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The homotopy theory of
diffeological spaces

J. Daniel Christensen and Enxin Wu

Abstract. Diffeological spaces are generalizations of smooth mani-
folds. In this paper, we study the homotopy theory of diffeological
spaces. We begin by proving basic properties of the smooth homotopy
groups that we will need later. Then we introduce the smooth singular
simplicial set SD(X) associated to a diffeological space X, and show
that when SD(X) is fibrant, it captures smooth homotopical properties
of X. Motivated by this, we define X to be fibrant when SD(X) is, and
more generally define cofibrations, fibrations and weak equivalences in
the category of diffeological spaces using the smooth singular functor.
We conjecture that these form a model structure, but in this paper we
assume little prior knowledge of model categories, and instead focus on
concrete questions about smooth manifolds and diffeological spaces. We
prove that our setup generalizes the naive smooth homotopy theory of
smooth manifolds by showing that a smooth manifold without boundary
is fibrant and that for fibrant diffeological spaces, the weak equivalences
can be detected using ordinary smooth homotopy groups. We also show
that our definition of fibrations generalizes Iglesias-Zemmour’s theory of
diffeological bundles. We prove enough of the model category axioms
to show that every diffeological space has a functorial cofibrant replace-
ment. We give many explicit examples of objects that are cofibrant,
not cofibrant, fibrant and not fibrant, as well as many other examples
showing the richness of the theory. For example, we show that both the
free and based loop spaces of a smooth manifold are fibrant. One of the
implicit points of this paper is that the language of model categories is
an effective way to organize homotopical thinking, even when it is not
known that all of the model category axioms are satisfied.
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1. Introduction

Smooth manifolds play a central role in mathematics and its applications.
However, it has long been realized that more general spaces are needed, such
as singular spaces, loop spaces and other infinite-dimensional spaces, poorly
behaved quotient spaces, etc. Various approaches to each of these classes
of spaces are available, but there are also frameworks that encompass all
of these generalizations at once. We will discuss diffeological spaces, which
were introduced by Souriau in the 1980’s [So1, So2], and which provide a
well-behaved category that contains smooth manifolds as a full subcategory.
We define diffeological spaces in Definition 2.1, and we recommend that
the reader unfamiliar with diffeological spaces turn there now to see how
elementary the definition is.

Diffeological spaces by now have a long history, of which we mention
just a few examples. Diffeological spaces were invented by Souriau in order
to apply diffeological groups to problems in mathematical physics. Donato
and Iglesias-Zemmour used diffeological spaces to study irrational tori [DoI].
Later, Iglesias-Zemmour established the theory of diffeological bundles [I1]
as a setting for their previous results. One of the key general results is
the existence of a long exact sequence of smooth homotopy groups for a
diffeological bundle. In [Da], Dazord used diffeological spaces to study Lie
groupoids, Poisson manifolds and symplectic diffeomorphisms. In his the-
sis [Wa] (as well as in a preprint with Karshon), Watts used diffeological
spaces to study the complex of differentiable forms on symplectic quotients
and orbifolds. Orbifolds were also studied by Iglesias-Zemmour, Karshon
and Zadka in [IKZ]. Tangent spaces, tangent bundles, a geometric realiza-
tion functor and a smooth singular simplicial set functor were studied by
Hector in [He], and the latter was used to define the smooth singular homol-
ogy and cohomology of diffeological spaces as well as a notion of Kan fibra-
tion. Tangent spaces and tangent bundles were developed further in [CW].
Costello and Gwilliam used diffeological vector spaces in their book [CG,
Appendix A] as a foundation for the homological algebra of the infinite-
dimensional vector spaces that arise in their work on factorization algebras
in quantum field theory, and the general homological algebra of diffeological
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vector spaces was studied in [Wu2]. Iglesias-Zemmour and Karshon stud-
ied Lie subgroups of the group Diff(M) of self-diffeomorphisms of a smooth
manifold M in [IK]. Finally, the recent book [I2] by Iglesias-Zemmour pro-
vides an in-depth treatment of diffeological spaces.

Motivated by this past work, as well as the long history of using smooth
stuctures to study homotopy theory via differential topology, we set up a
framework for the study of homotopy theory in the category Diff of diffe-
ological spaces. This framework generalizes the smooth homotopy theory
of smooth manifolds and Iglesias-Zemmour’s theory of diffeological bundles.
Although we don’t know whether our definitions produce a model structure
on Diff, we use the language of model categories to express our results.
We use only basic concepts from model category theory, such as the model
structure on the category sSet of simplicial sets. Appropriate references
are [GJ, Hi, Ho, Qu], the first of which is also recommended for background
on simplicial sets.

Our set-up is as follows. Let

An =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣ n∑
i=0

xi = 1

}
be the “noncompact n-simplex,” equipped with the sub-diffeology from
Rn+1. For a diffeological space X, let SDn (X) denote the set of smooth maps
from An to X. These naturally form a simplicial set SD(X), and one of our
main results is that when this simplicial set is fibrant, it captures smooth
homotopical information about X. More precisely, in Theorem 4.11 we show
that when SD(X) is fibrant, the simplicial homotopy groups of SD(X) agree
with the smooth homotopy groups of X. This raises the question of when
SD(X) is fibrant, and we answer this question in many cases.

To organize our study of this question, we make the following definitions.
We define a map in Diff to be a weak equivalence (fibration) if the functor
SD sends it to a weak equivalence (fibration) in the standard model struc-
ture on sSet. Cofibrations in Diff are defined by the left lifting property
(Definition 4.6). As a special case of these definitions, a diffeological space
X is fibrant if its smooth singular simplicial set SD(X) is fibrant (i.e., a Kan
complex). This is a concrete condition which says that, for each n, every
smooth map defined on n faces of An and taking values in X extends to all
of An. We prove that many diffeological spaces are fibrant, and in particular
that every smooth manifold M without boundary is fibrant. This is a state-
ment that can be made without the theory of diffeological spaces, but our
proof, which makes use of the diffeomorphism group of M , illustrates the
usefulness of working with more general spaces even when studying smooth
manifolds.

Our definitions are also motivated by past work, in particular the work
on irrational tori and diffeological bundles. Irrational tori are an important
test case, since they are precisely the sort of objects that are difficult to
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study using traditional methods. Donato and Iglesias-Zemmour proved that
the smooth fundamental group of an irrational torus is nontrivial, which
contrasts with the fact that the usual (continuous) fundamental group of an
irrational torus is trivial. We prove in this paper that every irrational torus
is fibrant, and thus is a homotopically well-behaved diffeological space that
can be studied using its smooth singular simplicial set. We also show that
every diffeological bundle with fibrant fiber is a fibration, and so we can
recover Iglesais-Zemmour’s theory of diffeological bundles from our work.
Another of our results shows that both the free and based loop spaces of a
smooth manifold are fibrant.

We conjecture that with our definitions, Diff is a model category,1 and
that for every diffeological space, its smooth homotopy groups coincide with
the simplicial homotopy groups of its smooth singular simplicial set. How-
ever, our results are of interest whether or not these conjectures are true, as
the smooth singular simplicial set is a basic object of study.

Here is an outline of the paper.
In Section 2, we review the basics of diffeological spaces, including the

facts that the category of diffeological spaces is complete, cocomplete and
cartesian closed, and contains the category of smooth manifolds as a full
subcategory. We also discuss diffeological groups in this section.

In Section 3, we review the D-topology and smooth homotopy groups
of a diffeological space together with the theory of diffeological bundles.
This section also contains new results. The most important result gives
many equivalent characterizations of smooth homotopy groups using Rn, In,
Dn, spheres and simplices, with and without stationarity conditions (The-
orem 3.2). This result is of general interest, and is also needed in the next
section. We also compare the smooth homotopy groups of some diffeologi-
cal spaces with the usual (continuous) homotopy groups of the underlying
topological spaces (Propositions 3.10 and 3.11, and Examples 3.12 and 3.20),
and show that the smooth approximation theorem does not hold for general
diffeological spaces (Remark 3.13).

In Section 4, we define the smooth singular functor, study the extent to
which this functor preserves smooth homotopical information, and explore
the basic properties of fibrant and cofibrant diffeological spaces. In more de-
tail, in Subsection 4.1, we use the noncompact simplices An in Diff to define
an adjoint pair between the category of simplicial sets and the category of
diffeological spaces (Definition 4.3). The functors are called the diffeological
realization functor and the smooth singular functor. We use the smooth
singular functor to define weak equivalences, fibrations and cofibrations in
Diff (Definition 4.8). We then show that the smooth singular functor sends
smoothly homotopic maps to simplicially homotopic maps (Lemma 4.10),

1A preprint of Shimakawa and Haraguchi [ShH] claims to construct a model structure
on the category of diffeological spaces. Unfortunately, we have found an error in that
paper: the map v used in the proof of Lemma 4.4 is not smooth.
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and use this result to show that the smooth homotopy groups of a fibrant
diffeological space and the simplicial homotopy groups of its smooth singular
simplicial set agree (Theorem 4.11). We also point out that the diffeolog-
ical realization functor does not commute with finite products (Proposi-
tion 4.13), and compare the three adjoint pairs among sSet, Diff and Top
(Propositions 4.14 and 4.15).

In Subsection 4.2, we study cofibrations and cofibrant diffeological spaces.
We begin by proving one of the model category factorization axioms, namely
that every smooth map factors into a cofibration followed by a trivial fi-
bration (Proposition 4.17), and hence that every diffeological space has a
functorial cofibrant replacement (Corollary 4.18). We then show that fine
diffeological vector spaces and S1 are cofibrant (Propositions 4.21 and 4.23).

