemma 3.1. Let X̄ be a compact complex manifold of dimension m and D
a smooth irreducible anticanonical divisor on X̄. Then there exists a local
coordinate system {Uα, (z1

α, . . . , z
m−1
α , wα)} on X̄ such that

(i) wα is a local defining function of D on Uα, i.e., D∩Uα = {wα = 0}.

(ii) The m-forms Ωα =
dwα
wα
∧ dz1

α ∧ · · · ∧ dzm−1
α on Uα together yield a

holomorphic volume form Ω on X = X̄ \D.
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Next we shall see that X = X̄\D is a cylindrical manifold whose structure
is induced from the holomorphic normal bundle N = ND/X̄ to D in X̄, where
the definition of cylindrical manifolds is given as follows.

Definition 3.2. Let X be a noncompact differentiable manifold of dimen-
sion n. Then X is called a cylindrical manifold or a manifold with a cylin-
drical end if there exists a diffeomorphism

π : X \X0 −→ Σ× R+ = { (p, t) | p ∈ Σ, 0 < t <∞}

for some compact submanifold X0 of dimension n with boundary Σ = ∂X0.
Also, extending t smoothly to X so that t 6 0 on X \ X0, we call t a
cylindrical parameter on X.

Let (xα, yα) be local coordinates on Vα = Uα ∩ D, such that xα is the
restriction of zα to Vα and yα is a coordinate in the fiber direction. Then
one can see easily that dx1

α∧· · ·∧dxm−1
α on Vα together yield a holomorphic

volume form ΩD, which is also called the Poincaré residue of Ω along D.
Let ‖·‖ be the norm of a Hermitian bundle metric on N . We can define

a cylindrical parameter t on N by t = −1
2 log ‖s‖2 for s ∈ N \ D. Then

the local coordinates (zα, wα) on X are asymptotic to the local coordinates
(xα, yα) on N \D in the following sense.

Lemma 3.3. There exists a diffeomorphism Φ from a neighborhood V of
the zero section of N containing t−1(R+) to a tubular neighborhood of U of
D in X such that Φ can be locally written as

zα = xα +O(|yα|2) = xα +O(e−t),

wα = yα +O(|yα|2) = yα +O(e−t),

where we multiply all zα and wα by a single constant to ensure t−1(R+) ⊂ V
if necessary.

Hence X is a cylindrical manifold with the cylindrical parameter t via the
diffeomorphism Φ given in the above lemma. In particular, when

H0(X̄,OX̄) = 0

and ND/X̄ is trivial, we have a useful coordinate system near D.

Lemma 3.4. Let (X̄,D) be as in Lemma 3.1. If H1(X̄,OX̄) = 0 and the
normal bundle ND/X̄ is holomorphically trivial, then there exists an open
neighborhood UD of D and a holomorphic function w on UD such that w is
a local defining function of D on UD. Also, we may define the cylindrical
parameter t with t−1(R+) ⊂ UD by writing the fiber coordinate y of ND/X̄

as y = exp(−t−
√
−1θ).
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Proof. We deduce from the short exact sequence

0 // OX̄ // [D] // [D]|D // 0

=

ND/X̄
∼= OD

the long exact sequence

· · · // H0(X̄, [D]) // // H0(D,ND/X̄) // H1(X̄,OX̄) // · · · .

= =

H0(D,OD) ∼= C 0

Thus there exists a holomorphic section s ∈ H0(X̄, [D]) such that s|D ≡ 1 ∈
H0(D,ND/X̄). Setting UD =

{
x ∈ X̄

∣∣ s(x) 6= 0
}

, we have [D]|UD

∼= OUD
,

so that there exists a local defining function w of D on UD. �

3.2. Admissible pairs and asymptotically cylindrical Ricci-flat Käh-
ler manifolds.

Definition 3.5. Let X be a cylindrical manifold such that

π : X \X0 −→ Σ× R+ = {(p, t)}
is a corresponding diffeomorphism. If gΣ is a Riemannian metric on Σ,
then it defines a cylindrical metric gcyl = gΣ + dt2 on Σ × R+. Then a
complete Riemannian metric g on X is said to be asymptotically cylindrical
(to (Σ× R+, gcyl)) if g satisfies∣∣∣∇jgcyl(g − gcyl)

∣∣∣
gcyl
−→ 0 as t −→∞ for all j > 0

for some cylindrical metric gcyl = gΣ + dt2, where we regarded gcyl as a
Riemannian metric on X \X0 via the diffeomorphism π. Also, we call (X, g)
an asymptotically cylindrical manifold and (Σ × R+, gcyl) the asymptotic
model of (X, g).

Definition 3.6. Let X̄ be a complex manifold and D a divisor on X̄. Then
(X̄,D) is said to be an admissible pair if the following conditions hold:

(a) X̄ is a compact Kähler manifold.
(b) D is a smooth anticanonical divisor on X̄.
(c) The normal bundle NX̄/D is trivial.

(d) X̄ and X = X̄ \D are simply-connected.

From the above conditions, we see that Lemmas 3.1 and 3.4 apply to
admissible pairs. Also, from conditions (a) and (b), we see that D is a
compact Kähler manifold with trivial canonical bundle. In particular, if
dimC X̄ = 3, which case is our main concern, then D must be a K3 surface
(and so cannot be a complex torus). Let us shortly see this. The short exact
sequence 0 −→ KX̄ −→ OX̄ −→ OD −→ 0 induces the long exact sequence

· · · // H1(X̄,OX̄) // H1(D,OD) // H2(X̄,KX̄) // · · · .
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Here H2(X̄,KX̄) is dual to H1(X̄,OX̄) by the Serre duality and

H1(X̄,OX̄) ∼= H0,1

∂
(X̄)

vanishes from b1(X̄) = 0. Thus H1(D,OD) ∼= H0,1

∂
(D) also vanishes, so that

we have b1(D) = 0.

Theorem 3.7 (Tian–Yau [27], Kovalev [15], Hein [8]). Let (X̄, ω′) be a
compact Kähler manifold and m = dimC X̄. If (X̄,D) is an admissible pair,
then the following is true.

It follows from Lemmas 3.1 and 3.4, there exist a local coordinate sys-
tem (UD,α, (z

1
α, . . . , z

m−1
α , w)) on a neighborhood UD = ∪αUD,α of D and a

holomorphic volume form Ω on X̄ such that

(3.1) Ω =
dw

w
∧ dz1

α ∧ · · · ∧ dzm−1
α on UD,α.

Let κD be the unique Ricci-flat Kähler form on D in the Kähler class [ω′|D].
Also let (xα, y) be local coordinates of ND/X̄ \D as in Section 3.1 and write

y as y = exp(−t−
√
−1θ). Now define a holomorphic volume form Ωcyl and

a cylindrical Ricci-flat Kähler form ωcyl on ND/X̄ \D by

Ωcyl =
dy

y
∧ dx1

α ∧ · · · ∧ dxm−1
α = (dt+

√
−1dθ) ∧ ΩD,(3.2)

ωcyl = κD +
dy ∧ dy

|y|2
= κD + dt ∧ dθ.

