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Dynamics of the monodromies of the
fibrations on the magic 3-manifold

Eiko Kin

Abstract. We study the magic manifold N which is a hyperbolic and
fibered 3-manifold. We give an explicit construction of a fiber Fa and its
monodromy : Fa → Fa of the fibration associated to each fibered class
a of N . Let δg (resp. δ+g ) be the minimal dilatation of pseudo-Anosovs
(resp. pseudo-Anosovs with orientable invariant foliations) defined on
an orientable closed surface of genus g. As a consequence of our result,
we obtain the first explicit construction of the following pseudo-Anosovs;
a minimizer of δ+7 and conjectural minimizers of δg for large g.
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1. Introduction

In this paper, we explore the dynamics of monodromies of fibrations on a
hyperbolic, fibered 3-manifold, called the magic 3-manifold N , which is the
exterior of the 3 chain link C3, see Figure 1(1). We first set some notations,
then describe the motivation of our study. Let Σ be an orientable surface
(possibly with punctures). A homeomorphism Φ : Σ → Σ is pseudo-Anosov
if there exist a pair of transverse measured foliations (Fu, µu) and (Fs, µs)
and a constant λ = λ(Φ) > 1 such that

Φ(Fu, µu) = (Fu, λµu) and Φ(Fs, µs) = (Fs, λ−1µs).

Then Fu and Fs are called the unstable and stable foliations (or invariant
foliations), and λ is called the dilatation of Φ. Let Mod(Σ) be the mapping
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Figure 1. (1) 3 chain link C3. (2) Braided link br(σ2
1σ
−1
2 ).

Our convention of the orientation is that the meridian of a
component of the link is chosen as in (3).

class group of Σ, that is Mod(Σ) is the group of isotopy classes of orientation
preserving homeomorphisms on Σ fixing punctures setwise. A mapping
class φ ∈ Mod(Σ) is called pseudo-Anosov if φ contains a pseudo-Anosov
homeomorphism Φ : Σ → Σ as a representative. The topological entropy
ent(Φ) of Φ is equal to log λ(Φ), and ent(Φ) attains the minimal entropy
among all homeomorphisms which are isotopic to Φ, see [5, Exposé 10]. In
the case φ = [Φ], we denote by λ(φ) and ent(φ), the dilatation λ(Φ) and
topological entropy ent(Φ) = log λ(Φ).

We take an element φ ∈ Mod(Σ). Let Tφ be its mapping torus, i.e., if Φ
is a representative of φ, then

Tφ = Σ × R/ ∼
where ∼ identifies (x, t + 1) with (Φ(x), t) for x ∈ Σ and t ∈ R. Such a Φ
is called the monodromy of Tφ. The vector field ∂

∂t on Σ ×R induces a flow
Φt on Tφ, which is called the suspension flow. The hyperbolization theorem
by Thurston [36] tells us that a 3-manifold M which is homeomorphic to
Tφ admits a hyperbolic structure if and only if φ is pseudo-Anosov. The
magic manifold N is in fact a hyperbolic, fibered 3-manifold, since N is
homeomorphic to a 4-puncture sphere bundle over the circle with the pseudo-
Anosov monodromy as in Figure 1(2) (see Lemma 2.6(1)).

In a paper [35] Thurston introduced a norm ‖ · ‖ on H2(M,∂M ;R) for
hyperbolic 3-manifolds and proved that the unit ball UM with respect to
the Thurston norm ‖ · ‖ is a compact, convex polyhedron. When M is
homeomorphic to a hyperbolic, fibered 3-manifold Tφ, he gave a connection
between the Thurston norm ‖ · ‖ and fibrations on M . In particular if such
a 3-manifold M has the second Betti number b2(M) which is greater than
1, he proved that there exists a top dimensional face Ω on ∂UM , called a
fibered face such that every integral class a of H2(M,∂M ;Z) which is in the
open cone over Ω corresponds to a fiber Fa of the fibration associated to a
with a monodromy Φa : Fa → Fa, that is Tφa is homeomorphic to M , where
φa = [Φa]. Such an integral class a is called a fibered class.
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Since φa = [Φa] is pseudo-Anosov for each fibered class a, M provides
infinitely many pseudo-Anosovs on fibers with distinct topological types. A
theorem by Fried [6, 7] asserts that the monodromy Φa : Fa → Fa and
the (un)stable foliation Fa of Φa can be described by using the suspension
flow Φt and the suspension of the (un)stable foliation of Φ. We pose the
question: how describe practical constructions of Φa : Fa → Fa and Fa
for each fibered class a? The theorem by Fried does not give us concrete
descriptions of them.

E. Hironaka gave concrete descriptions of the monodromies of fibrations
associated to sequences of fibered classes on some class of hyperbolic fibered
3-manifolds, see [11, 12]. However no one constructed explicitly the mon-
odromy of the fibration associated to all of the fibered classes on a single
hyperbolic, fibered 3-manifold M with b2(M) > 1. In this paper we de-
scribe them concretely for the magic manifold N . The motivation of our
study comes from minimal dilatations on pseudo-Anosovs and their asymp-
totic behaviors. We fix a surface Σ, and consider the set of dilatations of
pseudo-Anosovs on Σ,

dil(Σ) = {λ(φ) | φ ∈ Mod(Σ) is pseudo-Anosov}.

Arnoux–Yoccoz and Ivanov observed that for any constant c > 1, there exist
finite elements λ ∈ dil(Σ) so that λ < c, see [15]. In particular, there exists
a minimum δ(Σ) of dil(Σ). Let Σg be a closed surface of genus g, and Σg,n a
closed surface of genus g removing n ≥ 1 punctures. We let δg = δ(Σg) and
δg,n = δ(Σg,n). We denote by Dn, an n-punctured disk. A mapping class
φ ∈ Mod(Dn) defines a mapping class φ′ ∈ Mod(Σ0,n+1) fixing a puncture
and vice versa. Moreover φ is pseudo-Anosov if and only if φ′ is pseudo-
Anosov. In this case the equality λ(φ) = λ(φ′) holds. Thus δ(Dn) is equal to
the minimal dilatation of pseudo-Anosov elements φ′ ∈ Mod(Σ0,n+1) fixing
a puncture. In particular we have δ(Dn) ≥ δ(Σ0,n+1).

The minimal dilatation problem is to determine an explicit value of δ(Σ),
and to identify a pseudo-Anosov element φ ∈ Mod(Σ) which achieves δ(Σ)
(i.e., minimizer of δ(Σ)). A naive but natural question is this: What does
a pseudo-Anosov homeomorphism Φ on Σ which achieves δ(Σ) look like?
In other words, what does a train track representative of φ = [Φ] (which
enables us to describe the dynamics of Φ : Σ → Σ) look like?

Some of the minimal dilatations are already determined. Also there are
partial results. For example, δ2 is computed in [4], but an explicit value
of δg is not known for g ≥ 3. If we denote by δ+

g , the minimal dilatation
of pseudo-Anosovs defined on Σg with orientable invariant foliations, then
explicit values of δ+

g for 2 ≤ g ≤ 8 except g = 6 are known, see [39, 21]
and [10, 1, 20]. The minimal dilatation on an n-punctured disk, δ(Dn) is
determined for 3 ≤ n ≤ 8, see [34, 9, 22].

The asymptotic behaviors of the minimal dilatations are shown in the
left column of Table 1. Here Ag � Bg means that there exists a constant
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Table 1. Asymptotic behaviors of minimal dilatations and
smallest known upper bounds, where δ(D4) ≈ 2.2966 is the
largest root of t4 − 2t3 − 2t + 1 [34], and δ(D5) ≈ 1.7220 is
the largest root of t4 − t3 − t2 − t+ 1 [9].

asymptotic behaviors smallest known upper bounds

log δg � 1/g [33] (U1) lim sup
g→∞

g log δg ≤ log(3+
√

5
2 ) [10, 1, 20]

log δ+
g � 1/g [29, 14] (U2) lim sup

g 6≡0 (mod 6)
g→∞

g log δ+
g ≤ log(3+

√
5

2 ) [10, 17]

(U3) lim sup
g≡6 (mod 12)

g→∞

g log δ+
g ≤ 2 log δ(D5) [17]

log δ0,n � 1/n [14] (U4) lim sup
n→∞

n log δ0,n ≤ 2 log(2 +
√

3) [14, 18]

log δ1,n � 1/n [37] (U5) lim sup
n→∞

n log δ1,n ≤ 2 log δ(D4) [17]

Given g ≥ 2, log δg,n � logn
n [37] (U6) lim sup

n→∞

n log δg,n
logn ≤ 2 if g enjoys (∗) [19]

c > 0 which does not depend on g so that
Ag
c < Bg < cAg. As we can

see from table, we have log δ0,n � 1/n and log δ1,n � 1/n, but a result by
Tsai [37] says that the situation in the case g ≥ 2 is quite different from the
case g = 0 or 1. In the right column of Table 1, the smallest known upper
bounds of the minimal dilatation. We give a precise condition (∗) in (U6)
in the following.

Theorem 1.1 ([19]). Suppose that g ≥ 2 satisfies

(∗) gcd(2g + 1, s) = 1 or gcd(2g + 1, s+ 1) = 1 for each 0 ≤ s ≤ g.

Then

(1.1) lim sup
n→∞

n log δg,n
log n

≤ 2.

In particular, if 2g + 1 is prime, then g enjoys (∗), and hence (1.1) holds.

The upper bounds (U1)–(U6) are realized by sequences of monodromies of
the magic manifold N after possibly Dehn filling cusps along the boundary
slopes of the fibrations. This is also true for known minimizers of the minimal
dilatations δ2, δ(Dn) for 3 ≤ n ≤ 8 and δ+

g for 2 ≤ g ≤ 8 except g = 6.
For (U1)–(U5), the sequences project to a single fibered face, and the image
of each sequence converges to some interior point. For (U6), the sequence
also projects to a single fibered face, and the image converges to a point
on the boundary of the fibered face. These results say that the topological
types of fibers of fibrations on N are surprisingly full of variety. However, no
explicit constructions of sequences of pseudo-Anosovs needed for the proofs
of (U1)–(U6) except (U4) were given so far. Also an explicit example of a
minimizer of δ+

7 was not given. In this paper we prove the following which
allows us to construct pseudo-Anosovs in question explicitly.
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Theorem 1.2. We have algorithms to construct the following. For each
fibered class a of N :

(1) the monodromy Φa : Fa → Fa of the fibration on N associated to a,
(2) in the case a is primitive, a train track representative pa : τa → τa

of φa = [Φa] whose incidence matrix is Perron–Frobenius.

In [30] Oertel constructs branched surfaces which carry fibers of fibrations
on hyperbolic, fibered 3-manifolds. In the proof of Theroem 1.2(1), we
construct branched surfaces B+ and B− following [30] which carry fibers of
fibrations associated to fibered classes on N .

It is well-known that a train track representative pa : τa → τa as in The-
orem 1.2(2) can recover a pseudo-Anosov homeomorphism which represents
φa, and it serves the monodromy Φa : Fa → Fa of the fibration associated
to a. However we do not need the claim (2) for the proof of (1). We can
construct the both fiber Fa and monodromy Φa : Fa → Fa in an explicit
and combinatorial way.