In Subsection 4.3, we focus on fibrations and fibrant diffeological spaces.
We first connect our definitions to earlier work by showing that every dif-
feological bundle with fibrant fiber is a fibration (Proposition 4.28), and
then use this to show that not every diffeological space is cofibrant (Exam-
ple 4.29). We next show that every diffeological group is fibrant (Proposi-
tion 4.30), every homogeneous diffeological space is fibrant (Theorem 4.34),
and hence that every smooth manifold is fibrant (Corollary 4.36). In addi-
tion, we show that every D-open subset of a fibrant diffeological space with
the sub-diffeology is fibrant (Theorem 4.40) and that the function space
from a (pointed) compact diffeological space to a (pointed) smooth mani-
fold is fibrant (Corollary 4.41). This gives a second proof that every smooth
manifold is fibrant, and also shows that the free and based loop spaces of a
smooth manifold are fibrant. Finally, we show that not every diffeological
space is fibrant (Examples 4.43, 4.44, 4.45 and 4.48), and, in particular, that
no smooth manifold with (nonempty) boundary is fibrant (Corollary 4.47).

Unless otherwise specified, all smooth manifolds in this paper are assumed
to be finite-dimensional, Hausdorff, second countable and without boundary.

Acknowledgements. We would like to thank Dan Dugger for the idea for
the proof of Proposition 4.14, Gord Sinnamon for the proof of Example 4.46,
Gaohong Wang for the idea for the proof of Example 4.44, and the referee
for many comments that led to improvements in the exposition.

2. Background on diffeological spaces and groups

Here is some background on diffeological spaces and diffeological groups.
While we often cite early sources, almost all of the material in this section is
in the book [I2], which we recommend as a good reference. For a three-page
introduction to diffeological spaces, we recommend [CSW, Section 2], which
we present in a condensed form here.

Definition 2.1 ([So2]). A diffeological space is a set X together with a
specified set DX of functions U → X (called plots) for each open set U in
Rn and for each n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm:
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(1) (Covering). Every constant map U → X is a plot.
(2) (Smooth Compatibility). If U → X is a plot and V → U is smooth,

then the composition V → U → X is also a plot.
(3) (Sheaf Condition). If U = ∪iUi is an open cover and U → X is a set

map such that each restriction Ui → X is a plot, then U → X is a
plot.

We usually use the underlying set X to denote the diffeological space
(X,DX).

Definition 2.2 ([So2]). Let X and Y be two diffeological spaces, and let
f : X → Y be a set map. We say that f is smooth if for every plot p : U → X
of X, the composition f ◦ p is a plot of Y .

The collection of all diffeological spaces and smooth maps forms a cat-
egory, which we denote Diff. Given two diffeological spaces X and Y , we
write C∞(X,Y ) for the set of all smooth maps from X to Y . An isomor-
phism in Diff will be called a diffeomorphism.

Every smooth manifold M is canonically a diffeological space with the
same underlying set and plots taken to be all smooth maps U → M in
the usual sense. We call this the standard diffeology on M , and, unless
we say otherwise, we always equip a smooth manifold with this diffeology.
By using charts, it is easy to see that smooth maps in the usual sense
between smooth manifolds coincide with smooth maps between them with
the standard diffeology.

The smallest diffeology on X containing a set of maps A = {Ui → X}i∈I
is called the diffeology generated by A. It consists of all maps U → X
that locally either factor through the given maps via smooth maps, or are
constant.

For a diffeological space X with an equivalence relation ∼, the smallest
diffeology on X/∼ making the quotient map {X � X/∼} smooth is called
the quotient diffeology. It consists of all maps U → X/∼ that locally factor
through the quotient map. For a diffeological space X and a subset A
of X, the largest diffeology on A making the inclusion map {A ↪→ X}
smooth is called the sub-diffeology. It consists of all maps U → A such that
U → A ↪→ X is a plot of X.

Theorem 2.3. The category Diff is both complete and cocomplete.

This is proved in [BH], but can be found implicitly in earlier work. A
concise sketch of a proof is provided in [CSW]. As a special case, the set-
theoretic cartesian product X×Y of two diffeological spaces has a diffeology
consisting of those functions U → X×Y such that the component functions
U → X and U → Y are plots, and this diffeology makes X × Y into the
product of X and Y in Diff.
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The category of diffeological spaces also enjoys another convenient prop-
erty. Given two diffeological spaces X and Y , the set of functions

{U → C∞(X,Y ) | U ×X → Y is smooth}
forms a diffeology on C∞(X,Y ). We always equip hom-sets with this dif-
feology. One can show [I1, BH, I2] that for each diffeological space Y ,
−×Y : Diff 
 Diff : C∞(Y,−) is an adjoint pair, which gives the following
result:

Theorem 2.4. The category Diff is cartesian closed.

Remark 2.5. We now describe an alternate point of view that is not needed
for any of the results of the paper, but which explains the good categorical
properties of Diff. Write DS for the category with objects the open subsets
of Rn for all n ∈ N and morphisms the smooth maps between them. We
associate to each diffeological space X a presheaf FX on DS which sends an
open subset U of some Rn to the set FX(U) of all plots from U to X. This
is a sheaf with respect to the notion of cover described in Definition 2.1(3).
Any (pre)sheaf P on DS has a natural map

P(U) −→ Set(U,P(R0))

sending an element s to the function U → P(R0) which sends u to i∗u(s),
where iu is the map R0 → U sending the one point space R0 to u. When
this map is injective for every U , P is said to be a concrete (pre)sheaf. It
is easy to show that every FX is concrete, and moreover that the category
Diff is equivalent to the category of concrete sheaves on DS, a full sub-
category of the category of sheaves (see [BH, Proposition 4.15] and [Du]).
The category of concrete sheaves on any concrete site is a “Grothendieck
quasi-topos,” and is always complete, cocomplete, locally cartesian closed
and locally presentable [Jo, Theorem C2.2.13].

Finally, we discuss diffeological groups, which will be useful in Subsec-
tions 3.3 and 4.3.

Definition 2.6 ([So1]). A diffeological group is a group object in Diff. That
is, a diffeological group is both a diffeological space and a group such that
the group operations are smooth maps.

Example 2.7.

(1) Any Lie group with its standard diffeology is a diffeological group.
(2) The continuous diffeological space C(G) of a topological group G

is a diffeological group, where the functor C is defined just before
Proposition 3.8.

Example 2.8. Let G be a diffeological group, and let H be any subgroup
of G. Then H with the sub-diffeology is automatically a diffeological group.
If H is a normal subgroup of G, then the quotient group G/H with the
quotient diffeology is also a diffeological group.
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Example 2.9 ([So1]). Let X be a diffeological space. Write Diff(X) for the
set of all diffeomorphisms from X to itself. Then

{p : U → Diff(X) | the two maps U ×X → X defined by

(u, x) 7→ p(u)(x) and (u, x) 7→ (p(u))−1(x) are smooth}

is a diffeology on Diff(X), which makes Diff(X) into a diffeological group.
When X is a smooth manifold with the standard diffeology, the above dif-
feology on Diff(X) is in fact the sub-diffeology from C∞(X,X).

3. Smooth homotopy groups and diffeological bundles

In this section, we begin by setting up the basics of the smooth homotopy
theory of diffeological spaces and giving several equivalent characterizations
of smooth homotopy groups. We then review the D-topology and diffeolog-
ical bundles from [I1]. We show that the smooth approximation theorem
does not hold for general diffeological spaces (see Remark 3.13), and that
the smooth homotopy groups of a diffeological space and the usual (contin-
uous) homotopy groups of the underlying topological space do not match in
general (see Example 3.20).

Throughout the paper, we will make use of the following definition.

Definition 3.1. For 0 < ε < 1/2, an ε-cut-off function is a smooth function
φ : R→ R such that 0 ≤ φ(t) ≤ 1 for t ∈ R, φ(t) = 0 if t < ε and φ(t) = 1 if
t > 1 − ε. A cut-off function is an ε-cut-off function for some 0 < ε < 1/2.
It is well-known that such functions exist for all such ε.

3.1. Smooth homotopy groups. We begin with the elementary smooth
homotopy theory of diffeological spaces, leading up to Iglesias-Zemmour’s
recursive definition of the smooth homotopy groups of a diffeological space
X; see [I1]. The main result of this subsection is Theorem 3.2, which shows
that many definitions of smooth homotopy groups agree.

A path in X is a smooth map f : R→ X. We say that f is stationary if
there is an ε > 0 such that f is constant on (−∞, ε) and also on (1− ε,∞).

We define a relation on X by x ' y if and only if there is a smooth path
f connecting x and y, that is, with f(0) = x and f(1) = y. When this is the
case, the path can always be chosen to be stationary, because of the existence
of cut-off functions. It follows that ' is an equivalence relation, and that
x ' y if and only if there is a smooth function f : I → X with f(0) = x
and f(1) = y, where I = [0, 1] ⊂ R has the sub-diffeology. The equivalence
classes are called the smooth path components, and the 0th smooth homotopy
group πD0 (X) is defined to be the quotient set X/'. As usual, for x ∈ X,
πD0 (X,x) denotes the set πD0 (X) pointed by the path component of x.

Let X and Y be diffeological spaces. We say that smooth maps f, g :
X → Y are smoothly homotopic if f ' g as elements of C∞(X,Y ). By
cartesian closedness of Diff, f ' g if and only if there exists a smooth
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map F : X × R → Y (or F : X × I → Y ) such that F (x, 0) = f(x) and
F (x, 1) = g(x) for each x in X. It is easy to see that smooth homotopy is an
equivalence relation compatible with both left and right composition. We
write [X,Y ] for πD0 (C∞(X,Y )), the set of smooth homotopy classes.

A pair is a diffeological space X with a chosen diffeological subspace U .
A map f : (X,U) → (Y, V ) of pairs is a smooth map f : X → Y such
that f(U) ⊆ V , and the function space C∞((X,U), (Y, V )) is the set of such
maps with the sub-diffeology from C∞(X,Y ). Two such maps are smoothly
homotopic if they are in the same path component of C∞((X,U), (Y, V )),
and we write [(X,U), (Y, V )] for πD0 (C∞((X,U), (Y, V ))). Two pairs (X,U)
and (Y, V ) are smoothly homotopy equivalent if there are maps f : (X,U)→
(Y, V ) and g : (Y, V )→ (X,U) such that fg and gf are smoothly homotopic
to the identity maps. When U consists of a single point x, we write (X,x)
for (X, {x}) and call this a pointed diffeological space.