Then there exist a holomorphic volume form Ω and an asymptotically cylin-
drical Ricci-flat Kähler form ω on X = X̄ \D such that

Ω− Ωcyl = dζ, ω − ωcyl = dξ

for some ζ and ξ with∣∣∣∇jgcylζ∣∣∣gcyl = O(e−βt),
∣∣∣∇jgcylξ∣∣∣gcyl = O(e−βt)

for all j > 0 and 0 < β < min { 1/2,
√
λ1 }, where λ1 is the first eigenvalue

of the Laplacian ∆gD+dθ2 acting on D × S1 with gD the metric associated
with κD.

A pair (Ω, ω) consisting of a holomorphic volume form Ω and a Ricci-flat
Kähler form ω on an m-dimensional Kähler manifold normalized so that

ωm

m!
=

(
√
−1)m

2

2m
Ω ∧ Ω (= the volume form)

is called a Calabi–Yau structure. The above theorem states that there exists
a Calabi–Yau structure (Ω, ω) on X asymptotic to a cylindrical Calabi–Yau
structure (Ωcyl, ωcyl) on ND/X̄ \D if we multiply Ω by some constant.
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3.3. Gluing admissible pairs. Hereafter we will only consider admissible
pairs (X̄,D) with dimC X̄ = 3. Also, we will denote N = ND/X̄ and X =

X̄ \D.

3.3.1. The gluing condition. Let (X̄, ω′) be a three-dimensional compact
Kähler manifold and (X̄,D) be an admissible pair. We first define a natural
torsion-free G2-structure on X × S1.

It follows from Theorem 3.7 that there exists a Calabi–Yau structure
(Ω, ω) on X asymptotic to a cylindrical Calabi–Yau structure (Ωcyl, ωcyl) on
N \D, which are written as (3.1) and (3.2). We define a G2-structure ϕ on
X × S1 by

(3.3) ϕ = ω ∧ dθ′ + Im Ω,

where θ′ ∈ R/2πZ is a coordinate on S1. Similarly, we define a G2-structure
ϕcyl on (N \D)× S1 by

(3.4) ϕcyl = ωcyl ∧ dθ′ + Im Ωcyl.

The Hodge duals of ϕ and ϕcyl are computed as

∗gϕϕ =
1

2
ω ∧ ω − Re Ω ∧ dθ′,(3.5)

∗gϕcyl
ϕcyl =

1

2
ωcyl ∧ ωcyl − Re Ωcyl ∧ dθ′.

Then we see easily from Theorem 3.7 and equations (3.3)–(3.5) that

ϕ− ϕcyl = dξ ∧ dθ′ + Im dζ = dη1,(3.6)

∗gϕϕ− ∗gϕcyl
ϕcyl =

1

2
(ω + ωcyl) ∧ dξ − Re dζ ∧ dθ′ = dη2,

where η1 = ξ ∧ dθ′ + Im ζ,

η2 =
1

2
(ω + ωcyl) ∧ ξ − Re ζ ∧ dθ′.

Thus ϕ and ϕcyl are both torsion-free G2-structures, and (X × S1, ϕ) is
asymptotic to ((N \D)× S1, ϕcyl). Note that the cylindrical end of X × S1

is diffeomorphic to (N \D)× S1 ' D × S1 × S1 × R+ = {(xα, θ, θ′, t)}.
Next we consider the condition under which we can glue together X1 and

X2 obtained from admissible pairs (X̄1, D1) and (X̄2, D2). For gluing X1

and X2 to obtain a manifold with an approximating G2-structure, we would
like (X1, ϕ1) and (X2, ϕ2) to have the same asymptotic model. Thus we put
the following

Gluing condition: There exists a diffeomorphism

F : D1 × S1 × S1 −→ D2 × S1 × S1

between the cross-sections of the cylindrical ends such that

(3.7) F ∗Tϕ2,cyl = ϕ1,cyl for all T > 0,
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where FT : D1 × S1 × S1 × (0, 2T ) −→ D2 × S1 × S1 × (0, 2T ) is
defined by

FT (x1, θ1, θ
′
1, t) = (F (x1, θ1, θ

′
1), 2T − t)

for (x1, θ1, θ
′
1, t) ∈ D1 × S1 × S1 × (0, 2T ).

Lemma 3.8. Suppose that there exists an isomorphism f : D1 −→ D2 such
that f∗κ2 = κ1, where κi = κDi. If we define a diffeomorphism F between
the cross-sections of the cylindrical ends by

FT : D1 × S1 × S1 // D2 × S1 × S1.

∈ ∈

(x1, θ1, θ
′
1) � // (x2, θ2, θ

′
2) = (f(x1),−θ1, θ

′
1)

Then the gluing condition (3.7) holds, where we change the sign of Ω2,cyl

(and also the sign of Ω2 correspondingly).

Proof. It follows by a straightforward calculation using (3.2) and (3.4). �

Remark 3.9. In the constructions of compact G2-manifolds by Kovalev [15]
and Kovalev–Lee [16], the map F : D1×S1×S1 −→ D2×S1×S1 is defined
by

F (x1, θ1, θ
′
1) = (x2, θ2, θ

′
2) = (f(x1), θ′1, θ1) for (x1, θ1, θ

′
1) ∈ D1 × S1 × S1,

so that F twists the two S1 factors. Then in order for the gluing condition
(3.7) to hold, the isomorphism f : D1 −→ D2 between K3 surfaces must
satisfy

f∗κI2 = −κJ1 , f∗κJ2 = κI1, f∗κK2 = κK1 ,

where κIi , κ
J
i , κ

K
i are defined by

κDi = κIi , ΩDi = κJi +
√
−1κKi .

Instead, Kovalev and Lee put a weaker condition (which they call the match-
ing condition)

f∗[κI2] = −[κJ1 ], f∗[κJ2 ] = [κI1], f∗[κK2 ] = [κK1 ],

which is sufficient for the existence of f by the global Torelli theorem of K3
surfaces. Following Kovalev’s argument in [15], we can weaken the condition
f∗κ2 = κ1 in Lemma 3.8 to f∗[κ2] = [κ1].

3.3.2. Approximating G2-structures. Now we shall glue X1 × S1 and
X2×S1 under the gluing condition (3.7). Let ρ : R −→ [0, 1] denote a cut-off
function

ρ(x) =

{
1 if x 6 0,

0 if x > 1,

and define ρT : R −→ [0, 1] by

(3.8) ρT (x) = ρ(x− T + 1) =

{
1 if x 6 T − 1,

0 if x > T.
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Setting an approximating Calabi–Yau structure (Ωi,T , ωi,T ) by

Ωi,T =

{
Ωi − d(1− ρT−1)ζi on {t 6 T − 1},
Ωi,cyl + dρT−1ζi on {t > T − 2}

and similarly

ωi,T =

{
ωi − d(1− ρT−1)ξi on {t 6 T − 1},
ωi,cyl + dρT−1ξi on {t > T − 2},

we can define a d-closed (but not necessarily d∗-closed) G2-structure ϕi,T
on each Xi × S1 by

ϕi,T = ωi,T ∧ dθ′i + Im Ωi,T .