Let N(r) be the manifold obtained from N by Dehn filling one cusp
along the slope r ∈ Q. See Figure 1(3) for our convention of the orientation.
As a consequence of Theorem 1.2, we can give constructive descriptions of
monodromies of fibrations associated to any fibered class on the hyperbolic,
fibered manifolds N(r) for infinitely many r ∈ Q. For example, we can do
them for Whitehead sister link exterior N( 3

−2), the simplest 3-braided link

exterior N( 1
−2) and the Whitehead link exterior N(1). In particular, we can

construct the following pseudo-Anosov homeomorphisms explicitly:

• A minimizer of δ+
7 , see Example 4.3.

• Conjectural minimizers of δ+
g for g ≡ 2, 4 (mod 6), see [21, Ques-

tion 6.1]. See also Remark 1.3 and Example 4.2.
• Conjectural minimizers of δ+

g for large g such that g 6≡ 0 (mod 6),
see [17, Conjecture 1.12(2)]. See also Examples 4.2, 4.3, 4.4.
• Conjectural minimizer of δg for large g, see [17, Conjecture 1.12(1)].

See also Example 4.3.
• Conjectural minimizers of δ1,n for large n, see [17, Conjecture 1.13].

See also Example 4.5.
• Sequences of pseudo-Anosov homeomorphisms to give the smallest

known upper bounds (U1)–(U6) in Table 1.

Remark 1.3. Hironaka gave the first explicit construction of the orientable
train track representative on Σg for g ≡ 2, 4 (mod 6) whose dilatation equals
the conjectural minimum δ+

g for such a g, see [13]. Hironaka also constructed
explicitly the infinite subsequence of pseudo-Anosov homeomorphisms de-
fined on Σg with some condition on g to prove the upper bounds (U1) and
(U2), see [11].

Problem 1.4. Find the word which represents the mapping class φa =
[Φa] for each fibered class a of N by using the standard generating set on
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Mod(Σg,n). Its word length could be long, but it would be represented by a
simple word, see Remark 3.11.

Problem 1.5. Develop the methods given in Section 3 and prove the same
claim in Theorem 1.2 for some class of hyperbolic, fibered 3-manifolds.

The paper is organized as follows. In Section 2, we review basic facts on
train tracks, the Thurston norm and clique polynomials. We also review
some properties of the magic manifold. In Section 3, we prove Theorem 1.2.
In the proof, we construct the directed graph Γa with a metric on the set of
edges, which is induced from the train track representative pa : τa → τa of
φa. Such a directed graph Γa captures the dynamics of both Φa : Fa → Fa
and pa : τa → τa. Then we construct the curve complex Ga induced from Γa,
which is an undirected, weighted graph on the set of vertices. Such curve
complexes are studied by McMullen [28]. In our setting, Ga gives us some
insight into what the train track representative pa : τa → τa looks like. In
Section 4, we exhibit some subsequences of pseudo-Anosovs which can be
used in the proof of the upper bounds (U1)–(U6). We find that the types of
curve complexes in each subsequence are fixed. These curve complexes give
us some hints to know what the pseudo-Anosovs with the smallest dilations
look like.

Acknowledgements. The author thanks Hideki Miyachi, Mitsuhiko Taka-
sawa and Hiroyuki Minakawa. H. Miyachi and M. Takasawa gave valuable
comments on this paper. H. Minakawa gave a series of lectures on his work
at Osaka University in 2004. The author learned many things on pseudo-
Anosovs and pseudo-Anosov flows during his course. Theorem 1.2(1) is
inspired by his construction of pseudo-Anosovs [29].

2. Preliminaries

2.1. Train tracks. Definitions and basic results on train tracks are con-
tained in [32]. See also [24]. In this section, we recall them for the conve-
nience of the readers.

Throughout the paper, surfaces are orientable. Let F be a surface with
possibly punctures or boundary. Let τ be a branched 1-submanifold on F .
We say that τ is a train track if:

(1) τ is a smooth graph such that the edges are tangent at the vertices,
i.e., τ looks as in Figure 2(1) near each vertex of τ .

(2) Each component of F \ τ is a disk with more than 3 cusps on its
boundary or an annulus with more than 1 cusp on one boundary
component and with no cusps on the other boundary component
(i.e., the other boundary component is the one of ∂F or a puncture
of F ).

See Figure 9(1) for an example of a train track on Σ0,4.
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(1) (2)

Figure 2. (1) Train track near vertex. (2) Fibered neighborhood.

folding

cusp

Figure 3. Folding map near a cusp.

Two edges of τ which are tangent at some vertex make a cusp, see Fig-
ure 3(left). Associated to the train track τ , we can define a fibered neighbor-
hood N (τ) ⊂ F whose fibers are segments given by a retraction N (τ)↘ τ .
The fibers in this case are called ties, see Figure 2(2).

Let F be a measured foliation on F . We say that F is carried by τ if F
can be represented by a partial measured foliation whose support is N (τ)
and which is transverse to the ties. (For the definition of partial measured
foliations, see [32, Section 1.2].)

Let σ be a train track on F . We say that σ is carried by τ if σ is isotopic
to a train track σ′ which is contained in N (τ) and which is transverse to the
ties (said differently, every smooth edge path on σ′ is transverse to the ties).
Let f : F → F be a homeomorphism. A train track τ is invariant under [f ]
if f(τ) is carried by τ , that is, f(τ) is isotopic to some train track σ′ which
satisfies the above. In this case, folding edges of τ ′ near cusps repeatedly
(see Figure 3 for a folding map), in other words, (up to isotopy) collapsing τ ′

onto τ smoothly yields a map p : τ → τ such that p maps vertices to vertices,
and p is locally injective at any points which do not map into vertices. Such
a p : τ → τ is called a train track representative of [f ]. An edge e of τ is
said to be infinitesimal (for p) if e is eventually periodic under p, that is
pm+n(e) = pn(e) for integers m > 0 and n ≥ 0. Other edges of τ are said
to be real. Let k be the number of the real edges of τ . Then we have a
k×k nonnegative integer matrix Mp = (mij), called the incidence matrix or
transition matrix for p : τ → τ (with respect to real edges), where mij is the
number of times so that the image p(ej) of the jth real edge passes through
the ith real edge ei in either direction. Also, p : τ → τ determines a finite,
directed graph Γp by taking a vertex for each real edge of τ , and then adding
mij directed edges from the jth real edge ej to the ith real edge ei. In other
words, we have mij directed edges from ej to ei if p(ej) passes through ei in
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either direction mij times . We say that Γp is the induced directed graph of
p : τ → τ .

A square, nonnegative integer matrix M is said to be Perron–Frobenius
if there exists an integer ` ≥ 1 such M ` is positive, that is each entry of
M ` is positive. In this case, the spectral radius of M is given by the largest
eigenvalue of M called the Perron–Frobenius eigenvalue, see [8].

The following theorem is well known.

Theorem 2.1 (Theorem 4.1 in [32] and its proof.). If Φ : F → F is a
pseudo-Anosov homeomorphism, then there exists a train track τ on F which
carries the unstable foliation Fu of Φ and a train track representative p :
τ → τ of φ = [Φ]. Such a representative p : τ → τ has the property
that the incidence matrix Mp is Perron–Frobenius and its Perron–Frobenius
eigenvalue is exactly equal to λ(Φ).

Conversely, if f : F → F is a homeomorphism and if p : τ → τ is a
train track representative of φ = [f ] such that its incidence matrix Mp is
Perron–Frobenius, then φ is pseudo-Anosov whose dilatation λ(φ) equals the
Perron–Frobenius eigenvalue of Mp, see Bestvina–Handel [2, Section 3.4].

2.2. Thurston norm, fibered face, entropy function. We review the
basic results on the Thurston norm and the relation between the Thurston
norm and hyperbolic, fibered 3-manifolds developed by Thurston, Fried,
Matsumoto and McMullen. Let M be an oriented hyperbolic 3-manifold
possibly ∂M 6= ∅. We recall the Thurston norm ‖ · ‖ : H2(M,∂M ;R)→ R.
For more detail, see [35]. Let F = F1 ∪ F2 ∪ · · · ∪ Fk be a finite union of
oriented, connected surfaces. We define χ−(F ) to be

χ−(F ) =

k∑
i=1

max{0,−χ(Fi)}.

The Thurston norm ‖ · ‖ is defined for an integral class a ∈ H2(M,∂M ;Z)
by

‖a‖ = min
F
{χ−(F )},

where the minimum is taken over all oriented surfaces F embedded in M
satisfying a = [F ]. The surface F which realizes the minimum is called a
minimal representative of a. Then ‖·‖ admits a unique continuous extension
‖ · ‖ : H2(M,∂M ;R) → R which is linear on rays through the origin. It is
known that the unit ball UM ⊂ H2(M,∂M ;R) with respect to the Thurston
norm ‖ · ‖ is a finite-sided polyhedron [35].

Let Ω be any top dimensional face on the boundary ∂UM of the Thurston
norm ball. We denote by CΩ, the cone over Ω with the origin, and we
denote by int(CΩ), the interior of CΩ. Thurston proved in [35] that if M
is a surface bundle over the circle and if F is any fiber of the fibration on
M , then there exists a top dimensional face Ω on ∂UM so that [F ] is an
integral class of int(CΩ). Moreover for any integral class a ∈ int(CΩ), its
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minimal representative Fa becomes a fiber of a fibration on M . Such a face
Ω is called a fibered face and an integral class a ∈ int(CΩ) is called a fibered
class. Thus, if the second Betti number b2(M) is greater than 1, then a
single 3-manifold M provides infinitely many pseudo-Anosovs on surfaces
with different topological types.

Let Ω be a fibered face of M . If a ∈ int(CΩ) is primitive and integral,
then the minimal representative Fa is a connected fiber of the fibration
associated a. The mapping class φa = [Φa] of the monodromy Φa : Fa → Fa
of its fibration is pseudo-Anosov (since M is hyperbolic). We define the
dilatation λ(a) and entropy ent(a) to be the dilatation and entropy of the
pseudo-Anosov φa. The entropy function defined on primitive fibered classes
is naturally extended to rational classes by homogeneity, i.e., for a rational
number r and a primitive fibered class a, the entropy of ra is defined to be
ent(ra) = 1

|r|ent(a).

Theorem 2.2 ([7, 26, 27]). The function given by a 7→ ent(a) for each
rational class a ∈ int(CΩ) extends to a real analytic convex function on
int(CΩ). The restriction ent|int(Ω) : int(Ω)→ R is a strictly convex function
which goes to ∞ toward the boundary of Ω.

By properties of ‖ · ‖ and ent, we see that the normalized entropy function

Ent = ‖ · ‖ent : int(CΩ)→ R
is constant on each ray in int(CΩ) through the origin.