Now let (X,x) be a pointed diffeological space. The loop space of (X,x)
is the space Ω(X,x) = C∞((R, {0, 1}), (X,x)), with basepoint the con-
stant loop at x. We inductively define Ω0(X,x) = (X,x) and, for n > 0,
Ωn(X,x) = Ω(Ωn−1(X,x)). The nth smooth homotopy group πDn (X,x) is
defined to be πD0 (Ωn(X,x)). For n ≥ 1, πDn (X,x) is a group: the product is
defined by observing that each loop is equivalent to a stationary loop and
composing such loops in the usual way. One can show that πDn (X,x) is an
abelian group if n ≥ 2. These constructions are functorial.

To avoid needing to choose stationary loops for the group multiplication,
one can require all paths and loops appearing above to be stationary. This
gives the stationary loop spaces Ω̃n(X,x) and new functors π̃Dn . It is not
hard to show that there is a natural isomorphism π̃Dn (X,x) ∼= πDn (X,x) for
each n ≥ 0.

Since Diff is cartesian closed (see Theorem 2.4), a function f in Ωn(X,x)

can be regarded as a smooth map f̃ : Rn → X which sends

{(x1, . . . , xn) ∈ Rn | xi = 0 or 1 for some i}

to x, and πDn (X,x) consists of smooth path components in the space of such
maps. Unfortunately, while the stationarity condition makes composition
easier, if the definition of π̃Dn (X,x) is unravelled it leads to a highly irregular

condition on maps f̃ : Rn → X because the ε can vary in an uncontrolled
way.

We next show that a variety of natural definitions of the smooth homotopy
groups of a pointed diffeological space agree. This will be used to prove
Theorem 4.11.

Theorem 3.2. For each pair (A,B) of diffeological spaces listed below, there
is a natural bijection between [(A,B), (X,x)] and πDn (X,x), where (X,x) is
a pointed diffeological space.
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(1) (Rn, ∂Rn), where

∂Rn = {(x1, . . . , xn) ∈ Rn | xi = 0 or 1 for some i};
(2) (Rn, ∂εRn), where

∂εRn = {(x1, . . . , xn) ∈ Rn | xi ≤ ε or xi ≥ 1− ε for some i},
and ε ∈ (0, 1/2) is a fixed real number;

(3) (In, ∂In), where In is the unit cube in Rn with the sub-diffeology,
and ∂In is its boundary;

(4) (In, ∂εI
n), where

∂εI
n = {(x1, . . . , xn) ∈ In | xi ≤ ε or xi ≥ 1− ε for some i},

and ε ∈ (0, 1/2) is a fixed real number;
(5) (An, ∂An), where An = {(x0, x1, . . . , xn) ∈ Rn+1 |

∑
xi = 1} with

the sub-diffeology, and

∂An = {(x0, . . . , xn) ∈ An | xi = 0 for some i};
(6) (An, ∂εAn), where ∂εAn = {(x0, . . . , xn) ∈ An | xi ≤ ε for some i},

and ε ∈ (0, 1/(n+ 1)) is a fixed real number;
(7) (Dn, ∂Dn), where Dn is the unit ball in Rn, and ∂Dn = Sn−1 is the

unit sphere;
(8) (Dn, ∂εD

n), where ∂εD
n = {x ∈ Dn | ‖x‖ > 1− ε}, and ε ∈ (0, 1/2)

is a fixed real number;
(9) (Sn, N), where Sn is the unit sphere in Rn+1, and N = (0, . . . , 0, 1)

is the north pole.

In fact, in cases (1) through (8), the pairs are smoothly homotopy equivalent.

Proof. As explained earlier, it follows from the cartesian closedness of Diff
that [(Rn, ∂Rn), (X,x)] ∼= πDn (X,x).

One can also show, using cartesian closedness several times, that if pairs
(A,B) and (A′, B′) are smoothly homotopy equivalent, then so are the dif-
feological spaces C∞((A,B), (X,U)) and C∞((A′, B′), (X,U)) for any pair
(X,U). In particular, [(A,B), (X,U)] ∼= [(A′, B′), (X,U)]. We will prove
that the pairs (1) through (8) are smoothly homotopy equivalent, and then
separately prove that the pair (9) gives rise to an equivalent set of homotopy
classes.

(1) ⇐⇒ (2): Consider the inclusion map (Rn, ∂Rn) ↪→ (Rn, ∂εRn) and
the map φn : (Rn, ∂εRn) → (Rn, ∂Rn) which applies an ε-cut-off function
coordinate-wise. Both composites are homotopic to the identity via the
affine homotopy, which can be checked to preserve the appropriate subsets.

(3) ⇐⇒ (2) and (4) ⇐⇒ (2): These are proved using the same
argument, by considering the inclusion into (Rn, ∂εRn) and the map φn in
the other direction.

(6) ⇐⇒ (2): Consider the diffeomorphism ψ : An → Rn defined by

(x0, x1, . . . , xn)→ (x1, . . . , xn).
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Its inverse sends ∂εRn into ∂εAn, but ψ itself is not a map of pairs. However,
if we first dilate An by a large enough factor and then apply ψ, this is a map
of pairs, and it is easy to see that the two composites are smoothly homotopic
to the identity.

(5) ⇐⇒ (6): Consider the inclusion i : (An, ∂An) ↪→ (An, ∂εAn). We
construct a map in the other direction as follows. Let ρ : R → R be an
ε-cut-off function such that ρ(y) > 0 if y ≥ 1

n+1 . Define

u : Rn+1 \
{

(x0, . . . , xn) ∈ Rn+1
∣∣∣ ∑xi = 0

}
−→ An

by

u(x0, . . . , xn) =

(
x0∑
xi
, . . . ,

xn∑
xi

)
.

Then u ◦ ρn+1 is a well-defined map from (An, ∂εAn) to (An, ∂An): we have
that

∑
ρ(xi) > 0, since xi ≥ 1/(n+ 1) for some i. If we replace ρ with the

affine homotopy αt defined by αt(y) = ty + (1 − t)ρ(y), then
∑
αt(xi) > 0

for each t ∈ I, and so u ◦ αn+1
t is well-defined and smooth as a function

An × I → An. It provides a smooth homotopy between u ◦ ρn+1 ◦ i and
the identity on (An, ∂An). Moreover, the composite i ◦ u ◦ αn+1

t provides a
smooth homotopy between i ◦ u ◦ ρn+1 and the identity on (An, ∂εAn).

(8) ⇐⇒ (2): This is similar to (6) ⇐⇒ (2); each pair includes in the
other after an appropriate scaling.

(7) ⇐⇒ (8): This is proved using a radial cut-off function.
(9): Write H for the northern hemisphere of Sn, and recall that N is the

north pole. Using stereographic projection and suitable rescalings, one can
see using the methods above that the pairs (Sn \N,H \N) and (Rn, ∂εRn)
are smoothly homotopy equivalent. Next, observe that the mapping spaces
C∞((Sn\N,H\N), (X,x)) and C∞((Sn, H), (X,x)) are diffeomorphic, since
every constant function on H \N extends uniquely to a smooth function on
H. Finally, by gradually raising the equator and using a cut-off function,
one sees that (Sn, H) and (Sn, N) are smoothly homotopy equivalent. �

Theorem 3.2 implies that for each of the pairs (A,B) considered above,
the set [(A,B), (X,x)] inherits a natural group structure from πDn (X,x), for
n ≥ 1. One can make the formulas explicit as needed, by using the maps
between the pairs that were described in the proof.

Remark 3.3. Similar methods apply to other pairs, which impose variants
on the above stationarity conditions. For example, one can consider the
pairs (2), (4), (6) and (8) with ε = 0. While the proofs above do not go
through in this case, it is nevertheless easy to see, for example, that the pairs
(Rn, ∂0Rn) and (Rn, ∂εRn) are smoothly homotopy equivalent for ε > 0, and
so (Rn, ∂0Rn) may also be used in the definition of the smooth homotopy
groups.
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In another direction, one can also show that it is equivalent to allow ε to
vary. For example, in case (2), one could consider the set

{f ∈ C∞(Rn, X) | f(∂εRn) = x for some ε > 0}
with the sub-diffeology from C∞(Rn, X). Similar methods show that the
set of path components of this space again bijects with πDn (X,x).

The following result is straightforward.

Proposition 3.4. Let {(Xj , xj)}j∈J be a family of pointed diffeological spa-

ces. Then the canonical map πDn (
∏
j Xj , (xj)) →

∏
j π

D
n (Xj , xj) is an iso-

morphism, for each n ∈ N.

Proposition 3.5. If G is a diffeological group with identity e, then πD0 (G)
is a group, and πD1 (G, e) is an abelian group.

Proof. This is formal. �

3.2. The D-topology. In this subsection we recall the D-topology, which
is a natural topology on the underlying set of any diffeological space. We
summarize the basic properties of the D-topology, and compare the smooth
homotopy groups of a diffeological space and the usual (continuous) homo-
topy groups of its underlying topological space. Finally, we observe that
the smooth approximation theorem does not hold for general diffeological
spaces.

Definition 3.6 ([I1]). Given a diffeological space X, the final topology
induced by its plots, where each domain is equipped with the standard
topology, is called the D-topology on X.

Example 3.7. The D-topology on a smooth manifold with the standard
diffeology coincides with the usual topology on the manifold.

A smooth map X → X ′ is continuous when X and X ′ are equipped with
the D-topology, and so this defines a functor D : Diff → Top to the category
of topological spaces.