Note that ϕi,T satisfies

ϕi,T =

{
ϕi on {t < T − 2},
ϕi,cyl on {t > T − 1}

and that

(3.9) |ϕi,T − ϕi,cyl|gϕi,cyl
= O(e−βT ) for all 0 < β < min { 1/2,

√
λ1 } .

Let X1,T = {t1 < T + 1} ⊂ X1 and X2,T = {t2 < T + 1} ⊂ X2. We glue
X1,T×S1 and X2,T×S1 along D1×S1×{T−1 < t1 < T+1}×S1 ⊂ X1,T×S1

and D2 × S1 × {T − 1 < t2 < T + 1} × S1 ⊂ X2,T × S1 to construct
a compact 7-manifold MT × S1 using the gluing map FT (more precisely,

F̃T = (Φ2, idS1)◦FT ◦ (Φ−1
1 , idS1), where Φ1 and Φ2 are the diffeomorphisms

given in Lemma 3.3). Also, we can glue together ϕ1,T and ϕ2,T to obtain
a 3-form ϕT on MT . It follows from Lemma 2.5 and (3.9) that there exists
T∗ > 0 such that ϕT ∈ P3(MT × S1) for all T with T > T∗, so that the
Hodge star operator ∗ = ∗gϕT

is well-defined. Thus we can define a 3-form

ψT on MT × S1 with d∗ϕT = d∗ψT by

(3.10) ∗ ψT = ∗ϕT −
(

1

2
ωT ∧ ωT − Re ΩT ∧ dθ′

)
.

Proposition 3.10. There exist constants Ap,k,β independent of T such that

for β ∈ (0, { 1/2,
√
λ1 }) we have

‖ψT ‖Lp
k
6 Ap,k,β e

−βT ,

where all norms are measured using gϕT .

Proof. These estimates follow in a straightforward way from Theorem 3.7
and equation (3.6) by arguments similar to those in [6], Section 3.5. �
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3.4. Gluing construction of Calabi–Yau threefolds. Here we give the
main theorems for constructing Calabi–Yau threefolds.

Theorem 3.11. Let (X̄1, ω
′
1) and (X̄2, ω

′
2) be compact Kähler manifold with

dimC X̄i = 3 such that (X̄1, D1) and (X̄2, D2) are admissible pairs. Suppose
there exists an isomorphism f : D1 −→ D2 such that f∗κ2 = κ1, where
κi is the unique Ricci-flat Kähler form on Di in the Kähler class [ω′i|Di

].
Then we can glue toghether X1 and X2 along their cylindrical ends to obtain
a compact manifold M . The manifold M is a Calabi–Yau threefold, i.e.,
b1(M) = 0 and M admits a Ricci-flat Kähler metric.

Corollary 3.12. Let (X̄,D) be an admissible pair with dimC X̄ = 3. Then
we can glue two copies of X along their cylindrical ends to obtain a compact
manifold M . The manifold M is a Calabi–Yau threefold.

Remark 3.13. As stated in Remark 3.9, the condition f∗κ2 = κ1 in The-
orem 3.11 can be weakened to f∗[κ2] = [κ1] using Kovalev’s argument in
[15]. But we don’t go into details here because we don’t need the weaker
condition for getting Corollary 3.12 from Theorem 3.11.

Proof of Theorem 3.11. We shall prove the existence of a torsion-free
G2-structure on MT × S1 constructed in Section 3.3 for sufficiently large T .
Then M = MT will be the desired Calabi–Yau threefold according to the
following

Lemma 3.14. If M×S1 admits a torsion-free G2-structure, then M admits
a Ricci-flat Kähler metric.

Proof. Since both X1 and X2 are simply-connected by Definition 3.6(d),
the resulting manifold M = MT is also simply-connected. Let us consider
a Riemannian metric on M × S1 with holonomy contained in G2, which is
induced by a torsion-free G2-structure. Then by the Cheeger–Gromoll split-
ting theorem (see e.g. Besse [2], Corollary 6.67), the universal Riemannian
covering of M × S1 is isometric to a product Riemannian manifold N × Rq
with holonomy contained in G2 for some q, where N is a simply-connected
(7 − q)-manifold and Rq has a flat metric. Meanwhile, the natural map
M × R −→ M × S1 is also the universal covering. By the uniqueness of
the universal covering, we have a diffeomorphism φ : M × R −→ N × Rq,
so that q = 1 and N is 6-dimensional. Since the flat metric on R does not
contribute to the holonomy of N × R, N itself has holonomy contained in
G2. But the holonomy group of a simply-connected Riemannian 6-manifold
is at most SO(6), and so it must be contained in SO(6)∩G2 = SU(3). Thus
N admits a Ricci-flat Kähler metric.

Now we shall prove thatN is indeed diffeomorphic toM . For this purpose,
we use the classification of closed, oriented simply-connected 6-manifolds
by Wall, Jupp and Zhubr (see the website of the Manifold Atlas Project,
6-manifolds: 1-connected [29] for a good overview which includes further
references). Then we see that M and N are diffeomorphic if there is an
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isomorphism between the cohomology rings H∗(M) and H∗(N) preserving
the second Stiefel–Whitney classes w2 and the first Pontrjagin classes p1 (the
rest of the invariants are completely determined by the cohomology rings).
Such a ring isomorphism is induced by the diffeomorphism φ : M × R −→
N × R via the composition

H∗(N) ∼= H∗(N × R)
φ∗∼= H∗(M × R) ∼= H∗(M).

This proves that N is diffeomorphic to M , and hence M admits a Ricci-flat
Kähler metric. �

Now it remains to prove the existence of a torsion-free G2-structure on
MT ×S1 for sufficiently large T . We recall the following result which reduces
the existence of a torsion-free G2-structure to the sovlability of a nonlinear
partial differential equation.

Theorem 3.15 (Joyce [13], Theorem 10.3.7). Let ϕ be a G2-structure on
a comact 7-manifold M ′ with dϕ = 0. Suppose η is a 2-form on M ′ with
‖dη‖C0 6 ε1, and ψ is a 3-form on M ′ with d∗ψ = d∗ϕ and ‖ψ‖C0 6 ε1,
where ε1 is a constant independent of the 7-manifold M ′ with ε1 6 ρ∗. Let
η satisfy the nonlinear elliptic partial differential equation

(3.11) (dd∗ + d∗d)η = d∗
(

1 +
1

3
〈dη, ϕ〉gϕ

)
ψ + ∗dF (dη).

Here F is a smooth function from the closed ball of radius ε1 in ∧3T ∗M ′ to
∧4T ∗M ′ with F (0) = 0, and if χ, ξ ∈ C∞(∧3T ∗M ′) and |χ| , |ξ| 6 ε1, then
we have the quadratic estimates

|F (χ)− F (ξ)| 6 ε2 |χ− ξ| (|χ|+ |ξ|),
|d(F (χ)− F (ξ))| 6 ε3

{
|χ− ξ| (|χ|+ |ξ|) |d∗ϕ|

+ |∇(χ− ξ)| (|χ|+ |ξ|) + |χ− ξ| (|∇χ|+ |∇ξ|)
}

for some constants ε2, ε3 independent of M ′. Then ϕ̃ = ϕ+ dη is a torsion-
free G2-structure on M ′.