We choose φ = [Φ] ∈ Mod(Σ), and we consider the mapping torus Tφ
with the suspension flow Φt. Hereafter we fix an orientation of Σ so that
its normal direction coincides with the flow direction of Φt. For S ⊂ Σ, we
define St ⊂ Tφ to be the image of S × {t} ⊂ Σ × {t} under the projection
p : Σ × R→ Tφ.

Theorem 2.3 (Theorem 7 and Lemma in [6]). Let Φ : F → F be a pseudo-
Anosov homeomorphism with stable and unstable foliations Fs and Fu on an

oriented surface F , and let φ = [Φ]. Let F̂s and F̂u denote the suspensions
of Fs and Fu by Φ. If Ω is a fibered face on Tφ with [F ] ∈ int(CΩ), then
for any minimal representative Fa of any fibered class a ∈ int(CΩ), we can
modify Fa by an isotopy which satisfies the following:

(1) Fa is transverse to the flow Φt, and the first return map : Fa → Fa
is precisely the pseudo-Anosov monodromy Φa : Fa → Fa of the
fibration on Tφ associated to a. Moreover Fa is unique up to isotopy
along flow lines.

(2) The stable and unstable foliations of the pseudo-Anosov Φa are given

by F̂s ∩ Fa and F̂u ∩ Fa.

Following [29], we introduce flowbands in Tφ.

Definition 2.4. Let J1 and J2 be embedded arcs in Tφ. Suppose that J1

and J2 are transverse to Φt. We say that J1 is connected to J2 (with respect
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to Φt) if there exists a positive continuous function t : J1 → R such that for
any x ∈ J1, we have:

• Φt(x)(x) ∈ J2, Φt(x) 6∈ J2 for 0 < t < t(x).

• The map J1 → J2 given by x 7→ Φt(x)(x) is a homeomorphism.

The flowband [J1, J2] is defined by

[J1, J2] = {Φt(x) | x ∈ J1, 0 ≤ t ≤ t(x)}.

Flowbands are used to build branched surfaces in Section 3.3.

2.3. Clique polynomials. We review some results on clique polynomials,
developed by McMullen [28]. As we will see in Section 3.7, clique polyno-
mials are useful to compute dilatations of pseudo-Anosov monodromies of
fibrations on fibered 3-manifolds.

Let (Γ,m) be a finite, directed graph Γ with a metric m : E(Γ) → R+

on the set of edges E(Γ). The metric m specifies the length of each edge.
Parallel edges and loops are allowed. We sometimes denote (Γ,m) by Γ
when m is obvious. The growth rate λ(Γ,m) is defined by

λ(Γ,m) = lim
T→∞

N0(T )1/T ,

where N0(T ) is the number of the closed, directed paths in Γ of length ≤ T .
When m(e) is a positive integer for each e ∈ E(Γ), we can add m(e)− 1

new vertices along each edge e to obtain a new directed graph Γ′ with the
metric 1 : E(Γ′)→ R+ sending each edge to 1. Then we have

λ(Γ,m) = λ(Γ′,1).

Suppose that φ is a pseudo-Anosov mapping class. Let p : τ → τ be
a train track representative of φ given in Theorem 2.1 and let Γp be the
induced directed graph of p : τ → τ . Theorem 2.1 implies that (Γp,1)
satisfies

(2.1) λ(φ) = λ(Γp,1).

Let G be a finite, undirected graph with no loops or parallel edges. Let
w : V (G) → R+ be a weight on the set of vertices V (G). The subset
K ⊂ V (G) forms a clique if they span a complete subgraph. (We allow
K = ∅.) The clique polynomial of (G,w) is defined by

Q(t) =
∑
K

(−1)(]K)tw(K),

where ]K denotes the cardinality of K, the weight of K is given by w(K) =∑
v∈K w(v), and the sum is over all cliques K’s of G. We sometimes denote

the weighted, undirected graph (G,w) by G when w is obvious.
McMullen relates the growth rates λ(Γ,m)’s to the clique polynomials

via the curve complexes of (Γ,m)’s. Let C ⊂ E(Γ) be a collection of edges
which form a closed, directed loop. If C never visits the same vertex twice,
then C is called a simple curve. A multicurve is a finite union of simple



DYNAMICS OF MONODROMIES 557

curves such that no two simple curves share a vertex. The curve complex of
(Γ,m) is the undirected graph G together with the weight w : V (G)→ R+,
which is obtained by taking a vertex for each simple curve C of Γ, and then
joining the two vertices C1 and C2 by an edge when (C1, C2) is a multicurve
of Γ. Then the metric m on E(Γ) induces the weight w on V (G) as follows.

w(C) =
∑
e∈C

m(e).

Theorem 2.5 ([28]). Let (G,w) be the curve complex of (Γ,m). Then
1

λ(Γ,m) is equal to the the smallest positive root of the clique polynomial Q(t)

of (G,w).

By (2.1) and Theorem 2.5, we can compute the dilatations of pseudo-
Anosovs by using the clique polynomials of curve complexes associated to
the pseudo-Anosovs. We do not need to compute the characteristic polyno-
mials of the incidence matrices for the dilatations. This observation is due
to Birman [3].

2.4. Fibered classes of the magic manifold N . In this section, we
review some properties on N which will be used in the paper. We give
orientations of components, K1, K2 and K3 of the 3 chain link C3 as in Fig-
ure 1(1). Each component bounds oriented 2-punctured disks, Fα, Fβ and
Fγ respectively. We set α = [Fα], β = [Fβ], γ = [Fγ ] ∈ H2(N, ∂N ;Z).
Then {α, β, γ} becomes a basis of H2(N, ∂N ;Z). We denote the class
xα + yβ + zγ ∈ H2(N, ∂N) by (x, y, z). The Thurston norm ball UN is
the parallelepiped with vertices ±α = ±(1, 0, 0), ±β = ±(0, 1, 0), ±γ =
±(0, 0, 1) and ±α + β + γ = ±(1, 1, 1) ([35, Example 3]), see Figure 5(1).
(Note that the minimal representative of κ is taken to be the 3-punctured
sphere, embedded in S3 \ C3, which contains the point ∞ ∈ S3 \ C3.)

Let br(σ2
1σ
−1
2 ) be the 3 components link in S3 as in Figure 1(2), i.e., it is

the link obtained from the closed 3-braid σ2
1σ
−1
2 together with the braid axis.

Then N = S3 \ C3 is homeomorphic to S3 \ br(σ2
1σ
−1
2 ), see Lemma 2.6(1).

This implies that N is a surface bundle over the circle with a fiber of the 4-
punctured sphere. Notice that every top dimensional face of ∂UN is a fibered
face, because of the symmetries of C3. To study monodromies of fibrations
on N , we can pick a particular fibered face, for example the fibered face ∆
with vertices (1, 0, 0), (1, 1, 1), (0, 1, 0) and (0, 0,−1), see Figure 5(1). The
open face int(∆) is written by

(2.2) int(∆) = {(x, y, z) | x+ y − z = 1, x > 0, y > 0, x > z, y > z}.

The Thurston norm ‖a‖ of a = (x, y, z) ∈ C∆ is given by x + y − z. An
integral class (x, y, z) ∈ C∆ is fibered (i.e., an integral class (x, y, z) is in
int(C∆) if and only if x, y and z are integers such that x > 0, y > 0, x > z
and y > z, see (2.2).
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K’ 1 
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(1) 

K 1 
K 2 

K 3 

(4) 

K’ 1 

K’ 3 

K’ 2 

Figure 4. (1)(2) 3 chain link C3, (3)(4) Braided link br(σ2
1σ
−1
2 ).

Any class a = (x, y, z) ∈ ∆ satisfies z = x + y − 1. Hence we can write
such a class a = (x, y, z) by [x, y]. Then we have

int(∆) = {[x, y] | 0 < x < 1, 0 < y < 1},

see Figure 5(2).
We denote by Tα the torus which is the boundary of a regular neighbor-

hood of K1. Let a = (x, y, z) ∈ int(C∆) be a primitive integral class. We
set ∂αFa = ∂Fa ∩ Tα which consists of the parallel simple closed curves on
Tα. We define Tβ, ∂βFa and Tγ , ∂γFa in a similar way.

Lemma 2.6 ([18] for (1)(3)(5), [20] for (6)(7), [17] for (4)). Suppose that
a = (x, y, z) ∈ int(C∆) is a primitive integral class.

(1) There is an orientation preserving homeomorphism

: S3 \ C3 → S3 \ br(σ2
1σ
−1
2 )

which sends the minimal representative Fα+β associated to α+ β to
the oriented 3-punctured disk bounded by the braid axis K ′2 as in Fig-
ure 4(4). Thus the pseudo-Anosov homeomorphism which represents
the mapping class of Mod(Σ0,4) corresponding to σ2

1σ
−1
2 becomes the

monodromy Φα+β : Fα+β → Fα+β of the fibration associated to α+β.

(2) The boundary slope of ∂αFa (resp. ∂βFa, ∂γFa) is given by y+z
−x

(resp. z+x
−y , x+y

−z ).

(3) We have ‖a‖ = x+ y − z. The number of the boundary components
of Fa is computed as follows.

](∂αFa) = gcd(x, y + z),

](∂βFa) = gcd(y, z + x),

](∂γFa) = gcd(z, x+ y),

where gcd(0, w) is defined by |w|.
(4) Let Φ(x,y,z) : F(x,y,z) → F(x,y,z) be the monodromy of the fibration on

N associated to (x, y, z) ∈ int(C∆). Then (y, x, z) ∈ int(C∆), and
(Φ(x,y,z))

−1 is conjugate to Φ(y,x,z).
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(5) The dilatation λ(a) = λ(x,y,z) is the largest root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

(6) The (un)stable foliation Fa of Φa has a property such that each
component of ∂αFa, ∂βFa and ∂γFa has x

gcd(x,y+z) prongs, y
gcd(y,x+z)

prongs and x+y−2z
gcd(z,x+y) prongs respectively. Moreover Fa does not have

singularities in the interior of Fa.
(7) Fa is an orientable foliation if and only if x and y are even and z is

odd.

The proof of (2) is easy. For the convenience of the proof of Lemma 3.4, we
prove the claim (1).

Proof of Lemma 2.6(1). First of all, we observe that the link in Fig-
ure 4(2) is isotopic to C3 given in Figure 4(1). Observe also that the link in
Figure 4(3) is isotopic to the braided link br(σ2

1σ
−1
2 ) given in Figure 4(4).

We use the link diagrams in (2) and (3). We cut the twice punctured disk
(' Fα) bounded by the component K1. Let F 1

α and F 2
α be the resulting

twice punctured disks obtained from Fα. We reglue these twice punctured
disks twisting either F 1

α or F 2
β by 360 degrees. Then we obtain the link in

(3) which is isotopic to br(σ2
1σ
−1
2 ). This implies that there exists an orien-

tation preserving homeomorphism h : S3 \ C3 → S3 \ br(σ2
1σ
−1
2 ). Then one

can check that h sends the minimal representative of α + β to the desired
3-punctured disk. �

Lemma 2.6(4) allows us to focus on only fibered classes (x, y, z) ∈ int(C∆)
such that y ≥ x for the proof of Theorem 1.2. We now introduce two bases
{−γ, β, α + β} and {α + β + γ, β, α + β} of H2(N, ∂N,Z) to describe such
fibered classes (x, y, z). If z ≤ 0 (resp. z ≥ 0), then we represent (x, y, z) by
the base {−γ, β, α+ β} (resp. {α+ β + γ, β, α+ β} ). Let us define

∆+ = {(x, y, z) ∈ ∆ | y ≥ x, z ≥ 0},
∆− = {(x, y, z) ∈ ∆ | y ≥ x, z ≤ 0},
∆0 = {(x, y, z) ∈ ∆ | y ≥ x, z = 0},

see Figure 5(3)(4), and define ∆̂± ⊂ ∆± as follows.