Every topological space Y has a natural diffeology, called the continuous
diffeology, whose plots U → Y are the continuous maps. A continuous
map Y → Y ′ is smooth when Y and Y ′ are equipped with the continous
diffeology, and so this defines a functor C : Top→ Diff.

Proposition 3.8 ([ShYH]). The functors D : Diff 
 Top : C are adjoint.

For more discussion on the D-topology, see [I2, Chapter 2] and [CSW]. In
the rest of this subsection, we focus on the comparison between the smooth
homotopy groups of a diffeological space X and the usual (continuous) ho-
motopy groups of D(X).

By Theorem 3.2, for any n ∈ N, there is a natural transformation jn :
πDn (X,x)→ πn(D(X), x).
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Proposition 3.9 ([I1]). Let X be a diffeological space. Then

j0 : πD0 (X)→ π0(D(X))

is a bijection. That is, πD0 (X) coincides with the usual (continuous) path
components of X under the D-topology.

The classical smooth approximation theorem shows:

Proposition 3.10. Let (X,x) be a pointed smooth manifold. Then

jn : πDn (X,x)→ πn(D(X), x)

is an isomorphism for each n ∈ N.

The following result is easy to prove.

Proposition 3.11. For any pointed topological space (X,x), the canonical
map πDn (C(X), x)→ πn(X,x) is an isomorphism for each n ∈ N.

In general, jn may fail to be injective (Example 3.20) or surjective (Ex-
ample 3.12). In fact, there may be no isomorphism between πDn (X,x) and
πn(D(X), x) (Example 3.20).

Example 3.12 (Hawaiian earring). Let

X = ∪∞n=1{(a, b) ∈ R2 | (a− 1/n)2 + b2 = 1/n2},
the union of circles of radius 1/n and center (1/n, 0), with the sub-diffeology
from R2, and let x = (0, 0) ∈ X. We will show that the map j1 : πD1 (X,x)→
π1(D(X), x) is not surjective. First we show that the D-topology on X is
the same as the sub-topology of R2. It is enough to show that each D-open
neighbourhood of x contains all but finitely many circles. So suppose A is a
subset containing x but not containing infinitely many circles, and choose a
sequence x1, x2, . . . on circles of decreasing radii but not in A. If the circles
are chosen so that the radii decrease sufficiently quickly, then there is a
smooth curve p : R → X which passes through these points in order, say
p(ti) = xi with 0 < t1 < t2 < · · · < 1. Then the ti’s are not in p−1(A) but
their limit t is, since we must have p(t) = limxi = x. Thus A is not D-open.
Therefore, the D-topology on X is the same as the sub-topology of R2.

Now we show that the map j1 : πD1 (X,x)→ π1(D(X), x) is not surjective.
This is because there is no smooth stationary curve R → X going around
every circle in X, since the sum of the circumferences of all these circles
is infinite, and any smooth curve defined on a compact interval can only
travel a finite distance. Here we are using the fact the π1(D(X), x) contains
an element that is not represented by a path that is not surjective; see, for
example, [Mun, Section 71, Example 1].

Remark 3.13. The above example shows that the smooth approximation
theorem does not hold for a general diffeological space X, in the sense that
if f : Sn → D(X) is a continuous map, then there may not exist a smooth
map g : Sn → X such that f is (continuously) homotopic to D(g).
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3.3. Diffeological bundles. Diffeological bundles are analogous to fiber
bundles, but are much more general than the most obvious notion of locally
trivial bundle. We review diffeological bundles in this subsection, and reach
the conclusion that the smooth homotopy groups of a diffeological space
are in general different from the usual (continuous) homotopy groups of its
underlying topological space. All material here can be found in [I1] and [I2].

Definition 3.14. Let F be a diffeological space. A smooth map f : X → Y
between two diffeological spaces is trivial of fiber type F if there exists a
diffeomorphism h : X → F × Y , where F × Y is equipped with the product
diffeology, such that the following diagram is commutative:

X

f
��

h // F × Y

pr2
��

Y.

The map f is locally trivial of fiber type F if there exists a D-open cover
{Ui} of Y such that f |f−1(Ui) : f−1(Ui) → Ui is trivial of fiber type F for
each i.

Being locally trivial turns out to be too strong a condition for many
applications, but is the correct notion for open subsets of Rn.

Definition 3.15. A smooth surjective map f : X → Y between two diffe-
ological spaces is called a diffeological bundle of fiber type F if the pullback
of f along any plot of Y is locally trivial of fiber type F . In this case, we
call F the fiber of f , X the total space, and Y the base space.

In [I2], diffeological bundles are defined using groupoids, but [I2, 8.9]
shows that the definitions are equivalent. Moreover, there is another equiv-
alent characterization:

Proposition 3.16 ([I2, 8.19]). A smooth surjective map f : X → Y between
two diffeological spaces is a diffeological bundle of fiber type F if and only
if the pullback of f along any global plot of Y (that is, a plot of the form
Rn → Y ) is trivial of fiber type F .

Example 3.17. Every smooth fiber bundle over a smooth manifold is a
diffeological bundle.

Proposition 3.18 ([I2, 8.15]). Let G be a diffeological group, and let H be
a subgroup of G with the sub-diffeology. Then G → G/H is a diffeological
bundle of fiber type H, where G/H is the set of left (or right) cosets of H
in G, with the quotient diffeology.

Note that we are not requiring the subgroup H to be closed.

Theorem 3.19 ([I2, 8.21]). Let f : X → Y be a diffeological bundle of fiber
type F = f−1(y) (equipped with the sub-diffeology from X) for some y ∈ Y .
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Then for any x ∈ F , we have the following long exact sequence of smooth
homotopy groups:

· · · → πDn (F, x)
i∗−→ πDn (X,x)→ πDn (Y, y)→ πDn−1(F, x)

→ · · · → πD0 (Y )→ 0.

Example 3.20 ([I2, 8.38]). Let T 2 = R2/Z2 be the usual 2-torus, and let
Rθ be the image of the line {y = θx} under the quotient map R2 → T 2, with
θ a fixed irrational number. Note that T 2 is an abelian Lie group, and Rθ is
a subgroup which is diffeomorphic to R. The quotient group T 2

θ := T 2/Rθ
with the quotient diffeology is called the irrational torus of slope θ, and by
Proposition 3.18, the quotient map T 2 → T 2

θ is a diffeological bundle of

fiber type Rθ. By Theorem 3.19, πD1 (T 2
θ ) ∼= πD1 (T 2) ∼= Z ⊕ Z. But as a

topological space with the D-topology, π1(T 2
θ ) ∼= 0, since the D-topology on

T 2
θ is indiscrete. This follows from the fact that the D-topology of a quotient

diffeological space coincides with the quotient topology of the D-topology
of the original space, since the functor D : Diff → Top is a left adjoint.

Note also that the diffeological bundle T 2 → T 2
θ is not locally trivial, since

this would imply that it is trivial. However, any smooth section T 2
θ → T 2

would be induced by a smooth map T 2 → T 2 which is constant on the dense
subspace Rθ. Thus it would be constant, and could not be a section.

Note that the irrational tori are trivial in approaches to generalizing
smooth manifolds which are based on “mapping out” rather than “map-
ping in”. (See [St] for a comparison between different approaches.)

Remark 3.21. Example 3.20 shows that the smooth homotopy groups
of a diffeological space X have more information than the usual (contin-
uous) homotopy groups of D(X), and more generally that X contains more
information than D(X). We would like our homotopy theory to encode
this information. Hence, we will not use the functor D : Diff → Top to
define weak equivalences in Diff. Instead, we will define an adjoint pair
| − |D : sSet 
 Diff : SD in the coming section, and we will use the functor
SD to define the weak equivalences in Diff, as we will show that in good
cases it retains the information about the smooth homotopy groups.

4. The homotopy theory of diffeological spaces

In this section, we define the smooth singular simplicial set SD(X) asso-
ciated to a diffeological space X, and also study the diffeological realization
functor which is left adjoint to SD. It is well-known that the singular simpli-
cial set associated to a topological space captures homotopical information
about the space, and one of our main results is that the same is true in the
diffeological setting, when SD(X) is a fibrant simplicial set. Motivated by
this, we define a diffeological space X to be fibrant when SD(X) is fibrant,
and more generally define fibrations, cofibrations and weak equivalences of
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diffeological spaces using this adjoint pair. Although we don’t know whether
the definitions we give satisfy the axioms of a model category, we prove that
a wide variety of diffeological spaces, including smooth manifolds, are fi-
brant, which shows that the above result is broadly applicable. We also
prove that our fibrations are closely related to diffeological bundles, which
shows that our definitions recover the usual smooth homotopy theory of
smooth manifolds as well as past work on the smooth homotopy theory of
diffeological bundles. Along the way, we study the cofibrant diffeological
spaces, and conjecture that every smooth manifold is cofibrant.

4.1. Diffeological realization and the smooth singular simplicial
set. In this subsection, we use an adjoint pair between simplicial sets and
diffeological spaces to define the concepts of cofibration, fibration and weak
equivalence, and prove some basic properties. We then prove one of our
main results, which says that the smooth homotopy groups of a fibrant dif-
feological space coincide with the simplicial homotopy groups of its smooth
singular simplicial set. We conclude with some properties of the diffeological
realization functor and the smooth singular functor.

Here is a general theorem from [Mac]:

Theorem 4.1. Given a small category C, a cocomplete category D, and a
functor F : C → D, there is an adjoint pair L : Pre(C) 
 D : R with
R(d)(c) = D(F (c), d) and L(X) = colimC(−,c)→X F (c), where c is an object
in C, d is an object in D and X is a presheaf on C.

If we take C to be the simplicial category ∆, then the above theorem
says that, given a cosimplicial object in a cocomplete category D (that is, a
functor ∆→ D), we get an adjoint pair sSet 
 D.