To solve (3.11) in our construction, we use the following gluing theorem
based on the analysis of Kovalev and Singer [17].

Theorem 3.16 (Kovalev [15], Theorem 5.34). Let ϕ = ϕT , ψ = ψT and
M ′ = MT × S1 be as constructed in Section 3.3.2, with d∗ψT = d∗ϕT and
the estimates in Proposition 3.10. Then there exists T0 > 0 such that the
following is true.

For each T > T0, there exists a unique smooth 2-form ηT on MT ×S1 with
‖ηT ‖Lp

2
6 Bp,βe−βT and ‖ηT ‖C1 6 Cβe−βT for any β ∈ (0,max { 1/2,

√
λ1 })

such that η = ηT satisfies equation (3.11), where Bp,β and Cβ are indepen-
dent of T .
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Proof. The assertion is proved in [15] when d(X̄1) = 0 or d(X̄2) = 0, where
d(X̄j) is the dimension of the kernel of ιj : H2(Xj ,R) −→ H2(Dj ,R) defined
in Section 4. This condition applies to admissible pairs of Fano type, but
not to ones of nonsymplectic type (see also the proof of Proposition 5.38 in
[15] and the remarks after Lemma 2.6 in [16], p. 199). However, the above
theorem is still valid in the nonsymplectic case, by a direct application of
Kovalev–Singer [17], Proposition 4.2. �

Applying Theorem 3.16 to Theorem 3.15, we see that ϕ̃T = ϕT+dηT yields
a torsion-free G2-structure on MT × S1 for sufficiently large T . Combined
with Lemma 3.14, this completes the proof of Theorem 3.11. �

Remark 3.17. In the proof of Theorem 3.11, to solve equation (3.11) given
in Theorem 3.15 we may also use Joyce’s book [13], Theorem 11.6.1, where
we need uniform bounds of the injectivity radius and Riemann curvature
of MT × S1 from below and above respectively. Obviously, we have such
bounds because X1 and X2 are cylindrical manifolds with an asymptotically
cylindrical metric.

4. Betti numbers of the resulting Calabi–Yau threefolds

We shall compute Betti numbers of the Calabi–Yau threefolds M obtained
in the doubling construction given in Corollary 3.12. Also, we shall see that
the Betti numbers of M are completely determined by those of the compact
Kähler threefolds X̄.

In our doubling construction, we take two copies (X̄j , Dj) of an admissible
pair (X̄,D) for j = 1, 2. Let Xj = X̄j \Dj . We consider a homomorphism

(4.1) ιj : H2(Xj ,R) −→ H2(Dj × S1,R)
∼=−→ H2(Dj ,R),

where the first map is induced by the embedding Dj × S1 −→ Xj and
the second comes from the Künneth theorem. Set d = dj = d(X̄j) =
dimR Ker ιj . It is readily seen that

(4.2) dimR Im ιj = b2(X)− d.
The following formula seems to be well-known for compact Kähler threefolds
(see [18], Corollary 8.2).

Proposition 4.1. Let (X̄j , Dj) be two copies of an admissible pair (X̄,D)
for j = 1, 2 and let d be as above. Then the Calabi–Yau threefold M obtained
by the doubling construction in Corollary 3.12 has Betti numbers

(4.3)


b1(M) = 0,

b2(M) = b2(X̄) + d,

b3(M) = 2
(
b3(X̄) + 23 + d− b2(X̄)

)
.

Also, the Euler characteristic χ(M) is given by

χ(M) = 2(χ(X̄)− χ(D)).
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Proof. Obviously, the second statement holds for our construction. Now we
restrict ourselves to find the second and third Betti numbers of M because
M is simply-connected. Since the normal bundle NDj/X̄j

is trivial in our

assumption, there is a tubular neighborhood Uj of Dj in X̄j such that

(4.4) X̄j = Xj ∪ Uj and Xj ∩ Uj ' Dj × S1 × R>0.

Up to a homotopy equivalence, Xj ∩ Uj ∼ Dj × S1 as Uj contracts to Dj .
Applying the Mayer–Vietoris theorem to (4.4), we see that

(4.5) b2(X̄) = b2(X) + 1 and b3(X) = b3(X̄) + 22 + d− b2(X)

(see [16], (2.10)). We next consider homotopy equivalences

(4.6) M ∼ X1 ∪X2, X1 ∩X2 ∼ D × S1.

Again, let us apply the Mayer–Vietoris theorem to (4.6). Then we obtain
the long exact sequence

(4.7) 0→ H0(D)
δ1−→ H2(M)

α2

−→ H2(X1)⊕H2(X2)
β2

−→ H2(D)→ · · · .

Note that the map β2 in (4.7) is given by

ι1 + f∗ι2 : H2(X1,R)⊕H2(X2,R) −→ H2(D,R),

where

ιj : H2(Xj ,R) −→ H2(Dj ,R)

are homomorphisms defined in (4.1) and

f∗ : H2(D2,R) −→ H2(D1,R)

is the pullback of the identity f : D1
∼=−→ D2. Hence we see from (4.2) that

dimR Im(ι1 + f∗ι2) = b2(X)− d.

This yields

b2(M) = dimR Kerα2 + dimR Imα2

= dimR Im δ1 + dimR Ker(ι1 + f∗ι2)

= 1 + 2b2(X)− (b2(X)− d) = b2(X̄) + d,

where we used (4.5) for the last equality. Remark that b2(X1) = b2(X2) holds
for our computation. To find b3(M), we shall consider a homomorphism

(4.8) τj : H3(Xj ,R) −→ H2(Dj ,R)

which is induced by the embedding Uj ∩Xj −→ Xj combined with

Xj ∩ Uj ' Dj × S1 × R>0 and H3(Dj × S1,R) ∼= H2(Dj ,R).

The reader should be aware of the following lemma.
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Lemma 4.2 (Kovalev–Lee [16], Lemma 2.6). Let ιj and τj be homomor-
phisms defined in (4.1) and (4.8) respectively. Then we have the orthogonal
decomposition

H2(Dj ,R) = Im τj ⊕ Im ιj

with respect to the intersection form on H2(Dj ,R) for each j = 1, 2.

In an analogous way to the computation of b2(M), we apply the Mayer–
Vietoris theorem to (4.6):

(4.9) · · · // H2(X1)⊕H2(X2)
ι1+f∗ι2

// H2(D)
δ2 // H3(M) //

α3
// H3(X1)⊕H3(X2)

β3

// H2(D) // · · · .

Similarly, the map β3 is given by

τ1 + f∗τ2 : H3(X1)⊕H3(X2) −→ H2(D).

On one hand, Lemma 4.2 and (4.2) show that

dimR Im τj = 22 + d− b2(X).

Hence we find that

dimR Ker(τ1 + f∗τ2) = b3(X1) + b3(X2)− dimR Im(τ1 + f∗τ2)(4.10)

= 2b3(X)− (22 + d− b2(X)).

On the other hand, we have the equality

22 = dimR Im δ2 + dimR Im(ι1 + f∗ι2)

by combining the well-known result on the cohomology of a K3 surface D
with the Mayer–Vietoris long exact sequence (4.9). Then we have

(4.11) dimR Kerα3 = dimR Im δ2 = 22− b2(X) + d.