∆̂+ = {(x, y, z) ∈ ∆ | x = y, z ≥ 0},

∆̂− = {(x, y, z) ∈ ∆ | x = y, z ≤ 0},

see Figure 5(4). For nonnegative integers i, j and k, we define integral classes
(i, j, k)±, (j, k)0 ∈ C∆ to be

(i, j, k)+ = i(1, 1, 1) + j(0, 1, 0) + k(1, 1, 0) = (i+ k, i+ j + k, i),

(i, j, k)− = i(0, 0,−1) + j(0, 1, 0) + k(1, 1, 0) = (k, j + k,−i),
(j, k)0 = (0, j, k)+ = (0, j, k)−,
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Figure 5. (1) Thurston norm ball UN and the fibered face

∆. (2) [x, y] ∈ ∆. (3) ∆±. (4) ∆0, ∆̂±. (5) Projective
classes [i, j, k]± and [j, i, k]±. (6) Projective classes [i, 0, k]±
and [i, k]0 = [0, i, k]±.

where (1, 1, 1) = α + β + γ, (0, 0,−1) = −γ, (0, 1, 0) = β, and (1, 1, 0) =
α + β. The classes (i, j, k)± with i, j, k > 0 are said to be nondegenerate.
Other classes (i, j, k)± are said to be degenerate. Note that an integral
class (i, j, k)± is fibered if and only if i, j are nonnegative integers and k is a
positive integer, see (2.2). If a fibered class (x, y, z) ∈ int(C∆) satisfies y ≥ x
and z ≤ 0 (resp. y ≥ x and z ≥ 0), then (x, y, z) is written by (i, j, k)+

(resp. (i, j, k)−) for some i, j ≥ 0 and k ≥ 1.
We use the notations f(i,j,k)± and λ(i,j,k)± in the same manner as f(x,y,z)

and λ(x,y,z) appeared in Lemma 2.6. We denote by [a], the projection of
a to the fibered face ∆. For simplicity, we write [(i, j, k)±] = [i, j, k]± and
[(j, k)0] = [j, k]0. Clearly [i, j, k]± ∈ ∆± and [j, k]0 ∈ ∆0. By claims (2)(3)
in the following lemma, we find that coordinates (i, j, k)± are useful to study
symmetries of the entropy function on N .

Lemma 2.7. Let a = (i, j, k)± ∈ int(C∆) be a primitive integral class.

(1) The dilatation λ(i,j,k)± is the largest root of

f(i,j,k)±(t) = ti+j+2k − tk − ti+k − tj+k − ti+j+k + 1.

In particular λ(i,j,k)+ = λ(i,j,k)−.
(2) The integral class (j, i, k)± is a fibered class in int(C∆), and the

equality f(i,j,k)± = f(j,i,k)± holds. In particular, λ(i,j,k)± = λ(j,i,k)±.
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(3) Two classes [i, j, k]+ and [j, i, k]+ have a line symmetry about x = 1
2 ,

and [i, j, k]+ and [i, j, k]− have a line symmetry about y = −x + 1,
see Figure 5(5)(6).

Proof. The claim (1) holds by Lemma 2.6(5). The first part of (2) follows
from (2.2). The second part of (2) is obvious from the claim (1). The proof
of (3) is easy to check. (cf. Corollary 2.7 and Remark 2.8 in [17].) �

Although all fibered classes (i, j, k)± and (j, i, k)± have the same Thurston
norm i+ j+ 2k and the same dilatation, the topological types of their fibers
could be different. To see what the pseudo-Anosovs Φ(i,j,k)± and Φ(j,i,k)±
look like, we will see the curve complexes associated to (i, j, k)± and (j, i, k)±
in Section 3.7.

3. Construction

In Section 3.1, we construct the pseudo-Anosov homeomorphism on Σ0,4

which represents the mapping class corresponding to the 3-braid σ2
1σ
−1
2 . It

serves the monodromy Φα+β : Fα+β → Fα+β of the fibration on N associated
to α+ β, and plays a rule as a pseudo-Anosov homeomorphism Φ in Theo-
rem 2.3. We also construct a train track representative pα+β : τα+β → τα+β

of φα+β = [Φα+β].
Oertel used branched surfaces to describe the Thurston norm and to study

fibers of fibrations on hyperbolic, fibered 3-manifolds. For basic definitions
and results on branched surfaces, see [23, 30, 31]. In Section 3.2, we find
minimal representatives of nonfibered classes α, β, κ±, where κ+ = α+β+γ
and κ− = −γ. In Section 3.3, by using minimal representatives found in Sec-
tion 3.2, we build two branched surfaces B± which carry fibers F(i,j,k)± of
fibrations associated to any fibered class (i, j, k)±. Then in Section 3.4, we
construct the train track τ(i,j,k)± which carries the unstable foliation F(i,j,k)±
of the pseudo-Anosov monodromy Φ(i,j,k)± : F(i,j,k)± → F(i,j,k)± of the fibra-
tion associated to (i, j, k)±. In Section 3.5, we construct the pseudo-Anosov
Φ(i,j,k)± : F(i,j,k)± → F(i,j,k)± explicitly. In Section 3.6, we give an explicit
construction of the train track representative p(i,j,k)± : τ(i,j,k)± → τ(i,j,k)± for
φ(i,j,k)± = [Φ(i,j,i)± ]. We also construct the directed graph Γ(i,j,k)± induced
by p(i,j,k)± : τ(i,j,k)± → τ(i,j,k)± to indicate where each real edge of τ(i,j,k)±
maps to under p(i,j,k)± . In Section 3.7, we give the curve complex G(i,j,k)±
of Γ(i,j,k)± and compute its clique polynomial Q(i,j,k)±(t) whose largest root
equals the dilatation λ(i,j,k)± .

3.1. Fibered class α + β. Let L = LM : R2 → R2 be the linear map
induced byM = ( 3 2

1 1 ) ∈ SL(2,Z). SinceM has eigenvalues λ±1(= 2±
√

3)
with λ+ > 1, the linear map L descends to the Anosov diffeomorphism
f = fM : R2/Z2 → R2/Z2 on the torus. Figure 6 is an illustration of the
image of the unit square with the origin (on the left bottom corner) under
L.
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D’

     A
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D

Figure 6. Rectangle R (left) and its image L(R) (right).
(The images of the isosceles right-angled triangles A′, B′, C′
and D′ under L are the acute-angled triangles A, B, C and
D.)
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Figure 7. (1) R = a0a2b2b0. (2) 4-punctured sphere S \ B.

The linear map induced by
(−1 0

0 −1

)
∈ SL(2,Z) defines an involution

r : R2/Z2 → R2/Z2. The quotient of R2/Z2 by r, denoted by S, is homeo-
morphic to a sphere. (S is called a pillowcase because of its shape.) We
set the points ai = ( i2 , 0), bi = ( i2 ,

1
2) ∈ R2. Let R be the rectangle

a0a2b2b0 on R2, see Figure 7(1). Then S is obtained from R by identify-
ing the three pairs of the oriented closed segments K = b0b1 with K′ = b2b1,
I ′ = a0b0 with I = a2b2, and J ′ = a1a0 with J = a1a2, see Figure 7. If
we let π : R2 → S be the composition of the projections R2 → R2/Z2 and
R2/Z2 → S, then the differentiable structure of S has the four singularities
b1 = π(b0), b2 = π(b1), b3 = π(a1) and b4 = π(a0) which lie on the corners
of S. We set B = {b1, b2, b3, b4}.

We have the identity f ◦r = r◦f , and this implies that f : R2/Z2 → R2/Z2

induces a homeomorphism f̃ : S→ S. Clearly B is invariant under f̃ . (More

concretely, f̃(bi) = bi for i = 1, 4, f̃(b2) = b3 and f̃(b3) = b2.) We see that

the homeomorphism f̃ on S away from B inherits the (un)stable foliation
of the Anosov f . Therefore, f : R2/Z2 → R2/Z2 induces a pseudo-Anosov
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Figure 8. f̃(= Φα+β) : Σ0,4 → Σ0,4.

homeomorphism on S \ B ' Σ0,4, see Figure 7(2). Abusing the notation,

we denote the pseudo-Anosov on S \ B by the same notation f̃ . Figure 8 is

an illustration of f̃ : Σ0,4 → Σ0,4. (cf. Figure 6.) Let A′, B′, C ′ and D′

be isosceles right-angled triangles whose vertices are punctures of Σ0,4, see

Figure 8(left). Their images under f̃ , denoted by A, B, C and D, look as
in Figure 8(right).

Observe that the (un)stable foliation of f̃ has a 1-pronged singularity at
each puncture. If we regard the puncture b4 as the boundary of the 3-
punctured disk, then the mapping class [f̃ ] is written by a 3-braid on a disk.

SinceM is of the form ( 1 1
0 1 )

2
( 1 0

1 1 ) , we see that [f̃ ] is represented by the 3-

braid σ2
1σ
−1
2 (reading the word from the right to the left). Equivalently [f̃ ] is

written by (h1)2 ◦h−1
2 , where hi denotes the mapping class which represents

the positive half-twist about the segment bibi+1, see Figure 7(2).

Remark 3.1. We have a natural homeomorphism h̃ : S3\br(σ2
1σ
−1
2 )→ T[f̃ ].

The cusp of the component K ′2 (resp. K ′1) of the link br(σ2
1σ
−1
2 ) maps

to (under h̃) the cusp corresponding to the orbit of b4 (resp. b1) of the
suspension flow (see Figure 1(2)). The cusp of the component K ′3 maps to

(under h̃) the cusp corresponding to the orbit b2 (or b3).

By Lemma 2.6(1) together with Remark 3.1, we can regard f̃ : Σ0,4 → Σ0,4

as the monodromy Φα+β : Fα+β → Fα+β of the fibration on N associated

to α+ β. We denote f̃ by Φα+β.
Next we turn to a train track representative of φα+β = [Φα+β]. Let τα+β

be a train track on Σ0,4 as in Figure 9(1). Figures 9(1)(5) show that τα+β is
invariant under φα+β. In fact, we have the image Φα+β(τα+β) in Figure 9(2).
(For the illustration of Φα+β(τα+β), consider the image of the acute-angled
triangle B, see Figure 8(right).) The train track Φα+β(τα+β) is isotopic to
the one as in Figure 9(5) which is carried by τα+β. As a result, we get
the desired train track representative pα+β : τα+β → τα+β of φα+β whose
incidence matrix of pα+β (with respect to the real edges p and q) is equal to
M = ( 3 2

1 1 ).
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Figure 9. (1) Train track τα+β. (2) The image of τα+β

under f̃ , where the image of the edge p etc. is denote by (p)

etc. The image f̃(τα+β) can be put in the tie neighborhood
of τα+β under the isotopy, see (2)→(3)→(4)→(5). (From
(4) → (5), the edges in (4) that are isotopic to the edges

(p) = f̃(p) and (q) = f̃(q) in (2) cross over the segment K
(see Figure 7(2) for K).