Example 4.2. If we take F to be the functor ∆ → Top sending n to
|∆n| = {(x0, x1, . . . , xn) ∈ Rn+1 |

∑
xi = 1 and xi ≥ 0 for each i} with the

sub-topology from Rn+1, then we get the usual adjoint pair | − | : sSet 

Top : s.

Definition 4.3. We write An = {(x0, x1, . . . , xn) ∈ Rn+1 |
∑
xi = 1} with

the sub-diffeology from Rn+1. It is diffeomorphic to Rn, by forgetting the
first coordinate, for example. Just like the standard cosimplicial object in
Top, A• is a cosimplicial object in Diff. Hence, we get an adjoint pair
| − |D : sSet 
 Diff : SD. We call | − |D the diffeological realization functor
and SD the smooth singular functor.

More precisely, by the above theorem, we know that

SDn (X) = C∞(An, X) ∼= C∞(Rn, X)

and |A|D = colim∆n→AAn. As is usual for geometric realizations, the latter
can be described more concretely. Let ∼ be the equivalence relation on∐
n∈NAn × An generated by An × An 3 (a, x) ∼ (a′, x′) ∈ Am × Am if

there is a morphism f : n → m in ∆ such that f∗(a) = a′ and f∗(x′) = x,
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where f∗ : An → Am and f∗ : Am → An are induced from f . Then
|A|D = (

∐
n∈NRn ×An)/∼, with the quotient diffeology.

Remark 4.4. Instead of using these “noncompact” simplices An, one could
use the obvious compact versions, with 0 ≤ xi ≤ 1 for each i. In [He, Sec-
tion 5], Hector defined singular and geometric realization functors using the
compact simplices. We use the noncompact versions because the smooth
maps from An to a diffeological space X are simply plots. Moreover, with
compact simplices, we don’t know whether many of our results would con-
tinue to hold.

We can describe some important diffeological realizations explicitly. The
horn Λnk is the sub-simplicial set of ∆n which omits the n-simplex and its

kth face. This is the coequalizer of its other (n− 1)-dimensional faces along
their (n − 2)-dimensional intersections. Since diffeological realization is a
left adjoint, |Λnk |D is the coequalizer of n copies of An−1 along

(
n
2

)
copies

of An−2. It is easy to see that all of the |Λnk |D’s are diffeomorphic to
Λn := {(x1, . . . , xn) ∈ Rn | xi = 0 for some i}, viewed as the coequalizer
of the coordinate hyperplanes along their intersections, with the coequalizer
diffeology.

Similarly, the boundary ∂∆n can be described as a coequalizer, and is
diffeomorphic to

∂′Rn :=
{

(x1, . . . , xn) ∈ Rn
∣∣∣ xi = 0 for some i or

∑
xi = 1

}
= Λn ∪

{
(x1, . . . , xn) ∈ Rn

∣∣∣ ∑xi = 1
}
,

where both are equipped with the coequalizer diffeology.

Remark 4.5. Note that Λn and ∂′Rn are not diffeological subspaces of Rn
when n ≥ 2. Write Λnsub and ∂′Rnsub for the diffeological subspaces of Rn
with the same underlying sets as Λn and ∂′Rn, respectively. Then we have
smooth maps Λn → Λnsub and ∂′Rn → ∂′Rnsub which are both identity maps
on the underlying sets.

Definition 4.6. If i : A→ B and f : X → Y are morphisms in a category
such that for every solid commutative square

A //

i
��

X

f
��

B //

>>

Y

a dotted morphism exists making the triangles commute, then we say that i
has the left lifting property with respect to f and that f has the right lifting
property with respect to i.

Definition 4.7. A map f : X → Y of simplicial sets is a weak equivalence
if its geometric realization is a homotopy equivalence in Top, a cofibration if
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each Xn → Yn is a monomorphism, and a (Kan) fibration if it has the right
lifting property with respect to the inclusions Λnk ↪→ ∆n.

It is well-known [GJ, Qu] that these definitions give a cofibrantly gener-
ated proper model structure on sSet.

Definition 4.8. We call a morphism X → Y in Diff a weak equivalence
(resp. fibration) if SD(X) → SD(Y ) is a weak equivalence (resp. fibration)
in sSet. We call a morphism X → Y in Diff a cofibration if it has the left
lifting property with respect to all maps which are both weak equivalences
and fibrations.

Remark 4.9. The above definition is motivated by the standard model
structure on Top, for which a map f is a weak equivalence (resp. fibration)
if and only if s(f) is a weak equivalence (resp. fibration) in sSet, and for
which the cofibrations are determined by a left lifting property.

More generally, given an adjoint pair F : M � N : U , where M is a
cofibrantly generated model category and N is a complete and cocomplete
category, one can often “pull back” the model structure on M along the
right adjoint U in the analogous way using Kan’s lifting lemma [Hi, Theo-
rem 11.3.2]. There are conditions that must be checked, and in our situation
we are unable to verify condition (2) of the cited theorem. In particular,
we do not know how to show that the pushout of a map which is both a
cofibration and a weak equivalence is a weak equivalence. Nevertheless, we
will show that our definitions can be used to study the homotopy theory of
diffeological spaces and in particular that they capture important properties
of the smooth singular simplicial set of a diffeological space.

In [He, Section 5], Hector defined the notion of “Kan fibration”, which is
the analog of our notion of fibration, but using compact simplices. We are
not sure whether either notion implies the other.

In any of the above categories, a map is a trivial (co)fibration if it is both
a weak equivalence and a (co)fibration. An object is cofibrant if the unique
map from the empty object is a cofibration, and is fibrant if the unique
map to a point is a fibration. Thus a diffeological space is fibrant if and
only if SD(X) is fibrant, which is also known as being a Kan complex. We
will see that for fibrant diffeological spaces, SD(X) captures the smooth
homotopical information of X. In order to prove this, we use the following
lemma connecting smooth homotopy and simplicial homotopy:

Lemma 4.10. The functor SD : Diff → sSet sends smoothly homotopic
maps to simplicially homotopic maps.
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Proof. Suppose that f, g : X → Y are smoothly homotopic, so that we
have the following commutative diagram in Diff:

X × {0}

��

f

$$
X × R // Y .

X × {1}.

OO

g

::

Since SD is a right adjoint, we have the following commutative diagram in
sSet:

SD(X)×∆0

vv ��

SD(f)

''

SD(X)×∆1 1×ν
// SD(X)× SD(R) // SD(Y )

SD(X)×∆0,

hh OO

SD(g)

77

where ν corresponds to the projection A1 → R onto the second coordinate.
Thus SD(f) and SD(g) are simplicially homotopic. �

We call a diffeological space X smoothly contractible, if the identity map
X → X is smoothly homotopic to a constant map X → X. Therefore, if
a diffeological space X is smoothly contractible, then X → R0 is a weak
equivalence. For example, since both Λn and Λnsub are linearly contractible
to the origin, the map Λn → Λnsub introduced in Remark 4.5 is a weak
equivalence.

Here is an important property of fibrant diffeological spaces:

Theorem 4.11. Let (X,x) be a pointed diffeological space with X fibrant.
Then there is a natural isomorphism πDn (X,x) ∼= πsn(SD(X), x).

Proof. Since X is a fibrant diffeological space, SD(X) is a Kan complex.
For n = 0, the result is straightforward, since πs0(SD(X)) can be described

as the coequalizer of

(SD(X))1

d0 //

d1
// (SD(X))0.

Therefore, πD0 (X) ∼= πs0(SD(X)).
For n ≥ 1, the nth simplicial homotopy group πsn(SD(X), x) of (SD(X), x)

is defined to be the set of simplicial homotopy classes of maps of pairs
(∆n, ∂∆n)→ (SD(X), x).
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In (5) of Theorem 3.2, we proved that πDn (X,x) bijects with

[(An, ∂An), (X,x)].

We define

α : [(An, ∂An), (X,x)]→ πsn(SD(X), x)

by α([f ]) = [f ], where an n-simplex of SD(X) is identified with the corre-
sponding map ∆n → SD(X). The map α is well-defined by Lemma 4.10,
and it is clear that α is surjective.

We now show that α is injective. Let [f ], [g] ∈ [(An, ∂An), (X,x)] be
such that α([f ]) = α([g]). Since SD(X) is a Kan complex, there exists
F ∈ C∞(An+1, X) such that

F (x0, . . . , xn−1, 0, xn+1) = f(x0, . . . , xn−1, xn+1),

F (x0, . . . , xn, 0) = g(x0, . . . , xn),

and F (x0, . . . , xn+1) = x if some other xi = 0. Then the composite F ◦ β,
with β : An × R→ An+1 defined by

β(x0, . . . , xn, t) = (x0, . . . , xn−1, txn, (1− t)xn),

implies that [f ] = [g] in [(An, ∂An), (X,x)].
Finally, we will show that α is a group homomorphism for n ≥ 1. In

Theorem 3.2, we showed that the restriction map

i∗ : [(An, ∂εAn), (X,x)]→ [(An, ∂An), (X,x)]

is an isomorphism. Thus we can assume that we are given classes [f ] and
[g] in [(An, ∂εAn), (X,x)].

First we compute the product of α([f ]) and α([g]) in πsn(SD(X), x). By
projecting An+1 down to the union of its (n − 1)th and (n + 1)th faces and
composing with f and g on those faces, one obtains a map h : An+1 → X
which can be used to compute the product. This illustrates the projection
in the case n = 1

and the general formula for the composite h is

h(x0, . . . , xn+1)

=

{
f(x0, . . . , xn−2, xn + 2xn−1, xn+1 − xn−1), if xn+1 ≥ xn−1

g(x0, . . . , xn−2, xn−1 − xn+1, xn + 2xn+1), if xn+1 ≤ xn−1.

The projection map is not smooth, but h is smooth because f and g are
constant near their boundaries. It is straightforward to check that dih = x
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for 0 ≤ i < n− 1, dn−1h = f and dn+1h = g, and so by the definition of the
product in πsn(SD(X), x), dnh represents the product of α([f ]) and α([g]).