Thus we find from (4.10) and (4.11) that

b3(M) = dimR Kerα3 + dimR Ker(τ1 + f∗τ2) = 2b3(X).

Substituting the above equation into (4.5), we obtain the assertion. �

Remark 4.3. This formula shows that the topology of the resulting Calabi–
Yau threefolds M only depends on the topology of the given compact Kähler
threefolds X̄. Also one can determine the Hodge diamond of M from Propo-
sition 4.1 because we already know that h0,0 = h3,0 = 1 and h1,0 = h2,0 = 0
by the well-known result on Calabi–Yau manifolds (see [13], Proposition
6.2.6).
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5. Two types of admissible pairs

In this section, we will see the construction of admissible pairs (X̄,D)
which will be needed for obtaining Calabi–Yau threefolds in the doubling
construction. There are two types of admissible pairs. One is said to be
of Fano type, and the other of nonsymplectic type. We will give explicit
formulas for topological invariants of the resulting Calabi–Yau threefolds
from these two types of admissible pairs. For the definition of admissible
pairs, see Definition 3.6.

5.1. Fano type. Admissible pairs (X̄,D) are ingredients in our construc-
tion of Calabi–Yau threefolds and then it is important how to explore ap-
propriate compact Kähler threefolds X̄ with an anticanonical K3 divisor
D ∈ |−KX̄ |. In [15], Kovalev constructed such pairs from nonsingular Fano
varieties.

Theorem 5.1 (Kovalev [15]). Let V be a Fano threefold, D ∈ |−KV | a K3
surface, and let C be a smooth curve in D representing the self-intersection
class of D · D. Let $ : X̄ 99K V be the blow-up of V along the curve C.
Taking the proper transform of D under the blow-up $, we still denote it by
D. Then (X̄,D) is an admissible pair.

Proof. See [15], Corollary 6.43, and also Proposition 6.42. �

An admissible pair (X̄,D) given in Theorem 5.1 is said to be of Fano type
because this pair arises from a Fano threefold V . Note that X̄ itself is not
a Fano threefold in this construction.

Proposition 5.2. Let V be a Fano threefold and (X̄,D) an admissible pair
of Fano type given in Theorem 5.1. Let M be the Calabi–Yau threefold
constructed from two copies of (X̄,D) by Corollary 3.12. Then we have{

b2(M) = b2(V ) + 1,

b3(M) = 2
(
b3(V )−K3

V + 24− b2(V )
)
.

In particular, the cohomology of M is completely determined by the coho-
mology of V .

Proof. Let d be the dimension of the kernel of the homomorphism

ι : H2(X,R) −→ H2(D,R)

as in Section 4. Then note that d = 0 by the Lefschetz hyperplane theorem
whenever (X̄,D) is of Fano type. Applying the well-known result on the
cohomology of blow-ups, one can find that

H2(X̄) ∼= H2(V )⊕ R and H3(X̄) ∼= H3(V )⊕ R2g(V ),

where g(V ) =
−K3

V

2
+ 1 is the genus of a Fano threefold (see [15], (8.52)).

This yields

b2(X̄) = b2(V ) + 1 and b3(X̄) = b3(V ) + 2g(V ).
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Substituting this into Proposition 4.1, we can show our result. �

Remark 5.3. We have another method to compute the Euler characteristic
χ(M). In fact, we can see easily that if X̄ is the blow-up of D along C then
the Euler characteristic of X̄ is given by

χ(X̄) = χ(V )− χ(C) + χ(E)

where E is the exceptional divisor of the blow-up $. Hence we can inde-
pendently compute χ(M) by

χ(M) = 2(χ(X̄)− χ(D))

= 2(χ(V ) + χ(C)− χ(D))

because E is a CP 1-bundle over the smooth curve C. Since the Euler char-
acteristic is also given by χ(M) =

∑dimRM
i=0 (−1)ibi(M), we can check the

consistency of our computations.

5.2. Nonsymplectic type. In [16], Kovalev and Lee gave a large class of
admissible pairs (X̄,D) from K3 surfaces S with a nonsymplectic involution
ρ. They also used the classification result ofK3 surfaces (S, ρ) due to Nikulin
[21, 22, 23] for obtaining new examples of compact irreducible G2-manifolds.
Next we will give a quick review on this construction. For more details, see
[16], Section 4.

5.2.1. K3 surfaces with a nonsymplectic involution. Let S be a K3
surface. Then the vector space H2,0(S) is spanned by a holomorphic volume
form Ω, which is unique up to multiplication of a constant. An automor-
phism ρ of S is said to be nonsymplectic if its action on H2,0(S) is nontrivial.
We shall consider a nonsymplectic involution:

ρ2 = id and ρ∗Ω = − Ω.

The intersection form of S associates a lattice structure, i.e., a free abelian
group of finite rank endowed with a nondegenerate integral bilinear form
which is symmetric. We refer to this lattice as the K3 lattice. It is crucial
that the K3 lattice has a nice property for a geometrical description of S.
Hence we shall review some fundamental concepts of lattice theory which
will be needed later.

Recall that the lattice L is said to be hyperbolic if the signature of L
is (1, t) with t > 0. In particular, we are interested in the case where L
is even, i.e., the quadratic form x2 is 2Z-valued for any x ∈ L. We can
regard L as a sublattice of L∗ = Hom(L,Z) by considering the canonical
embedding i : L −→ L∗ given by i(x)y = 〈x, y〉 for y ∈ L∗. Then L is said
to be unimodular if the quotient group L∗/L is trivial. In general, L∗/L is a
finite abelian group and is called the discriminant group of L. One can see
that the cohomology group H2(S,Z) of each K3 surface S is a unimodular,
nondegenerate, even lattice with signature (3, 19). Let H and E8 denote the
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hyperbolic plane lattice

(
0 1
1 0

)
and the root lattice associated to the root

system E8 respectively. Then H2(S,Z) is isomorphic to 3H ⊕ 2(−E8). Let
us choose a marking φ : H2(S,Z) −→ L of S, that is, a lattice isomorphism.
It is clear that the pullback ρ∗ induces an isometry of L with order 2 defined
by φ ◦ ρ∗ ◦ φ−1. Hence we can consider the invariant sublattice Lρ. Then L
is said to be 2-elementary if the discriminant group of Lρ is isomorphic to
(Z2)a for some a ∈ Z>0.

Theorem 5.4 (Nikulin [21, 22, 23]). Let (S, ρ) be a K3 surface S with a
nonsymplectic involution ρ. Then the deformation class of (S, ρ) depends
only on the following triplet (r, a, δ) ∈ Z3 given by:

(i) r = rank Lρ.
(ii) (Lρ)∗/Lρ ∼= (Z2)a.

(iii) δ(Lρ) =

{
0 if y2 ∈ Z for all y ∈ (Lρ)∗,

1 otherwise .