In the rest of the paper, we consider the magic manifold N of the form
Tφα+β = Σ0,4 × [0, 1]/ ∼, where ∼ identifies x × {1} with Φα+β(x) × {1}
for each x ∈ Σ0,4. We investigate the suspension flow Φt

α+β on Tφα+β . We

choose the orientation of S \ B so that its normal direction coincides with
the flow direction of Φt

α+β. We fix the illustration of the 4-punctured sphere

S \ B as in Figure 7(2), and we often omit the names of the punctures bi’s
in figures.

Remark 3.2. The loop edges of τα+β surrounding punctures b1, b2 are b3

are infinitesimal edges for pα+β : τα+β → τα+β. Other edges p and q are
real edges. Each component of Σ0,4 \ τα+β is a once punctured monogon.

(This comes from the fact that the (un)stable foliation of f̃ has a 1-pronged
singularity at each puncture.) In particular the component of Σ0,4 \ τα+β

containing the puncture b4 has exactly one cusp.

3.2. Minimal representatives of α, β, −γ and α + β + γ. First we
define several sets on R2. Let TA and TB be the triangles a0b2b0 and a0a2b2
respectively. Let PK− and PK+ be the parallelograms a0a1b4b3 and a1a2b5b4
respectively. See Figure 10(1). Note that

S = π(R) = π(TA ∪ TB) = π(PK− ∪ PK+),
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Figure 10. (1) TA = a0b2b0, TB = a0a2b2, PK+ = a1a2b5b4,
PK− = a0a1b4b3, U = a0b2, V = b3a0, W = b4a1. (2) U . (3)
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Figure 11. (1) TA. (2) TB. (3) PK+ . (4) PK− .

where π : R2 → S is the projection in Section 3.1. Let U be the oriented
closed segment a0b2. Let V andW be the oriented closed segments b3a0 and
b4a1.

Let TA be the image π(TA) ⊂ S removing all points in B, i.e., TA =
π(TA) \ B. We define TB, PK+ , PK− ⊂ S \ B in the same manner. See
Figure 11. Similarly, we let

I = π(I) \ B = π(I ′) \ B.

Said differently, I is obtained from π(I) = π(I ′) by removing the end points.
We define J,K,U, V,W ⊂ S \ B in the same manner. See Figures 7(2) and
10(2)(3). We choose the orientations of TA, TB, PK± which coincide with
the ones induced by the fiber Fα+β = S \ B of the fibration associated to
α+ β.

Remark 3.3. We have U ∩ PK+ = U and U ∩ PK+ = ∅, see Figures 10(2)
and 11(3)(4).

We have Φα+β(I) = U . (We can check the equality by using Figure 6.)
This implies that I1 = U0 in Tφα+β , and hence the flowband [I0, U0] with

respect to Φt
α+β is defined. Let

FA = T 0
A ∪ [I0, U0],

FB = T 0
B ∪ [I0, U0],
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see Figure 12(1)(2). Observe that the both FA and FB are 3-punctured
spheres in Tφα+β .

We find two more 3-punctures spheres FK± in Tφα+β . Note that π(J ) =

π(J ′) and π(K) = π(K′). We have that Φα+β(J) = V and Φα+β(K) = W ,
because π(L(J )) = π(V) and π(L(K)) = π(W). Hence J1 = V 0 and K1 =
W 0 in Tφα+β , and the flowbands [J0, V 0] and [K0,W 0] are defined. Let

FK+ = PK+ ∪ [J0, V 0] ∪ [K0,W 0],

FK− = PK− ∪ [J0, V 0] ∪ [K0,W 0],

see Figure 12(3)(4). We choose orientations of FA, FB and FK± so that they

are extended by the orientations of T 0
A, T 0

B and P 0
K±

. (Here we identify T 0
A

etc. with TA etc.)

Lemma 3.4. The 3-punctured spheres FA, FB, FK+ and FK− are minimal
representatives of α, β, κ+(= α+ β + γ) and κ−(= −γ) respectively.

Proof of Lemma 3.4. Let m1, m2 and m3 be the meridians of the compo-
nents K1, K2 and K3 of the 3 chain link C3. We take oriented simple closed
curves S1, S2 and S3 in Tφα+β ' N as in Figure 13. We observe that the im-

ages of m1, m2 and m3 under the homeomorphism H = h̃◦h : S3\C3 → Tα+β

are S1, S2 and S3 respectively (up to isotopy).
Now, we consider the intersections i(·, ·) between the surface FB and either

S1, S2 or S3. We have i(FB, S1) = 0, i(FB, S2) = 1, and i(FB, S3) = 0.
These imply that FB is a minimal representative of β with the Thurston
norm 1. By cut and paste construction of the union of surfaces FA∪FB (for
this construction of oriented surfaces, see [35, p104]), we obtain a surface
which is homeomorphic to Fα+β = S \ B. Since β = [FB] and α + β =
[Fα+β] = [FA ∪ FB] with the Thurston norm 2, we conclude that FA is a
minimal representative of α with the Thruston norm 1.

Let us consider the intersections between FK− and either S1, S2, or S3.
We have i(FK− , S1) = 0, i(FK− , S2) = 0, and i(FK− , S3) = −1. Thus we
conclude that FK− is a minimal representative of −γ. Then we see that
FK+ is a minimal representative of α + β + γ, because α + β = [Fα+β]
and Fα+β = S \ B can be obtained from FK+ ∪ FK− by cut and paste
construction. �

By Lemma 3.4, it makes sense to denote FA, FB, FK+ and FK− by Fα,
Fβ, Fκ+ and Fκ− respectively.

In the end of this subsection, we introduce surfaces F tβ. We denote by

F tβ, the oriented surface in Tφα+β which is obtained from Fβ by pushing F 0
β

along the flow direction for t ≥ 0 times, see Figure 12(5). Clearly β = [F tβ].

In the same manner we can define other surfaces F tκ± and F tα+β.

3.3. Branched surfaces which carry fibers F(i,j,k)±. We first con-
struct the branched surface B+. Choose δ, ε > 0 with 0 < δ < 2δ < 1−ε. We
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t

(1) (2) (4)(3) (5)

t

Figure 12. (1)–(5) 3-punctured spheres embedded in Tφα+β
with the suspension flow Φt

α+β. The top and bottom surfaces

are Σ0,4×{1} and Σ0,4×{0} respectively. They are identified
by Φα+β. Two edges with the same kind (red, green, yellow)
are identified in Tφα+β . The vertical arrows with the labeling
t indicate the flow directions. (1) Fα = FA. (2) Fβ = FB.
(3) Fκ+ = FK+ . (4) Fκ− = FK− . (5) F tβ for some 0 < t < 1.

(1) (2)

S 2 

S 3 

S 1 

S 3 

Figure 13. (1) S2, S3 and Fα in Tφα+β . (2) S1, S3 and Fβ in Tφα+β .

consider surfaces F δκ+ , F 2δ
β , F 1−ε

α+β ⊂ Tφα+β . We have κ+ = [F δκ+ ], β = [F 2δ
β ]

and α+ β = [F 1−ε
α+β]. Let

(3.1) B̂+ = F δκ+ ∪ F
2δ
β ∪ F 1−ε

α+β ⊂ Tφα+β .
The intersection of each pair of the three surfaces is as follows.

(1+) F 1−ε
α+β ∩ F

2δ
β = I1−ε,

(2+) F 1−ε
α+β ∩ F

δ
κ+ = J1−ε ∪K1−ε,

(3+) F 2δ
β ∩ F δκ+ = J2δ ∪ U δ. (See Remark 3.3 and Figure 12(3)(5).)

The local picture near each intersection looks as in Figure 14(1). A common
property of the pairs is that locally, a surface near the intersection is parallel
to Fα+β, and it intersects with the flowband which is the subset of the other

surface (in fact F δκ+ or F 2δ
β ). The branched surface B+ can be obtained from
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(2)(1)

Figure 14. (1) Near the intersection of the oriented surfaces
(Arrows shows the normal directions). (2) Modification near
the intersection which agrees with the orientations of two
surfaces.

B̂+ by modifying each flowband of F εκ+ and F 2ε
β as in Figure 14(2) so that

the modifications agree with the orientations of the two surfaces. Each point
in the intersection of surfaces belongs to the branched locus of B+ (that is,
the union of points of the branched surface none of whose neighborhood are
manifolds).

We build the branched surface B− in the same manner: Take F δκ− which

represents κ− instead of F δκ+ . Let

(3.2) B̂− = F δκ− ∪ F
2δ
β ∪ F 1−ε

α+β ⊂ Tφα+β .

We have

(1−) F 1−ε
α+β ∩ F

2δ
β = I1−ε,

(2−) F 1−ε
α+β ∩ F

δ
κ− = J1−ε ∪K1−ε,

(3−) F 2δ
β ∩ F δκ− = J2δ. (See Remark 3.3 and Figure 12(4)(5).)

The branched surface B− is obtained from B̂− by modifying each flowband
of F εκ− and F 2ε

β in the similar manner as in the construction of B+.

Figure 16(1) (resp. Figure 16(3)) illustrates three pieces (bottom, mid-
dle, top) for building B+ (resp. B−). In this figure, we have two kinds
(solid/broken) of segments without arrows and two kinds (solid/broken) of
segments with arrows. The broken segments without arrows are parts of
the orbits of punctures b1, b2, b3 and b4 (which are circles in the figure)
under the flow. In other words, they lie on the cusps of Tφα+β ' N . We
now explain our convention of Figure 16(1)(3). Firstly, there are some pairs
of segments with the same labeling. (Exceptionally, the three segments in
Figure 16(1) have the labeling L6.) The two segments with the same la-
beling mean that one of them is connected to the other with respect to the
flow, see Definition 2.4. For the exceptional labeling L6 in Figure 16(1), the
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X

Y’

Y

X’

X

Y

X X’

Y’

Y

Y’

X’

(2)(1) (3)

Figure 15. (1) Branch equation X+Y = Y ′+X ′. (2) Side
view of (1) in this figure. (3) Side view of the surface induced
by the branch equation. (In this case X = X ′ = 3, Y = Y ′ =
5.)

bottom segment with the labeling L6 is connected to the middle segment
with L6, and the top segment with L6 is connected to the bottom segment
with the same labeling. Secondly, we also identify the segment having the
labeling L∗ with the segment having the labeling L∗′. The result belongs
to the branched locus. (For example, the segment with the labeling L4′

and the two segments with the labeling L4 are identified, and the resulting
segment belongs to the branched locus.) Lastly, we can obtain the whole
pictures of B± if we insert a suitable flowband between every two segments
with the same labeling. For example, the bottom segment with the labeling
L4 is connected to the top segment with the same labeling L4. We insert
a suitable flowband (of the form [K1/3+ε0 ,K1−ε]) between them. Also the
top segment with the labeling 5 is connected to the bottom segment with
the same labeling 5. Thus we insert the flowband [K1,W δ] = [W 0,W δ]
between them. (Note that K1 = W 0 in Tφα+β .) Under the identification
of segments and inserting suitable flowbands, each polygon bounded by the
solid segments becomes a sector of the branched surface. In general, sec-
tors of the branched surface B are the closures in B of the components of
B \ (the branched locus of B).