Note that dnh is a certain juxtaposition of scaled and translated versions
of f and g. On the other hand, the product of [f ] and [g] in

[(An, ∂εAn), (X,x)]

is given by first regarding f and g as maps (Rn, ∂εRn) → (X,x), juxtapos-
ing and scaling them as usual, and then scaling further to obtain a map
(An, ∂εAn) → (X,x), as described in the proof of (6) ⇐⇒ (2) in Theo-
rem 3.2. One can see that the result is homotopic to dnh using techniques
similar to those used in Theorem 3.2. �

Corollary 4.12. A map f : X → Y between fibrant diffeological spaces is
a weak equivalence if and only if it induces an isomorphism on all smooth
homotopy groups for all basepoints.

The above results highlight the importance of understanding which diffe-
ological spaces are fibrant. This is discussed in Subsection 4.3.

We conclude this section with some observations about the diffeological
realization functor and the smooth singular functor. Unlike the usual geo-
metric realization functor | − | : sSet→ Top, we have:

Proposition 4.13. The functor |− |D : sSet→ Diff does not commute with
finite products.

Proof. For simplicial sets X and Y , we have a natural map

|X × Y |D → |X|D × |Y |D
induced from the projections. One can show that this map is surjective.
However, it is not always a diffeomorphism. For example, it is easy to see
that |∆1 ×∆1|D is the pushout of

|∆1|D
|d0∗| //

|d2∗|
��

|∆2|D,

|∆2|D

and hence is not diffeomorphic to R2 ∼= |∆1|D×|∆1|D. (In fact, |∆1×∆1|D ∼=
Λ2 × R, and the natural map is not even injective in this case.)

As another example, let A be the simplicial set whose nondegenerate
simplices are

• ((
66 •

Then R× |A|D is not the diffeological realization of any simplicial set B. If
it were, B would have no nondegenerate simplices of dimension greater than
two, and the ways in which the 2-simplices were attached would be visible
in the “seams” that arise when copies of R2 are glued along lines or when
lines are collapsed to points. The seams in R× |A|D consist of two parallel
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lines, but two edges of a triangle always intersect, so this cannot arise as
|B|D. �

In the next two propositions, we compare the three adjoint pairs | − |D :
sSet 
 Diff : SD, D : Diff 
 Top : C and | − | : sSet 
 Top : s. These
results require some techniques from model categories, but are not needed
in the rest of the paper.

Proposition 4.14. Given any topological space A, there is a weak equiva-
lence between SD(C(A)) and sA in sSet.

Proof. Observe that SD(C(A)) = C∞(A•, C(A)) = Top(D(A•), A), and
sA = Top(|∆•|, A). To compare these, we will make use of the Reedy
model structure on Top∆, drawing upon many results from [Hi, Chapters 15
and 18]. Note that every topological space is fibrant in the standard model
structure of Top, both D(A•) and |∆•| are cosimplicial resolutions of a
point in Top, and the natural inclusion map i : |∆•| → D(A•) is a Reedy
weak equivalence in Top∆ (since for any n ∈ N, both |∆n| and D(An) are
contractible). Therefore, i∗ : SD(C(A)) → sA is a weak equivalence of
fibrant simplicial sets, by [Hi, Corollary 16.5.5(1)]. �

Proposition 4.15. Given any simplicial set X, there is a weak equivalence
between D(|X|D) and |X| in Top.

Proof. Recall that |X| = colim∆n→X |∆n| (Example 4.2). Since D is a
left adjoint, it commutes with colimits, and so we have that D(|X|D) =
colim∆n→X D(An). As described in the proof of the previous proposition,
both |∆•| and D(A•) are cosimplicial resolutions of a point in Top, and so are
Reedy cofibrant, and the natural inclusion map |∆•| → D(A•) is a Reedy
weak equivalence in Top∆. By [Hi, Proposition 16.5.6(1) and Corollary
7.7.2], it follows that the induced map |X| → D(|X|D) is a weak equivalence
in Top. (One can also use [Se, Lemma A.5], which is a less abstract form of
the same result.) �

4.2. Cofibrant diffeological spaces. In this subsection, we study the
cofibrant diffeological spaces. After some preliminary observations, we prove
one of the factorization axioms of a model category, which implies that ev-
ery diffeological space has a functorial cofibrant replacement. Then we give
examples of cofibrant diffeological spaces, culminating in the proof that fine
diffeological vector spaces and S1 are cofibrant.

We begin with some basic observations:
By the adjunction | − |D : sSet 
 Diff : SD and Definition 4.8, X → Y is

a fibration in Diff if and only if it has the right lifting property with respect
to Λn → Rn for all n ∈ Z+, and X → Y is a trivial fibration in Diff if and
only if it has the right lifting property with respect to ∂′Rn → Rn for all
n ∈ N. In particular, taking n = 0, we see that all trivial fibrations are
surjective.
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Also, if a smooth map f : A → B is the diffeological realization of a
trivial cofibration in sSet, and g : X → Y is a fibration in Diff, then any
commutative solid diagram

A //

f
��

X

g

��

B //

>>

Y

in Diff has a smooth lift.

Proposition 4.16. The functor | − |D : sSet→ Diff preserves cofibrations.
The class of cofibrations in Diff is closed under isomorphisms, pushouts,
smooth retracts and (transfinite) compositions. In particular, the diffeologi-
cal realization of any simplicial set is cofibrant.

Proof. This is formal. �

Proposition 4.17. Every smooth map f in Diff has a functorial factoriza-
tion as f = α(f) ◦ β(f) with α(f) a trivial fibration and β(f) a cofibration.

Proof. We claim that every diffeological space is small, in the sense used
in the small object argument; see, for example, [Ho, Definition 2.1.3]. One
can prove smallness by a straighforward argument, directly from the defini-
tions [Wu1, Theorem 2.1.3]. Or one can use that Diff is equivalent to the
category of concrete sheaves over a concrete site (see Remark 2.5) and then
apply [Jo, Theorem C2.2.13], which says the category of concrete sheaves
over a concrete site is locally presentable.

In any case, the result then follows by applying the small object argument
(e.g., [Ho, Theorem 2.1.14]) to the set I = {∂′Rn → Rn | n ∈ N}. �

By applying Proposition 4.17 to the map ∅ → X, we obtain the following
immediate consequence:

Corollary 4.18. Every diffeological space has a functorial cofibrant replace-
ment.

Example 4.19.

(1) Λn → Rn for any n ∈ Z+ and ∂′Rm → Rm for any m ∈ N are all
cofibrations, since they are diffeological realization of cofibrations in
sSet.

(2) Rn is cofibrant for any n ∈ N, since Rn = |∆n|D.
(3) Λ2 is cofibrant, since it is the pushout of

R0 //

��

R

R.
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(4) More generally, all Λn = |Λnk |D and ∂′Rn = |∂∆n|D are cofibrant.
This can also be seen by building them as pushouts along the cofi-
brations in the above examples, and along the way, we obtain other
interesting cofibrations and cofibrant objects. For example, ∨ni=1R
is cofibrant for any n.

Example 4.20. A diffeological vector space is an R-vector space with a
diffeology such that the addition and the scalar multiplication maps are
smooth. Any R-vector space V has a smallest diffeology making it a diffeo-
logical vector space, and this is called the fine diffeology ; see [I2, Chapter 3].
The fine diffeology is generated by all linear maps from finite dimensional
R-vector spaces to V . A diffeological vector space with the fine diffeology is
called a fine diffeological vector space.

For example, the colimit in Diff of the natural inclusions

R0 // R1 // · · · // Rn // Rn+1 // · · ·
is a fine diffeological vector space. Since each of the inclusions is a cofibra-
tion, the colimit is cofibrant.

More generally, we have:

Proposition 4.21. Every fine diffeological vector space is cofibrant.

Proof. Let V be an arbitrary fine diffeological vector space. Choose a
basis {vi}i∈I for V , and consider the category I of finite subsets of I and
inclusions. There is a functor F : I → Diff sending a finite subset J to the
span of {vj}j∈J , with the sub-diffeology (which is the standard diffeology).
The colimit of F is V , essentially by the definition of the fine diffeology.

For each finite subset J , the latching map is the map colimJ ′⊂J F (J ′)→
F (J), where the colimit is over proper subsets of J . This map is diffeomor-
phic to the map Λn → Rn, where n = |J |, and so it is a cofibration. Thus,
by a standard induction (see, for example, the proof of Proposition 5.1.4
in [Ho]), we conclude that colimF ∼= V is cofibrant. �

Example 4.22. The pushout of

∂′R //

��

R0

R

will be denoted by Ŝ1 and is cofibrant.
Clearly Ŝ1 is not diffeomorphic to S1, because Ŝ1 has “tails” (see Fig-

ure 1). But even the diffeological subspace of Ŝ1 with the tails removed is
not diffeomorphic to S1, because of the point where the gluing occurs (see
Figure 2).

As we have seen in Proposition 4.16, the diffeological realization of any
simplicial set is cofibrant. However, the spaces built in this way have tails
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•

Figure 1. Ŝ1.

•

Figure 2. Ŝ1 with tails removed.

and gluing points, and so cannot be smooth manifolds. Nevertheless, we are
able to show that S1 is a smooth retract of such a realization, and therefore
that it is cofibrant.

Proposition 4.23. S1 is cofibrant.

Proof. Let X be the simplicial set whose nondegenerate simplices are:

x x

y y

A

B

//

a

FF

b

��

a

FF
//

Note that the left edge is identified with the right edge, forming a cylinder.
So |X|D consists of two copies of A2 glued along two lines a and b, and is
cofibrant. There is a map |X|D → S1 sending a point to eiπθ, where θ is the
point’s horizontal position on the page. More precisely, let σA : A2 → S1

be defined by σA(x, y, z) = eiπ(z−x), and let σB : A2 → S1 be defined by

σB(x, y, z) = eiπ(1+z−x). The affine functions z − x and 1 + z − x take the
values shown here:

−1 1

0 2

A

B

//

a

FF

b

��

a

FF
//

Since those values are used modulo 2, σA and σB agree on the identified
lines a and b, and thus define a smooth function σ : |X|D → S1.