5.2.2. The cohomology for nonsymplectic type. Let σ be a holomor-
phic involution of CP 1 given by

σ : CP 1 −→ CP 1, z 7−→ −z

in the standard local coordinates. Let G be the cyclic group of order 2
generated by ρ × σ. Let X ′ be the trivial CP 1-bundle over S. Then the
group G naturally acts on X ′. Taking a point x in the fixed locus W = (X ′)G

under the action of G, we denote the stabilizer of x as Gx. Then Gx is an
endomorphism of the tangent space TxX

′ which satisfies Gx ⊂ SL(TxX
′).

Define the quotient variety

Z = X ′/Gx

and then the above condition Gx ⊂ SL(TxX
′) yields that the algebraic

variety Z admits only Gorenstein quotient singularities [28]. Therefore,
there is a crepant resolution π̄ : X̄ 99K Z due to Roan’s result (see [25],
Main theorem).

Let W be the fixed locus of X ′ under the action of G as above. We
assume that W is nonempty. In fact, this condition always holds unless
(r, a, δ) = (10, 10, 0), i.e., S/ρ is an Enriques surface. Then it is known that

W is the disjoint union of some rational curves. Let π̃ : X̃ 99K X ′ be the

blow-up of X ′ = S × CP 1 along the fixed locus W . Then X̃ is simply-
connected as X ′ is simply-connected. Also, the action of G on X ′ lifts to

the action of G̃ on X̃ as follows. Since we have the isomorphism

X̃ \ π̃−1(W ) ∼= X ′ \W,

it suffices to consider the action of G̃ on a point x ∈ π̃−1(W ). Setting

g · x = x for all g ∈ G̃ and x ∈ π̃−1(W ), we have the lift G̃ on X̃. Observe
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that X̃/G̃ ∼= X̄ as the quotient of the variety X̃ by G̃. Summing up these
arguments, we have the following commutative diagram:

G̃
lifty X̃

π̃
��

f̃
// // X̄

π̄: crepant

��

G y X ′
f
// // Z

where f̃ (resp. f) is the quotient map with respect to G̃ (resp. G). Taking a
nonfixed point z ∈ CP 1 \{ 0,∞}, let us define D′ = S×{ z }, which is a K3
divisor on X ′. Setting D as the image of D′ in Z, we still denote by D the
proper transform of D under π̄. Then we can see that D is isomorphic to S.
Furthermore, the normal bundle ND/X̄ is holomorphically trivial. In order

to show (X̄,D) is an admissible pair, we need the following three lemmas
due to Kovalev and Lee [16].

Lemma 5.5 (Kovalev–Lee [16], Proposition 4.1). X̄ is a compact Kähler
threefold. Moreover, there exists a Kähler class [ω] ∈ H2(X̄,R) such that

[κ] = [ω|D] ∈ H2(D,R)

where [κ] is a ρ-invariant Kähler class on D.

Lemma 5.6 (Kovalev–Lee [16], Lemma 4.2). X̄ and X = X̄ \D are simply-
connected whenever (r, a, δ) 6= (10, 10, 0).

Although the following lemma is also stated in [16], p. 202 without a
proof, we will prove it here for the reader’s convenience.

Lemma 5.7. D is an anticanonical divisor on X̄.

Proof. To begin with, we consider the divisor D′ = S × { z } on X ′ =
S × CP 1, where z ∈ CP 1 \ { 0,∞}. Let p1 : X ′ −→ S and p2 : X ′ −→ CP 1

be the canonical projections. Then we have the isomorphisms

KX′
∼= p∗1KS ⊗ p∗2KCP 1

∼= p∗2OCP 1(−2),

where we used KS
∼= OS for the second isomorphism. Similarly, we conclude

that

[D′] ∼= p∗2[z] ∼= p∗2OCP 1(1).

This yields

KX′ ⊗ [2D′] ∼= OX′
and hence c1(KX′ ⊗ [2D′]) = 0. Since H2(Z,Z) is the G-invariant part
of H2(X ′,Z), the pullback map f∗ : H2(Z,Z) −→ H2(X ′,Z) is injective.
Thus,

f∗c1(KZ ⊗ [D]) = c1(KX′ ⊗ [2D′]) = 0

implies c1(KZ ⊗ [D]) = 0. We remark that

(5.1) D ∩ Sing(Z) = ∅



1224 MAMORU DOI AND NAOTO YOTSUTANI

because z ∈ CP 1 is a nonfixed point of σ. Since π̄ is a crepant resolution,
we have

π̄∗KZ
∼= KX̄ and π̄∗[D] ∼= [D]

by (5.1). Hence c1(KZ ⊗ [D]) = 0 implies

c1(KX̄ ⊗ [D]) = c1(π̄∗KZ ⊗ π̄∗[D]) = π̄∗c1(KZ ⊗ [D]) = 0.

Now consider the long exact sequence

(5.2) · · · // H1(X̄,OX̄) // H1(X̄,O∗
X̄

)
c1 // H2(X̄,Z) // · · · .

It follows from Lemmas 5.5 and 5.6 that H1(X̄,OX̄) ∼= H0,1(X̄) = 0. Thus
the map c1 in (5.2) is injective and so c1(KX̄ ⊗ [D]) = 0 implies KX̄ ⊗ [D] ∼=
OX̄ . Hence D is an anticanonical divisor on X̄. �

Therefore the above constructed pair (X̄,D) is an admissible pair, which
is said to be of nonsymplectic type except the case of (r, a, δ) = (10, 10, 0). In
order to show the main result Proposition 5.9 in this subsection, we require
the following.

Proposition 5.8 (Kovalev–Lee [16], Proposition 4.3).

(i) h1,1(X̄) = b2(X̄) = 3+2r−a and h1,2(X̄) = 1
2b

3(X̄) = 22−r−a.

(ii) For the restriction map ι′ : H2(X̄,R) −→ H2(D,R) given by

(5.3) ι′ : H2(X̄,R) −→ H2(D,R), [ω] 7−→ [ω|D],

we have dimR Im ι′ = r.

Proposition 5.9. Let (S, ρ) be a K3 surface with a nonsymplectic involution
ρ which is determined by a K3 invariant (r, a, δ) up to a deformation. Let
(X̄,D) be the admissible pair of nonsymplectic type obtained in the above
construction from (S, ρ). Let M denote the Calabi–Yau threefold constructed
from two copies of (X̄,D) by Corollary 3.12. Then the number of possibilities
of the K3 invariants is 75. The number of topological types of (X̄,D) which
are distinguished by Betti or Hodge numbers is 64. Moreover, we have{

h1,1(M) = b2(M) = 5 + 3r − 2a,

h2,1(M) = 1
2b

3(M)− 1 = 65− 3r − 2a.