We turn to find surfaces carried by B±. To do this, given a fibered class
(i, j, k)± (hence i ≥ 0, j ≥ 0 and k ≥ 1), we assign these integers i, j and k
for the sectors of B+ (resp. B−) as in Figure 16(2) (resp. Figure 16(4)). This
is a natural assignment, which we explain the reason now. We assign integers
i ≥ 0, j ≥ 0 and k ≥ 1 to F δκ+ , F 2δ

β and F 1−ε
α+β (resp. F δκ− , F 2δ

β and F 1−ε
α+β)

consisting of B̂+ (resp. B̂−). Then we reconstruct B+ (resp. B−) with the
integers assigned. What we obtain is the assignment of integers in question.
Then the branched surface B± enjoys the branch equations of a particular
type such that X = X ′, Y = Y ′ and (X,Y ) ∈ {(i, j), (j, i), (k, i), (k, j)} as
in Figure 15(1). Thus this assignment determines a surface S(i,j,k)± which is
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Figure 16. (1) Three pieces for building B+. (2) Assign-
ment of sectors of B+. (3) Three pieces for building B−. (4)
Assignment of sectors of B−. The types of arrows (red, green,
yellow) are compatible with the ones illustrated in Figure 12.



DYNAMICS OF MONODROMIES 571

carried by B±. (See the illustration of Figure 15(3) which shows the surface
induced by some branch equation.) Said differently, S(i,j,k)± is obtained from
the union

Ŝ(i,j,k)± = (i parallel copies of Fκ±) ∪ (j parallel copies of Fβ)

∪ (k parallel copies of Fα+β)

by cut and paste construction of surfaces (cf. Figure 14). Therefore

(i, j, k)± = [S(i,j,k)± ].

Lemma 3.5. The surface S(i,j,k)± is the minimal representative of the fibered
class (i, j, k)±.

Proof. By definition, ∆± is a convex hull in ∆ containing κ± (κ+ = [1, 1],

κ− = [0, 0]), β = [0, 1], α+β
2 = [1

2 ,
1
2 ], see Figure 5(3). The fibered class

(i, j, k)± is in the cone over ∆±, and the surface S(i,j,k)± is built from Ŝ(i,j,k)±
(which is the union of parallel copies of the minimal representatives Fκ± ,
Fβ and Fα+β) by cut and paste construction. Thus S(i,j,k)± must be the
minimal representative of (i, j, k)±. �

Remark 3.6. By Lemma 3.5, we write F(i,j,k)± = S(i,j,k)± , and F(i,j,k)±
becomes a fiber of the fibration associated to (i, j, k)±. By Theorem 2.3,
F(i,j,k)± (up to isotopy) is transverse to the flow Φt

α+β. The first return map

Φ(i,j,k)± : F(i,j,k)± → F(i,j,k)± with respect to Φt
α+β becomes the pseudo-

Anosov monodromy of the fibration associated (i, j, k)±.

3.4. Train tracks τ(i,j,k)±. We note that the unstable foliation Fα+β of

Φα+β is carried by τα+β. Let F̂ be the suspension of Fα+β by Φα+β which
is the 2-dimensional foliation of Tφα+β . We now construct the branched

surfaces B∆± , each of which carries F̂ . Let δ and ε be as in Section 3.3,
that is δ and ε are constants such that 0 < δ < 2δ < 1 − ε. Hereafter we
fix δ = 1

3 . We choose two families {τ+
t }0≤t≤1 and {τ−t }0≤t≤1 of train tracks

with the following properties. (See Figure 17, in which the time t increases
along arrows.)

(1) τ+
0 = τ−0 = Φα+β(τα+β).

(2) τ+
t = τ−t = τα+β for 1− ε0 ≤ t ≤ 1.

(3) τ±t is obtained from τ±s by folding edges of τ±s for each 0 ≤ s < t ≤
1− ε, or τ±t is isotopic to τ±s .

(4) τ+
t = τ−t for 0 ≤ t ≤ 2

3 , and {τ±t }0≤t≤ 2
3

is given as in Figure 17(3).

(5) {τ+
t } 2

3
<t≤1−ε (resp. {τ−t } 2

3
<t≤1−ε) is given as in Figure 17(1) (resp.

(2)).

In Figure 17, σ −−−−→
folding

τ (resp. σ −−−−→
isotopy

τ) means that τ is obtained from σ

by folding edges of σ (resp. τ is isotopic to σ). Observe that nonloop edges
of τ+

1/3 = τ−1/3 (resp. τ+
2/3 = τ−2/3) do not intersect with V and W (resp. with
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Figure 17. (Some of times t are indicated near the puncture
b3.) (1) {τ+

t }2/3<t≤1−ε. (2) {τ−t }2/3<t≤1−ε. (3) {τ±t }0≤t≤2/3.

(4) τ+
1/3 = τ−1/3. (5) τ+

2/3 = τ−2/3.

U), see Figure 17(4)(5). The branched surfaces B∆± ⊂ Tφα+β are defined to
be

(3.3) B∆± =
⋃

0≤t≤1

τ±t × {t}/ ∼,
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where ∼ identifies (x, 1) and (Φα+β(x), 0) for x ∈ τα+β.

Remark 3.7. The condition (5) and Figure 17 show the difference between
B∆+ and B∆− . The conditions (1)–(4) (without (5)) allow us to construct

a branched surface which carries F̂ . The reason we require (5) is that it is
easy to extract a train track on F(i,j,k)± from the intersection F(i,j,k)± ∩B∆±

with the extra condition (5) (see Lemma 3.9(2)).

Remark 3.8. The following analysis is used in the proof of Lemma 3.9(2). It
happens twice that an edge of some element in the subfamily {τ−t }1/3≤t≤1−ε
is passing through the segment K under the isotopy, see Figure 17(2)(3). On
the other hand, the same thing happens once in the subfamily {τ+

t }1/3≤t≤1−ε,
see Figure 17(1)(3). In the same figure, 4-punctured disks containing the
track tracks in question are colored, and edges of these train tracks in ques-
tion are made thick.

Since F(i,j,k)± (up to isotopy) is transverse to the flow Φt
α+β, we may

assume that F(i,j,k)± is transverse to B∆± . We let

(3.4) τ ′(i,j,k)±
= F(i,j,k)± ∩ B∆± .

Lemma 3.9.

(1) The unstable foliation F(i,j,k)± of the pseudo-Anosov Φ(i,j,k)± is car-
ried by τ ′(i,j,k)±

.

(2) Each component of F(i,j,k)± \ τ ′(i,j,k)±
is either a bigon (a disk with

2 cusps) or a once punctured disk (i.e., annulus) with k cusps for
some k ≥ 1.

Proof. (1) By Theorem 2.3, we have F(i,j,k)± = F(i,j,k)± ∩ F̂ . Moreover its

suspension F̂(i,j,k)± by Φ(i,j,k)± is isotopic to F̂ , see [27, Corollary 3.2]. Since

F̂ is carried by the branched surface B∆± , so is F̂(i,j,k)± . This implies that
F(i,j,k)± is carried by τ ′(i,j,k)±

= F(i,j,k)± ∩ B∆± .

(2) We recall that the suitable branch equations on B± induce F(i,j,k)± .
Also recall that we need to insert some flowbands between the two segments
with the same labeling to get the whole picture of B±. To view components
of F(i,j,k)± \ τ ′(i,j,k)±

, let us consider B± ∩ B∆± on B± which is a 1-branched

manifold. We recall the definition of B̂±, see (3.1) and (3.2). The constant
δ is chosen to be 1

3 , and we have the train tracks τ+
1−ε = τ−1−ε = τα+β,

τ+
2/3 = τ−2/3, τ+

1/3 = τ−1/3, see Figure 17. Then the ‘patterns’ in Figure 18(1)(2)

are obtained from B±∩B∆± after folding or splitting all edges which appear
on the flowbands. In fact the thick edge e+ in Figure 18(1) is the one (resp.
thick edges e′− and e′′− in Figure 18(2) are the ones) by folding some edge
(resp. by splitting some edges) which appear(s) on the flowband between the
segments with the labeling L4, see also Remark 3.8. Then we reconstruct
the fibers F(i,j,k)± obtained from the suitable branch equations on B± with
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Figure 18. (1) B+ ∩ B∆+ . (2) B− ∩ B∆− . (cf. Figure 16(1)(3).)

the ‘patterns’ in Figure 18(1)(2) . That we get is τ ′(i,j,k)±
(up to folding

and splitting the edges) on F(i,j,k)± . Each edge of τ ′(i,j,k)±
originates in some

edge of the branched 1-manifold B± ∩B∆± . We denote some of the edges of
B+ ∩B∆+ (resp. B− ∩B∆−) by p, q, r, s (resp. p, q, r, u) as in Figure 18(1)
(resp. (2)).

We can fold all edges of τ ′(i,j,k)+
(resp. τ ′(i,j,k)−

) which originate in e+

(resp. e′− or e′′−) into some edges. This means that these edges lie on
the boundaries of some components of F(i,j,k)± \ τ ′(i,j,k)±

that are bigons.

We fold all these edges as much as possible (i.e., collapse bigons), and we
consider complementary regions of the resulting 1-branched manifold. The
combinatorics from Figures 16(2)(4) and 18 tell us that each component of
the resulting 1-branched manifold is a once punctured disk with k cusps for
some k ≥ 1. �

Let τ(i,j,k)± be the branched 1-manifold obtained from τ ′(i,j,k)±
by collaps-

ing all bigons of τ ′(i,j,k)±
. By Lemma 3.9, we immediately have:

Lemma 3.10. τ(i,j,k)± is a train track on F(i,j,k)± which carries F(i,j,k)±.

3.5. Monodromies Φ(i,j,k)± : F(i,j,k)± → F(i,j,k)± of the fibrations

associated to (i, j, k)±. First of all, we represent fibers F(i,j,k)± more
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Figure 19. Labeling of segments in the right column of (1)
is the same as the one in the left column. (1) Φa : Fa → Fa for
nondegenerate a = (i, j, k)+. (2) (left) Bottom edges s1, r1,
p1 and q1 which lie on three bottom patches. (right) Images
of top edges si, rj , pk and qk under Φa which lie on three
bottom patches. We denote by (si) etc., the image Φa(si)
etc.
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simpler as follows. We shrink each flowband of F(i,j,k)± as much as pos-
sible along flow lines into some edge. (Note that this operation does not
change the topological types of fibers.) Said differently, we simplify the
branched surfaces B± as follows. Shrink each flowband of the three pieces,
see Figure 16(1) (resp. (3)), as much as possible along flow lines into some
edge. Then the branch equations on B± induce the one on such a simpli-
fied branched surface, from which one gets a surface in question which is
homeomorphic to F(i,j,k)± .