It will suffice to prove that σ has a smooth section s : S1 → |X|D. In
order to map into |X|D, we must be careful to tangentially approach the
lines along which the gluing occurs. Here is what our embedding will look
like:

−1/2 1/2

θ

0

1/2

1
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The function describing the height of the portion on the left is given by

R(θ) = φ(2|θ|) (1− |θ|) + (1− φ(2|θ|)) 1

2
,

for −1/2 ≤ θ ≤ 1/2, where φ is a cut-off function. This blends between the
function 1−|θ|, which gives the edges a and b of the left simplex for |θ| near
1/2, and the constant function 1/2, near θ = 0. For −1/2 ≤ θ ≤ 1/2, the

unique point (x, y, z) ∈ A2 such that σA(x, y, z) = eiπ(z−x) = eiπθ and y =
R(θ) is given by c(θ) := ((1−θ−R(θ))/2, R(θ), (1+θ−R(θ))/2). A similar
argument works for the second simplex, and so our section s : S1 → |X|D is
given by

s(eiπθ) =

{
(c(θ), A), −1

2 ≤ θ ≤
1
2 ,

(c(θ − 1), B), 1
2 ≤ θ ≤

3
2 .

The section s is smooth because it approaches the edges tangentially. �

Our argument actually shows that the natural map |SD(S1)|D → S1 has
a smooth section. We conjecture that this is true for any smooth manifold,
and therefore that every smooth manifold is cofibrant.

In Example 4.29 we will see that there exist noncofibrant diffeological
spaces.

4.3. Fibrant diffeological spaces. Motivated by Theorem 4.11, we now
study the fibrant diffeological spaces. After some preliminaries, we show
that diffeological bundles with fibrant fibers are fibrations, which allows us to
show that the irrational tori are not cofibrant. We then prove the elementary
fact that every diffeological group is fibrant, and use this to show that any
homogeneous diffeological space is fibrant. The fact that diffeomorphism
groups are diffeological groups then implies that every smooth manifold is
fibrant, one of our key results. We are also able to show that many function
spaces are fibrant. We then give examples of nonfibrant diffeological spaces,
in particular showing that a smooth manifold with boundary is not fibrant.

Proposition 4.24 (Right Proper). Let

W
h //

��

X

f
��

Z g
// Y

be a pullback diagram in Diff with f a fibration and g a weak equivalence.
Then h is also a weak equivalence.

Proof. This follows from the right properness of the standard model struc-
ture on sSet. �

Lemma 4.25. Fibrant diffeological spaces are closed under coproducts in
Diff, and if X is fibrant, then so is each path component.
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Proof. This is because both D(Λn) and D(Rn) are connected. �

Proposition 4.26. The class of fibrations in Diff is closed under isomor-
phisms, pullbacks, smooth retracts and finite compositions.

Proof. This is formal. �

As an immediate consequence of this proposition, we have

Corollary 4.27. Let f : X → Y be a fibration in Diff. Then every fiber of
f is fibrant, that is, for any y ∈ Y , f−1(y) with the sub-diffeology from X is
fibrant.

Proposition 4.28. Any diffeological bundle with fibrant fiber is a fibration.

Proof. Let f : X → Y be a diffeological bundle with fibrant fiber F . Given
any commutative diagram in Diff

Λn

a
��

b // X

f
��

Rn c
// Y,

we have the following pullback diagram in Diff

Rn × F
π1
��

d // X

f
��

Rn c
// Y,

where we have used Proposition 3.16 to see that the pullback is trivial.
Therefore, we have the following commutative diagram:

Λn

a

  

b

&&

(a,e)

$$

Rn × F
π1
��

d // X

f
��

Rn c
// Y.

Let g : Rn → F be any smooth map and consider the smooth section
(1, g) : Rn → Rn × F . Then f ◦ d ◦ (1, g) ◦ π1 = c ◦ π1 ◦ (1, g) ◦ π1 = c ◦ π1,
and by the surjectivity of π1, we have the following commutative triangle

X

f
��

Rn

d◦(1,g)
==

c
// Y.
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We also want the triangle

Λn
b //

a
��

X

Rn,
d◦(1,g)

==

to commute, which requires us to pick the smooth map g carefully. Since F
is fibrant, we choose g to be a lifting of

Λn

a
��

e // F

Rn.
g

==

Then, for any x ∈ Λn, we have d ◦ (1, g) ◦ a(x) = d(a(x), g ◦ a(x)) =
d(a(x), e(x)) = (d ◦ (a, e))(x) = b(x). �

Example 4.29. Not every diffeological space is cofibrant. For example, the
irrational torus T 2

θ is not cofibrant. To see this, first recall that the quotient
map T 2 → T 2

θ is a trivial fibration. But we saw in Example 3.20 that the
identity map T 2

θ → T 2
θ has no smooth lift to a map T 2

θ → T 2. See [Wu2,
Example 6.8(2)] for an alternative proof of this example.

Proposition 4.30. Every diffeological group is fibrant.

Proof. The right adjoint of an adjoint pair between two categories with
finite products always sends group objects to group objects. The group
objects in Diff and in sSet are precisely diffeological groups and simplicial
groups, respectively, and Moore’s lemma (see, for example, [GJ, Lemma
I.3.4]) says that every simplicial group is fibrant in sSet. Hence the result
follows. �

Example 4.31. Here is a more concrete way to see that every diffeological
abelian group A is fibrant. Given a solid diagram

Λn
F //

��

A

Rn
F̃

>>

in Diff, define the extension F̃ directly as follows. For any 0 ≤ k < n and
1 ≤ i1 < · · · < ik ≤ n, write Pi1,...,ik : Rn → Λn for the orthogonal projection
onto the subspace where xi = 0 for all i 6∈ {i1, . . . , ik}. When k = 0, this is
the constant map Rn → Λn sending everything to 0. All of these projections
are clearly smooth. Then the smooth map

F̃ =
n−1∑
k=0

∑
1≤i1<···<ik≤n

(−1)n−k+1F ◦ Pi1,...,ik

is an extension of F .
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Example 4.32.

(1) Every Lie group is fibrant.
(2) Every irrational torus is fibrant.
(3) Let G be a diffeological group. Then C∞(X,G) is also a diffeological

group for any diffeological space X, and is therefore fibrant. Simi-
larly, for any x0 ∈ X, the pointed mapping space C∞((X,x0), (G, e))
is a diffeological group when given the sub-diffeology, and is thus
fibrant. Since there is a diffeomorphism (G, e) ∼= (G, g0) for any
g0 ∈ G, the same is true with e replaced by g0.

Definition 4.33. Let G be a diffeological group and let H be a subgroup of
G. Then the set G/H of left (or right) cosets, with the quotient diffeology,
is called a homogeneous diffeological space.

Theorem 4.34. Every homogeneous diffeological space is fibrant.

Proof. Given b : Λn → G/H, let a : R0 → G be defined by a(0) ∈
π−1(b(0, . . . , 0)), where π : G → G/H is the quotient map. Then we have
the following smooth liftings:

R0 a //

��

G

π
��

Λn
b //

α

<<

��

G/H

Rn.

β

EE

γ

<<

The lifting α exists because R0 → Λn is the diffeological realization of a
trivial cofibration in sSet and π is a fibration in Diff by Proposition 4.28.
The lifting β exists because G is fibrant. And γ = π ◦ β is easily seen to be
the required lifting. �

Remark 4.35. The proof of this theorem shows that if a smooth map
X → Y is a fibration in Diff and a surjective set map, with X fibrant, then
Y is also fibrant.

Corollary 4.36. Every smooth manifold is fibrant.

Proof. Use Theorem 4.34, Lemma 4.25, and the fact that the homogeneous
diffeological space Diff(M)/ stab(M,x) is diffeomorphic to M ([Do]), where
M is an arbitrary connected smooth manifold, x ∈ M , and stab(M,x) =
{f ∈ Diff(M) | f(x) = x} is a subgroup of Diff(M). �

In Corollary 4.18 we showed that for every diffeological space X there is
a trivial fibration from a cofibrant diffeological space X̃ to X. Thus, if X
is fibrant, X̃ is both cofibrant and fibrant. In particular, if M is a smooth
manifold, then M̃ is both cofibrant and fibrant, and is weakly equivalent to
M .



1298 J. DANIEL CHRISTENSEN AND ENXIN WU

Remark 4.37. In Corollary 4.41, we prove a general result about fibrancy
of function spaces, which gives a second proof that smooth manifolds are
fibrant, as well as a proof that C∞(S1,M) is fibrant for any smooth manifold
M .

We conjecture that if X is a cofibrant diffeological space and Y is a fibrant
diffeological space, then C∞(X,Y ) is fibrant. We prove the following special
case.

Proposition 4.38. Let Y be a fibrant diffeological space. Then C∞(Rm, Y )
is fibrant for any m ∈ N.

More generally, the proof below shows that if f : X → Y is a fibration in
Diff, then so is f∗ : C∞(Rm, X)→ C∞(Rm, Y ) for any m ∈ N.

Proof. It is easy to see that for any n,m ∈ N, i× 1 : Λn ×Rm → Rn ×Rm
is the diffeological realization of the (trivial) cofibration

∪ni=1d
i(∆n+m) ↪→ ∆n+m

in sSet. Then the result follows from the cartesian closedness of Diff. �

Remark 4.39. One might expect that the above proposition generalizes
immediately to the case of C∞(|A|D, Y ), with A an arbitrary simplicial set
and Y a fibrant diffeological space. However, the above proof does not go
through in general, since the diffeological realization does not commute with
finite products, as shown in Proposition 4.13.