Proof. Recall that we set d = dimR Ker ι, where

ι : H2(X,R) −→ H2(D,R)

is a homomorphism in (4.1). As in (4.3) in [16], we have

d = dimR Ker ι = dimR Ker ι′ − 1,

where ι′ : H2(X̄,R) −→ H2(D,R) is the restriction map defined in (5.3).
Since dimR Im ι′ = r by Proposition 5.8(ii), we conclude that

d = b2(X̄)− dimR Im ι′ − 1 = h1,1(X̄)− r − 1.
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Here we used the equality h2,0(X̄) = 0 given by Proposition 2.2 in [16].
Substituting this into (4.3) in Proposition 4.1, we have{

b2(M) = 2h1,1(X̄)− r − 1,

b3(M) = 2(2h2,1(X̄) + 22− r).
(5.4)

In the above equation, we again used h3,0(X̄) = 0 by Proposition 2.2 in [16].
Now the result follows immediately from Proposition 5.8(i). Remark that
our result is independent of the integer δ. �

Remark 5.10. We can also compute the Hodge numbers of the resulting
Calabi–Yau threefolds using the Chen-Ruan orbifold cohomology. See [24]
for more details. However, Prof. Reidegeld pointed out in a private commu-
nication that there is another technical problem in the case of nonsymplectic
automorphisms of order 3 6 p 6 19. More precisely, the K3 divisors of the
compact Kähler threefolds which they have constructed in [24] are in the
p/2-multiple of the anticanonical class. This implies that a Ricci-flat Kähler
form on X = X̄ \D is not asymptotically cylindrical but asymptotically con-
ical. Therefore, their examples of admissible pairs are not applicable to our
doubling construction. However, this problem does not affect the method of
calculating the Hodge numbers of the resulting Calabi–Yau threefolds, and
so an analogous argument of Proposition 5.9 will work.

6. Appendix: The list of the resulting Calabi–Yau threefolds

In this section, we list all Calabi–Yau threefolds obtained in Corollary
3.12. We have the following two choices for constructing Calabi–Yau three-
folds M :

(a) We shall use admissible pairs of Fano type. From a Fano threefold V ,
we obtain an admissible pair (X̄,D) by Theorem 5.1. According to
the complete classification of nonsingular Fano threefolds [9, 19, 20],
there are 105 algebraic families with Picard number 1 6 ρ(V ) 6
10. Then the number of distinct topological types of the resulting
Calabi–Yau threefolds is 59 (see Tables 6.1–6.5, and also Figure 6.7
where the resulting Calabi–Yau threefolds are plotted with symbol
×).

(b) We shall use admissible pairs of nonsymplectic type. Starting from
a K3 surface S with a nonsymplectic involution ρ, we obtain an
admissible pair (X̄,D) as in Section 5.2. According to the classifica-
tion result of (S, ρ) due to Nikulin [21, 22, 23], there are 74 algebraic
families. Then the number of distinct topological types of the re-
sulting Calabi–Yau threefolds is 64. Of these Calabi–Yau threefolds,
there is at least one new example which is not diffeomorphic to the
known ones (see Table 6.6, and also Figure 6.7 where the resulting
Calabi–Yau threefolds are plotted with symbols • and � ).
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6.1. All possible Calabi–Yau threefolds from Fano type. In Tables
6.1–6.5, we hereby list the details of the resulting Calabi–Yau threefolds
M from admissible pairs of Fano type. These topological invariants are
computable by Proposition 5.2, and further details are left to the reader. In
the tables below, ρ = ρ(V ) denotes the Picard number of the Fano threefold
V , and h1,1 = h1,1(M), h2,1 = h2,1(M) denote the Hodge numbers.

We include the following notes:

1. No. 97 (Table 6.4) was erroneously omitted in [19]. See [20] for the
correct table.

2. No. 100 (Table 6.5) is CP 1 × S6 where S6 is a del Pezzo surface of
degree 6.

Table 6.1. Fano threefolds with ρ = 1.

No. Label −K3
V h1,2(V ) (h1,1, h2,1)

in [19]
1 − 2 52 (2, 128)
2 − 4 30 (2, 86)
3 − 6 20 (2, 68)
4 − 8 14 (2, 58)
5 − 10 10 (2, 52)
6 − 12 7 (2, 48)
7 − 14 5 (2, 46)
8 − 16 3 (2, 44)
9 − 18 2 (2, 44)

10 − 22 0 (2, 44)
11 − 8 21 (2, 72)
12 − 16 10 (2, 58)
13 − 24 5 (2, 56)
14 − 32 2 (2, 58)
15 − 40 0 (2, 62)
16 − 54 0 (2, 76)
17 − 64 0 (2, 86)

6.2. All possible Calabi–Yau threefolds from nonsymplectic type.
In Table 6.6, we hereby list the details of the resulting Calabi–Yau threefolds
from admissible pairs of nonsymplectic type. These Hodge numbers are also
computable by Proposition 5.9 and further details are left to the reader. In
the table below, there is at least one new example of Calabi–Yau threefolds,
which is listed as the boxed number 64. We also list the number of the
mirror partner for each resulting Calabi–Yau threefold in our construction.
See Discussion and Section 6.3 below for more details. The symbol – on
the list means that the corresponding Calabi–Yau threefold has no mirror
partner in this construction.
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Table 6.2. Fano threefolds with ρ = 2.

No. Label −K3
V h1,2(V ) (h1,1, h2,1)

in [19]
18 1 4 22 (3, 69)
19 2 6 20 (3, 67)
20 3 8 11 (3, 51)
21 4 10 10 (3, 51)
22 5 12 6 (3, 45)
23 6 12 9 (3, 51)
24 7 14 5 (3, 45)
25 8 14 9 (3, 53)
26 9 16 5 (3, 47)
27 10 16 3 (3, 43)
28 11 18 5 (3, 49)
29 12 20 3 (3, 47)
30 13 20 2 (3, 45)
31 14 20 1 (3, 43)
32 15 22 4 (3, 51)
33 16 22 2 (3, 47)
34 17 24 1 (3, 47)
35 18 24 2 (3, 49)
36 19 26 2 (3, 51)
37 20 26 0 (3, 47)
38 21 28 0 (3, 49)
39 22 30 0 (3, 51)
40 23 30 1 (3, 53)
41 24 30 0 (3, 51)
42 25 32 1 (3, 55)
43 26 34 0 (3, 55)
44 27 38 0 (3, 59)
45 28 40 1 (3, 63)
46 29 40 0 (3, 61)
47 30 46 0 (3, 67)
48 31 46 0 (3, 67)
49 32 48 0 (3, 69)
50 33 54 0 (3, 75)
51 34 54 0 (3, 75)
52 35 56 0 (3, 77)
53 36 62 0 (3, 83)
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Table 6.3. Fano threefolds with ρ = 3.

No. Label −K3
V h1,2(V ) (h1,1, h2,1)

in [19]
54 1 12 8 (4, 48)
55 2 14 3 (4, 40)
56 3 18 3 (4, 44)
57 4 18 2 (4, 42)
58 5 20 0 (4, 40)
59 6 22 1 (4, 44)
60 7 24 1 (4, 46)
61 8 24 0 (4, 44)
62 9 26 3 (4, 52)
63 10 26 0 (4, 46)
64 11 28 1 (4, 50)
65 12 28 0 (4, 48)
66 13 30 0 (4, 50)
67 14 32 1 (4, 54)
68 15 32 0 (4, 52)
69 16 34 0 (4, 54)
70 17 36 0 (4, 56)
71 18 36 0 (4, 56)
72 19 38 0 (4, 58)
73 20 38 0 (4, 58)
74 21 38 0 (4, 58)
75 22 40 0 (4, 60)
76 23 42 0 (4, 62)
77 24 42 0 (4, 62)
78 25 44 0 (4, 64)
79 26 46 0 (4, 66)
80 27 48 0 (4, 68)
81 28 48 0 (4, 68)
82 29 50 0 (4, 70)
83 30 50 0 (4, 70)
84 31 52 0 (4, 72)
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Table 6.4. Fano threefolds with ρ = 4.