After shrinking flowbands, the resulting three pieces (the bottom, middle,
top pieces) are:

(1) κ+-patch: the two acute-angled triangles sharing vertices b1 and b4

(resp. κ−-patch: the parallelogram),
(2) β-patch: the right-angled triangle, and
(3) α+ β-patch: the rectangle.

We call these pieces (1) κ+-patch (resp. κ−-patch ), (2) β-patch and (3) α+β-
patch. See Figure 19(1) (resp. Figure 20(1)) for three kinds of patches. We
often draw pairs of the two acute-angled triangles for the κ+-patch separately
as in Figure 19(1), but they should share the two vertices b1 and b4 (cf.
Figure 11(3)). We can get the simplified fibers F(i,j,k)+ (resp. F(i,j,k)−) from
i parallel copies of κ+-patches (resp. κ−-patches), j parallel copies of β-
patches and k parallel copies of α+ β-patches under suitable identifications
of the boundaries of patches.

If we have j parallel copies of the same kind of patch, say β-patches,

P1
β, · · · ,P

j
β, we have P`β ⊂ Fn`α+β for some 0 < n` < 1, where ` ∈ {1, · · · , j}.

For the notation of Fn`α+β, see the end of Section 3.2. If 0 < n1 < · · · <
nj−1 < nj < 1, then we call the β-patch P1

β the bottom (β-)patch, and call

Pjβ the top (β-)patch. Other β-patches are called the middle (β-)patches. We

define the top, middle, bottom for other patches similarly. We color each top
of the three kinds of patches, see Figure 19(1)(left column), Figure 20(1)(left
column). Here we label E′ for the top β-patch, and label F ′ and G′ (resp.
F ′) for the top κ+-patch (resp. κ−-patch) in the same figure. We label
A′, B′, C ′ and D′ for isosceles right-angled triangles which lie on the top
α+ β-patch.

The patches needed for building F(i,j,k)± for the nondegenerate class
(i, j, k)± are given as in the same figure. We can think three kinds of patches
are in the cylinder Σ0,4 × (0, 1) ⊂ Tφα+β . We have the flow direction in the
cylinder from the ‘bottom’ Σ0,4 × {0} to the ‘top’ Σ0,4 × {1}. The types
of arrows (red, green, yellow) in the figure are compatible with the ones
illustrated in Figures 12 and 16. Among the patches with the same kind
(κ±-patches, β-patches or α+β-patches), the way to label parallel segments
with the same kind of arrow is that the number for the labeling increases
(cyclically) along the flow direction. We often omit to label segments which
lie on the middle patches. To get the fiber F(i,j,k)± , we identify the two
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segments with the same kind of arrow and with the same labeling (same
number) by using the flow Φt

α+β. In the right column of (1) in the same
figure, the labeling of segments on patches are the same as the one given in
the left column.

Let us turn to construct Φ(i,j,k)± : F(i,j,k)± → F(i,j,k)± explicitly. It is
enough to describe where each patch maps to. Since the desired monodromy
Φ(i,j,k)± is the first return map on F(i,j,k)± with respect to Φt

α+β, we see
the following. All patches but the top of each kind of patch map to the
next above patch (of the same kind) along the flow direction. Thus the
monodromy Φ(i,j,k)± restricted to these patches is just a shift map. On
the other hand, each top patches map to some bottom patches (possibly
with different kinds), see Figure 19(1) for Φ(i,j,k)+ and see Figure 20(1) for
Φ(i,j,k)− , where A,B, · · · are the images of A′, B′, · · · under Φ(i,j,k)± . More
precisely, we can get the image of the top β-patch under Φ(i,j,k)± when we
push the fiber F(i,j,k)± along the flow direction and see how this top patch
hits to the bottom α+ β-patch. Similarly, one can get the image of the top
κ+-patch (resp. top κ−-patch) under Φ(i,j,k)+ (resp. Φ(i,j,k)−) if we see how
this top patch hits to the both bottom β-patch and bottom α+β-patch. To
get the images of the isosceles right-angled triangles A′, B′, C ′ and D′ which
lie on the top α + β-patch, we first consider the acute-angled triangles A,
B, C and D which lie on Σ0,4 × {0} as in Figure 8(right). Then investigate
how these acute-angled triangles hit bottoms patches, when we push them
along the flow direction.

The monodromies of the fibrations associated to the degenerate classes
can be constructed similarly. As an example, we deal with the degenerate
classes a = (j, k)0’s, see Figure 21.

Remark 3.11. Suppose that (j, k)0 is primitive (i.e., gcd(j, k) = 1). Then
the fiber F(j,k)0 is connected, and it has genus 0, see [18]. Many pseudo-
Anosovs with small dilatations defined on the surfaces of genus 0 are con-
tained in the family of fibered classes (j, k)0’s, see Examples 4.6, 4.7 and
[18, Section 4.1]. By using the Artin generators of the braid groups, the
words which represent φ(j,k)0 ’s are given in [18, Theorem 3.4]. They are
quite simple words.

3.6. Train track representatives p(i,j,k)± : τ(i,j,k)± → τ(i,j,k)± of
φ(i,j,k)±. In the following lemma, we refer to the metrized, directed graph
Γ(i,j,k)± given in Figures 22 and 23, where each edge with no labeling means
that its length is equal to 1, and all edges with labeling are made thick in
the figures.

Lemma 3.12.

(1) The train track τ(i,j,k)± is invariant under φ(i,j,k)± = [Φ(i,j,k)± ]. If
we let p(i,j,k)± : τ(i,j,k)± → τ(i,j,k)± be the train track representative
of φ(i,j,k)±, then its incidence matrix is Perron–Frobenius.
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Figure 20. Φa : Fa → Fa for degenerate a = (j, k)0.
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Figure 21. Φa : Fa → Fa for degenerate a = (j, k)0.

(2) The directed graph Γ(i,j,k)± is the one induced by

p(i,j,k)± : τ(i,j,k)± → τ(i,j,k)± .

Once we prove that τ(i,j,k)± is invariant under φ(i,j,k)± , the claim that the
incidence matrix of φ(i,j,k)± is Perron–Frobenius follows from Theorem 2.1.

Proof of Lemma 3.12. By construction of τ(i,j,k)± , each edge of τ(i,j,k)±
originates in some edge of the intersection B± ∩ B∆± (see Figure 18). We
only label edges of τ(i,j,k)+ (resp. τ(i,j,k)−) which originate in the edges p, q, r
and s (resp. p, q, r and u), since it turns out that the images of other edges
under Φ(i,j,k)± are eventually periodic up to isotopy. We first explain the way
to label the edges of τ(i,j,k)± , which is similar to the one to label segments
of patches given in Section 3.5. We label parallel edges of τ(i,j,k)± (which
originate in the same edge of B±∩B∆±) so that the number for the labeling
increases along the flow direction. For example, see Figures 30–36.
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We only prove the claims (1) and (2) for nondegenerate classes (i, j, k)±.
(Proofs for degenerate classes are similar.) Let us describe the image of an
edges e with labeling under Φ(i,j,k)± . Such an edge e lies on some patch for
building F(i,j,k)± . Suppose that e lies on a patch, say Pe which is not a top
patch. Then e maps (under Φ(i,j,k)±) to the next above edge e′ which lies
on the same kind of patch Pe′ as Pe. Clearly, e and e′ originate in the same
edge of B± ∩ B∆± . Suppose that an edge etop of τ(i,j,k)± lies on some top
patch. We call etop the top edge. If an edge ebot of τ(i,j,k)± lies on some
bottom patch, then we call ebot the bottom edge.

We first consider the nondegenerate class (i, j, k)+. Let us consider the im-
ages Φ(i,j,k)+(etop)’s for all top edges etop’s. Then we can put Φ(i,j,k)+(etop)’s
in the tie neighborhood of τ(i,j,k)+ which are transverse to the ties up to iso-
topy, where the support of the isotopy can be taken on the neighborhood of
the three bottom patches, see Figure 19(2). Thus τ(i,j,k)+ is invariant under
φ(i,j,k)+ . In fact we can get the edge path p(i,j,k)+(etop) from Figure 19(2):
The left of (2) of the same figure illustrates the union of all bottom edges
of τ(i,j,k)+ which lies on the union of all bottom patches. The right of (2) of
the same figure shows the image of all top edges under Φ(i,j,k)+ . One can
find from the right in (2) of the same figure that p(i,j,k)+(pk) and p(i,j,k)+(qk)
pass through the three edges r1, p1, s1, and the two edges r1, p1 respectively.
The edge path p(i,j,k)+(rj) passes through the two edges q1, s1.

Note that by Remark 3.2, we see that edges of τ(i,j,k)+ which originate in
the edges p, q, r and s are real edges for p(i,j,k)+ . Others are infinitesimal
edges. We explain a structure of the directed graph in Figure 22(4). If e
is one of edges (with some label) which are made thick in the figure, then
the end points of e are the vertices having the same origin (p, q, r or s) on
B+. Suppose that e is an edge whose length equals k− 1, and suppose that
e has end points p1 and pk having the same origin p. Then the edge e with
labeling k − 1 corresponds to the following edge path with length k − 1:

p1 → p2 → · · · → pk−1 → pk.

In particular all vertices between p1 and pk have the same origin p on B+.
Putting these things together, we can check that metrized, directed graph
Γ(i,j,k)+ in Figure 22(4) is the one induced by p(i,j,k)+ : τ(i,j,k)+ → τ(i,j,k)+ .

We turn to the nondegenerate class (i, j, k)−. In the same manner as in
the class (i, j, k)+, we can see that τ(i,j,k)− is invariant under φ(i,j,k)− . The
edges of τ(i,j,k)− which originate in the edges p, q, r and u are real edges for
the train track representative p(i,j,k)− of φ(i,j,k)− . Others are infinitesimal
edges. A hint to obtain p(i,j,k)−(etop) is given in Figure 20(2). The left of
(2) in the same figure illustrates the union of all bottom edges of τ(i,j,k)−
which lies on the union of all bottom patches. The right of (2) in the same
figure shows the image of all top edges under Φ(i,j,k)− . The images under
p(i,j,k)− of all top edges but rj are edge paths written by bottom edges.
For example, p(i,j,k)−(ui) is an edge path which passes through r1 and p1.
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Figure 24. Ga for a = (i, j, k)+. (1) Ga = K∗∗1,3 if

a = (i, 0, k)+ including the case i = 0 and k > 0, see Fig-
ure 22(1)(2). (2) Ga = K∗∗1,2 if a = (i, j, k)+ including the

case i = 0, j > 0 and k > 0, see Figure 22(3)(4).