Theorem 4.40. Let X be a fibrant diffeological space. Then every D-open
subset of X with the sub-diffeology is also fibrant.

Proof. We write Λnsub for Λn with the sub-diffeology from Rn. Let U be
an open neighborhood of Λnsub in Rn, and let Y be an arbitrary diffeological
space. We claim that if a smooth map f : Λnsub → Y has a smooth extension
g : U → Y , then f has a smooth extension h : Rn → Y .

Here is the proof of the claim. Since Λnsub is the set of all coordinate
hyperplanes in Rn, and U is an open neighborhood of Λnsub in Rn, there
exists an open neighborhood V of Λnsub in Rn with V ⊆ U such that for any
v ∈ V , we have λv ∈ V for any λ ∈ [0, 1]. Therefore, {V, Rn \ Λnsub} forms
an open cover of Rn. Let {µ, ν} be a smooth partition of unity subordinate

to this covering. Then ĥ(x) = µ(x)x is a smooth map ĥ : Rn → U , whose

restriction to Λnsub is the identity map on Λnsub. Hence, h = g ◦ ĥ : Rn → Y
is the desired smooth extension of f .

Now let A be a D-open subset of a fibrant diffeological space X. Then
for any smooth map α : Λn → A, we have a smooth extension β : Rn → X
making the following diagram commutative:

Λn
α //

��

A �
�

// X.

Rn
β

66
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Then β−1(A) is an open neighborhood of Λnsub in Rn, and α : Λn → A
has a smooth lifting β−1(A) → A. Therefore, α has a smooth extension
γ : Rn → A by the claim, which implies the fibrancy of A. �

Corollary 4.41. Let X be a diffeological space that is compact under the
D-topology, and let N be a smooth manifold. Then C∞(X,N) is a fibrant
diffeological space. Moreover, if x0 ∈ X and n0 ∈ N are chosen points,
then the pointed mapping space C∞((X,x0), (N,n0)) is fibrant when given
the sub-diffeology.

Proof. Let N → Rn be an embedding, and let U be an open tubular neigh-
borhood of N in Rn, so that the inclusion i : N → U has a smooth retract
r : U → N . Then the composite

C∞(X,N)
i∗ // C∞(X,U)

r∗ // C∞(X,N)

is the identity map. That is, C∞(X,N) is a smooth retract of C∞(X,U).
To prove that C∞(X,N) is fibrant, it is enough to prove that C∞(X,U) is
fibrant. Since X is compact, C∞(X,U) is D-open in C∞(X,Rn); see [CSW,
Proposition 4.2]. Note that C∞(X,Rn) is a diffeological group, hence fi-
brant. By Theorem 4.40, C∞(X,U) is fibrant. The argument in the pointed
case is similar. �

In particular, when X is a point, this corollary implies that every smooth
manifold is fibrant. This is the second proof of this fact. Also, this corol-
lary shows that the free loop space C∞(S1, N) and the based loop space
C∞((S1, s0), (N,n0)) of a smooth manifold are fibrant.

Example 4.42. Let X be a topological space. Then C(X) is a fibrant
diffeological space, since D(Λn) → D(Rn) has a retract in Top. This also
follows from the proof of Proposition 4.14. However, if Y is a diffeological
space, then the natural map Y → C(D(Y )) is not always a weak equivalence
in Diff. Y = T 2

θ , the irrational torus of slope θ, is such an example.

Not every diffeological space is fibrant:

Example 4.43. Λn is not fibrant for any n ≥ 2, since the natural injec-
tive map Λn → Rn, which is a trivial cofibration, does not have a smooth
retraction Rn → Λn. This follows immediately from the definition of the
coequalizer diffeology on Λn.

Note that the inclusion map Λnsub → Rn is also a cofibration and in fact
has the left lifting property with respect to all fibrations. This follows imme-
diately from the fact that Λn → Λnsub → Rn has this lifting property, where
the first map is the natural bijection, which is in particular an epimorphism.
Therefore, if Λnsub were fibrant, then the inclusion map i : Λnsub → Rn would
have a smooth retraction f : Rn → Λnsub. Suppose this is the case. Then the
composition i ◦ f : Rn → Rn is a smooth map preserving the axes, and so
(i◦f)∗ = id : T0Rn → T0Rn. This implies that i◦f is a local diffeomorphism
at 0 by the inverse function theorem, which is a contradiction.
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For the same reasons, neither ∂′Rn nor ∂′Rnsub is fibrant for any n ≥ 2.
Similarly, many colimits of diffeological spaces are not fibrant. For exam-

ple, Ŝ1 defined in Example 4.22 is not fibrant, nor is the wedge of two or
more smooth manifolds of positive dimension.

Example 4.44. For any pointed diffeological space (X,x), we can construct
the path space P (X,x) = C∞((R, 0), (X,x)). This diffeological space is
always smoothly contractible, since we have a smooth contracting homotopy
α : P (X,x) × R → P (X,x) defined by α(f, t)(s) = f(ts). We also have a
natural smooth map ev1 : P (X,x)→ X defined by f 7→ f(1). However, ev1

is not always a fibration in Diff. For example, take X = Λn for n ≥ 2, and let
x = 0 ∈ X. It suffices to show that the fiber of ev1 at x, i.e., the loop space
Ω(X,x), is not fibrant. We can construct a smooth map H : X → Ω(X,x)
by H(y)(t) = ψ(t)y, where ψ : R → R is a smooth function such that
ψ(t) = 0 when t ≤ 0 or t ≥ 1 and ψ(1/2) = 1. Since ev1/2 ◦H = idΛn , Λn is
a smooth retract of Ω(X,x). We saw in Example 4.43 that Λn is not fibrant,
and so it follows that Ω(X,x) is not fibrant.

It is unfortunate that ev1 is not a fibration, as otherwise a standard
mapping path space construction could be used to factor many maps into a
weak equivalence followed by a fibration.

Example 4.45. Write R̂n for Rn with the diffeology generated by a set S
of smooth maps from Rn−1 to Rn which contains all the natural inclusions
Rn−1 → Rn into the coordinate hyperplanes. Then R̂n is not fibrant for
n ≥ 1. If it were, then there would exist a smooth map F : Rn → R̂n
making the diagram

Λn
i //

i
��

R̂n
j
// Rn

Rn
F

==

commute, where i is the usual inclusion and j is the identity map. Since
j ◦ F is the identity map on the coordinate hyperplanes, it must induce the
identity map on the tangent spaces at 0. But, in a neighbourhood of 0, the
map F must factor through Rn−1, which means that j ◦F has rank at most
n− 1.

The same method shows that for any n,m ∈ N with n > m, Rn, with
the diffeology generated by any set S ⊆ C∞(Rm,Rn) which contains all the
natural inclusions Rm → Rn into the coordinate m-planes, is not fibrant.

Example 4.46. X = [0,∞) as a diffeological subspace of R is not fibrant.
It is not hard to show that X → R0 has the right lifting property with
respect to Λ2 → R2, but we will see that it does not have the right lifting
property with respect to Λ3 → R3. Recall that Λ3 is a colimit of three copies
of R2 glued along three lines. Let f : Λ3 → X be defined by fi : R2 → X
with fi(xj , xk) = (xj − xk)

2 for {i, j, k} = {1, 2, 3}. Assume that f has
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a smooth extension G : R3 → X, that is, that there exists a nonnegative
smooth function F : R3 → R such that

F (x1, x2, 0) = (x1 − x2)2,

F (0, x2, x3) = (x2 − x3)2,

F (x1, 0, x3) = (x1 − x3)2.

Consider the composition h : R
g
// R3 F // R , with g(t) = (t, t, t). We

compute some partial derivatives of F . First,

F1(x1, x2, 0) =
∂

∂x1
(x1 − x2)2 = 2(x1 − x2),

and so F11(x1, x2, 0) = 2 and F12(x1, x2, 0) = −2. Thus F1(0, 0, 0) = 0,
F11(0, 0, 0) = 2 and F12(0, 0, 0) = −2. Similarly, we find that Fi(0, 0, 0) = 0
and that Fij(0, 0, 0) is 2 if i = j and is −2 if i 6= j. Clearly h(0) = 0.
By the chain rule, h′(t) =

∑
i Fi(t, t, t), and so h′(0) = 0. Also, h′′(t) =∑

i,j Fij(t, t, t), and so h′′(0) = −6. It follows that h(t) = −3t2 + o(t2),
which contradicts the fact that F is nonnegative.

Corollary 4.47. Any diffeological space containing R≥0×Rn with the sub-
diffeology of Rn+1 as a D-open subset, for some n ∈ N, is not fibrant. In
particular, any smooth manifold with boundary or with corners is not fibrant.

Proof. This follows from Theorem 4.40, Example 4.46, and the fact that
the half line with the sub-diffeology of R is a smooth retract of R≥0×Rn. �

Example 4.48.

(1) For n ≥ 1, let Xn be [0,∞) equipped with the diffeology generated
by the map Rn → [0,∞) given by x 7→ ‖x‖2. Then the method
used in Example 4.46 shows that Xn is not fibrant. Note that Xn is
diffeomorphic to the quotient diffeological space Rn/O(n).

(2) Note that Xn → Xn+1 given by x 7→ x is smooth. Write X∞ for
the colimit. Then the diffeology on X∞ and the sub-diffeology from
R are different; see [IW] or [Wu1, Remark 1.8.2]. Moreover, the
method used in Example 4.46 shows that X∞ is not fibrant.

(3) Let G be a finite cyclic group acting on R2 by rotation. By a similar
method, one can show that the orbit space R2/G with the quotient
diffeology is not fibrant.

(4) Let Z2 act on Rn by (x1, . . . , xn) 7→ (±x1, . . . ,±xn). Then the orbit
space Rn/Z2 with the quotient diffeology is not fibrant, since X1 is
a smooth retract of Rn/Z2.
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