No. Label −K3
V h1,2(V ) (h1,1, h2,1)

in [19]
85 1 24 1 (5, 45)
86 2 28 1 (5, 49)
87 3 30 0 (5, 49)
88 4 32 0 (5, 51)
89 5 32 0 (5, 51)
90 6 34 0 (5, 53)
91 7 36 0 (5, 55)
92 8 38 0 (5, 57)
93 9 40 0 (5, 59)
94 10 42 0 (5, 61)
95 11 44 0 (5, 63)
96 12 46 0 (5, 65)
97 − 26 0 (5, 45)

Table 6.5. Fano threefolds with ρ > 5.

No. ρ −K3
V h1,2(V ) (h1,1, h2,1)

98 5 28 0 (6, 46)
99 5 36 0 (6, 54)

100 5 36 0 (6, 54)
101 6 30 0 (7, 47)
102 7 24 0 (8, 40)
103 8 18 0 (9, 33)
104 9 12 0 (10, 26)
105 10 6 0 (11, 19)
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Table 6.6. The list of Calabi–Yau threefolds from nonsym-
plectic type.

No. K3 invariants (h1,1, h2,1) Mirror
(r, a, δ) partner

1 (2, 0, 0) (11, 59) 3
2 (10, 0, 0) (35, 35) 2
3 (18, 0, 0) (59, 11) 1
4 (1, 1, 1) (6, 60) 9
5 (3, 1, 1) (12, 54) 8
6 (9, 1, 1) (30, 36) 7
7 (11, 1, 1) (36, 30) 6
8 (17, 1, 1) (54, 12) 5
9 (19, 1, 1) (60, 6) 4

10 (2, 2, 0 or 1) (7, 55) 18
11 (4, 2, 1) (13, 49) 17
12 (6, 2, 0) (19, 43) 16
13 (8, 2, 0) (25, 37) 15
14 (10, 2, 0 or 1) (31, 31) 14
15 (12, 2, 1) (37, 25) 13
16 (14, 2, 0) (43, 19) 12
17 (16, 2, 1) (49, 13) 11
18 (18, 2, 0 or 1) (55, 7) 10
19 (20, 2, 1) (61, 1) –
20 (3, 3, 1) (8, 50) 27
21 (5, 3, 1) (14, 44) 26
22 (7, 3, 1) (20, 38) 25
23 (9, 3, 1) (26, 32) 24
24 (11, 3, 1) (32, 26) 23
25 (13, 3, 1) (38, 20) 22
26 (15, 3, 1) (44, 14) 21
27 (17, 3, 1) (50, 8) 20
28 (19, 3, 1) (56, 2) –
29 (4, 4, 1) (9, 45) 35
30 (6, 4, 0 or 1) (15, 39) 34
31 (8, 4, 1) (21, 33) 33
32 (10, 4, 0 or 1) (27, 27) 32
33 (12, 4, 1) (33, 21) 31
34 (14, 4, 0 or 1) (39, 15) 30
35 (16, 4, 1) (45, 9) 29
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K3 invariants Mirror
No. (h1,1, h2,1)

(r, a, δ) partner
36 (18, 4, 0 or 1) (51, 3) –
37 (5, 5, 1) (10, 40) 42
38 (7, 5, 1) (16, 34) 41
39 (9, 5, 1) (22, 28) 40
40 (11, 5, 1) (28, 22) 39
41 (13, 5, 1) (34, 16) 38
42 (15, 5, 1) (40, 10) 37
43 (17, 5, 1) (46, 4) –
44 (6, 6, 1) (11, 35) 48
45 (8, 6, 1) (17, 29) 47
46 (10, 6, 0 or 1) (23, 23) 46
47 (12, 6, 1) (29, 17) 45
48 (14, 6, 0 or 1) (35, 11) 44
49 (16, 6, 1) (41, 5) –
50 (7, 7, 1) (12, 30) 53
51 (9, 7, 1) (18, 24) 52
52 (11, 7, 1) (24, 18) 51
53 (13, 7, 1) (30, 12) 50
54 (15, 7, 1) (36, 6) –
55 (8, 8, 1) (13, 25) 57
56 (10, 8, 0 or 1) (19, 19) 56
57 (12, 8, 1) (25, 13) 55
58 (14, 8, 1) (31, 7) –
59 (9, 9, 1) (14, 20) 60
60 (11, 9, 1) (20, 14) 59
61 (13, 9, 1) (26, 8) –
62 (10, 10, 1) (15, 15) 62
63 (12, 10, 1) (21, 9) –

64 (11, 11, 1) (16, 10) –

Regarding No. 62, we note that (r, a, δ) 6= (10, 10, 0) by as-
sumption.
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Figure 6.7. All resulting Calabi–Yau threefolds.

Discussion. The method of constructing Calabi–Yau threefolds and their
mirrors from K3 surfaces were originally investigated by Borcea and Voisin
[3], Section 4, using algebraic geometry. Our doubling construction is a
differential-geometric interpretation of the Borcea–Voisin construction. Ob-
serve that Proposition 5.9 gives the condition that two Calabi–Yau three-
folds M and M ′ should be a mirror pair, i.e., hp,q(M) = h3−p,q(M ′) for all
p, q ∈ { 0, 1, 2, 3 }. Let M (resp. M ′) be a Calabi–Yau threefold from ad-
missible pairs of nonsymplectic type with respect to K3 invariants (r, a, δ)
(resp. (r′, a′, δ′)). Then hp,q(M) = h3−p,q(M ′) implies r+r′ = 20, a = a′ by
Proposition 5.9. These relations coincide with (11) in [3], p. 723. From these
equalities, we can find mirror pairs in our examples of Calabi–Yau threefolds.
In particular M is automatically self-mirror when r = 10. Thus we find 24
mirror pairs and 6 self-mirror Calabi–Yau threefolds in our examples.

6.3. Graphical chart of our examples. Finally we plot the Hodge num-
bers of the resulting Calabi–Yau threefolds in Figure 6.7. In the figure, the
Calabi–Yau threefolds obtained from Fano type (case (a)) are registered as
symbol × and those from nonsymplectic type (case (b)) are registered as
symbol •. Separately, our new example is denoted by solid square � in
Figure 6.7. We take the Euler characteristic χ = 2(h1,1 − h2,1) along the
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X-axis and h1,1 + h2,1 along the Y -axis. We see that all our examples from
nonsymplectic type are located on the integral lattice of the form

(6.1) (X,Y ) = (12, 26) +m(12, 4) + n(−12, 4), m, n ∈ Z>0.

In this plot the mirror symmetry is considered as the inversion µ : (X,Y ) 7−→
(−X,Y ) with respect to the Y -axis. The set of 54 points with n > 0 in (6.1)
is µ-invariant, and thus the corresponding Calabi–Yau threefolds have a
mirror partner in this set.
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