On the other hand, to put Φ(i,j,k)−(rj) in the tie neighborhood of τ(i,j,k)−
one needs to make Φ(i,j,k)−(rj) (up to isotopy) across the segment K. An
analysis to identify boundaries of patches for building F(i,j,k)− enables us to
get the image p(i,j,k)−(rj). We can verify that the directed graph Γ(i,j,k)−
given in Figure 23(2) (resp. (4)) is the one induced by p(i,j,k)− if 0 < i < k
(resp. i ≥ k > 0). The edge path p(i,j,k)−(rj) has length `+ 2, where ` ≥ 0
is an integer such that 0 ≤ i− k` ≤ k − 1. �

Remark 3.13. Metrized and directed graphs Γ(i,j,k)± for nondegenerate
classes can recover ones for degenerate classes. See Figures 18(1)(2)(3) and
22(1)(3). To see this, consider Γ(i,j,k)+ for the nondegenerate class (i, j, k)+.
We have the edge pk → s1 and the edge path from s1 to p1 for Γ(i,j,k)+ , see
Figure 22(4). Connecting these edge paths, we have the edge path from pk to
p1 with length > 1, see Figure 22(4). This determines the edge pk → p1 with
length 1 in the degenerate class (0, j, k)+ = (j, k)0 by ‘eliminating’ vertices
s1, · · · , si, see Figure 22(3). Another example is the following. We have the
edge rj → s1 and the edge path from s1 to p1 for the nondegenerate class
(i, j, k)+, see Figure 22(4). They determine the edge rj → p1 with length 1
for the degenerate class (0, j, k)+ = (j, k)0, see Figure 22(3).

3.7. Curve complexes G(i,j,k)± and clique polynomials Q(i,j,k)±(t).
We define some graphs. Let Km,n denote the complete bipartite graph with
m and n vertices. We denote by K∗∗m,n, the disjoint union of Km,n and the
graph with two vertices and with no edges.

The metrized, directed graphs Γ(i,j,k)+ ’s and Γ(i,j,k)− ’s were given in Sec-
tion 3.6. Here we exhibit their curve complexes G(i,j,k)+ ’s in Figure 24 and
G(i,j,k)− ’s in Figure 25. In the next proposition, we give the clique polyno-
mial Q(i,j,k)± . We find that it is exactly equal to the polynomial f(i,j,k)±(t)
in Lemma 2.7(1).

Proposition 3.14. The clique polynomial Q(i,j,k)±(t) of the curve complex
G(i,j,k)± is the following reciprocal polynomial

Q(i,j,k)±(t) = 1− (tk + ti+k + tj+k + ti+j+k) + ti+j+2k.
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Figure 25. Ga for a = (i, j, k)−. (1) Ga = K∗∗1,1 if a =

(i, j, k)− with 0 < i < k including the case j = 0, see Fig-
ure 23(1)(2). (2) Ga = K∗∗1,`+1 if a = (i, j, k)− with i ≥ k > 0

including the case j = 0, see Figure 23(3)(4). Here ` ≥ 1
is an integer such that 0 ≤ i − k` ≤ k − 1. The weights of
`+1 vertices of the subgraph K1,`+1 surrounding the centered
vertex are given by i + j + k, j + k, · · · , j + k(` − 1), j + k`
clockwise.

In particular λ(i,j,k)+ = λ(i,j,k)− is the largest root of

Q(i,j,k)+(t) = Q(i,j,k)−(t).

Proof. It is straightforward to compute the clique polynomial Q(i,j,k)±(t).
The dilatation λ(i,j,k)± equals the growth rate of Γ(i,j,k)± . By Theorem 2.5,

1
λ(i,j,k)±

is the smallest root of Q(i,j,k)±(t). Note that Q(i,j,k)±(t) is a recip-

rocal polynomial, i.e., Q(i,j,k)±(t) = ti+j+2kQ(i,j,k)±(t−1). Thus the largest
root of Q(i,j,k)±(t) equals λ(i,j,k)± . �

Proof of Theorem 1.2. Let a be a fibered class of N . By a symmetry of
the Thurston norm ball UN and by Lemma 2.6(4), we may suppose that a
is of the form (i, j, k)± ∈ int(C∆). Suppose that a = (0, 0, 1)± = (0, 1)0. In
this case, we have constructed Φa : Fa → Fa and pa : τa → τa explicitly in
Section 3.1.

Let us consider other fibered classes a = (i, j, k)±’s. The explicit construc-
tion of the monodromy Φa : Fa → Fa of the fibration associated to a is given
in Section 3.5. If a is primitive, then the explicit construction of the desired
train track representative pa : τa → τa of φa together with the induced
directed graph Γa of pa (Figures 22 and 23) is given in Section 3.6. �

4. A catalogue of small dilatation pseudo-Anosovs

4.1. Fibered classes of Dehn fillings N(r). Recall that Tβ (resp. Tα,
Tγ) is a torus which is the boundary of a regular neighborhood of the com-
ponent K2 (resp. K1, K3) of the 3 chain link C3. Recall that N(r) is
the manifold obtained from N by Dehn filling the cusp along the slope
r ∈ Q ∪ {∞}. It is known by Martelli-Petronio [25] that N(r) is hyperbolic
unless r ∈ {∞,−3,−2,−1, 0}. The manifolds N( 3

−2) and N( 1
−2) are the

exterior of the Whitehead sister link (i.e., (−2, 3, 8)-pretzel link) and the
exterior of the 3-braided link br(σ−1

1 σ2) (or 62
2 link in the Rolfsen’s table)
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respectively. Also N(1) is the exterior of the Whitehead link (see [25] for
example). These Dehn fillings N( 3

−2), N( 1
−2) and N(1) play an important

rule to study pseudo-Anosovs with small dilatations (see [17]), which we
recall quickly in Section 4.3.

First of all, we consider the relation of fibered classes between N and
Dehn fillings N(r)’s. We suppose that N(r) is the manifold obtained from
N by Dehn filling the cusp specified by Tβ along the slope r. By using
Lemma 2.6(2) (which says that the boundary slope of ∂βFa equals z+x

−y ), we

have the following: There exists a natural injection

ιβ : H2(N(r), ∂N(r))→ H2(N, ∂N)

whose image equals Sβ(r), where

Sβ(r) = {(x, y, z) ∈ H2(N, ∂N) | − ry = z + x},

see [17, Proposition 2.11]. We choose r ∈ Q with r 6∈ {−3,−2,−1, 0}, and
let a ∈ Sβ(r) = Im ιβ be a fibered class in H2(N, ∂N). Then

a = ι−1
β (a) ∈ H2(N(r), ∂N(r))

is also a fibered class of N(r). This is because the monodromy Φa : Fa → Fa
of the fibration on N associated to a extends to the monodromy Φa of the
fibration on N(r) associated to a by capping each boundary component of
∂βFa with the disk. If the (un)stable foliation Fa of Φa has a property such
that each component of ∂βFa has no 1 prong, then Fa extends canonically to

the (un)stable foliation Fa of Φa, and hence Φa becomes a pseudo-Anosov
homeomorphism with the same dilatation as Φa. We sometimes denote N(r)
by Nβ(r) when we need to specify the cusp which is filled. By using this
notation, we may write a ∈ H2(Nβ(r), ∂Nβ(r)).

Similarly, when N(r) is the manifold obtained from N by Dehn filling
the cusp specified by another torus Tγ along the slope r, we have a natural
injection,

ιγ : H2(N(r), ∂N(r))→ H2(N, ∂N)

whose image is given by

Sγ(r) = {(x, y, z) ∈ H2(N, ∂N) | − rz = x+ y}.

4.2. Concrete examples. In the following example, we consider some
fibered classes a and compute their dilatations λ(a). We also exhibit τa ⊂ Fa,
its image Φa(τa) putting into the tie neighborhood N (τa) (so that it is trans-
verse to the ties) and the directed graph (Γa,1).

Example 4.1.

(1) If a = (1, 4, 1)+ = (2, 6, 1), then λ(a) ≈ 1.7220 is the largest root of

Q(1,4,1)+(t) = f(2,6,1)(t) = (t3 + 1)(t4 − t3 − t2 − t+ 1).
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Figure 26. (1) τa ⊂ Fa and Φa(τa) (up to isotopy) (2) Γa
for a = (1, 4, 1)+.

By Lemma 2.6(3), Fa has topological type Σ2,5. By Lemma 2.6(7),
Fa is orientable. This implies that the monodromy Φa : Fa → Fa of
the fibration associated to a extends to the pseudo-Anosov

Φ̂a : F̂a → F̂a

on the closed surface of genus 2 with orientable invariant foliations
by capping each boundary component of Fa with the disk. The

dilatation of Φ̂a is the same as that of Φa, that is λ(a). The minimal
dilatations δ2 and δ+

2 are computed in [4] and [39] respectively, and
δ2 = δ+

2 holds. In fact, δ2 is the largest root of t4− t3− t2− t+1, and

hence we have λ(a) = δ2 = δ+
2 . Thus Φ̂a is a minimizer of δ2 = δ+

2 .
See Figure 26.

(2) If a = (3, 1, 1)− = (1, 2,−3), then λ(a) ≈ 1.7816 is the largest root
of

Q(3,1,1)−(t) = f(1,2,−3)(t) = t6 − t5 − t4 − t2 − t+ 1.

See Figure 27.
(3) If a = (2, 3)0 = (3, 5, 0), then λ(a) ≈ 1.4134 is the largest root of

Q(2,3)0(t) = f(3,5,0)(t) = t8 − 2t5 − 2t3 + 1.
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Figure 27. (1) τa ⊂ Fa and Φa(τa) (up to isotopy) (2) Γa
for a = (3, 1, 1)−.

The fiber Fa is homeomorphic to Σ0,10. On the other hand,

](∂αFa) = ](∂βFa) = 1,

and Fa has a property such that each component of ∂αFa∪∂βFa has
no 1 prong. Hence by capping either ∂αFa or ∂βFa with the disk,

we get the pseudo-Anosov Φa : F a → F a on the (8 + 1)-punctured
sphere with the same dilatation as λ(a). Since Φa fixes the boundary
component (∂αFa or ∂βFa) of Fa, it defines the pseudo-Anosov on
D8. Lanneau and Thiffeault computed δ(D8) in [22]. We see that
λ(a) is equal to δ(D8), and hence Φa is a minimizer of δ(D8). See
Figure 28.

4.3. Infinite sequences of fibered classes. We exhibit several infinite
sequences of fibered classes of N , each of which corresponds to a subsequence
of pseudo-Anosovs to give the upper bounds (U1)–(U6) except (U3) in Ta-
ble 1. Each sequence lies on the section either Sβ(r) for r ∈ { 3

−2 ,−1, 1
−2} or

Sγ(r) for r ∈ {1,∞}. A sequence of fibered classes in Sβ( 3
−2) (resp. Sγ(1),

Sβ( 1
−2)) defines the sequence of fibered classes of the hyperbolic Dehn filling

N( 3
−2) (resp. N(1), N( 1

−2)). We indicate where each sequence sits on the
fibered face ∆, see Figure 29. The purpose of the following examples is to
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Figure 28. (1) τa (2) Another description of τa ⊂ Fa and
Φa(τa) (up to isotopy) (3) Γa for a = (2, 3)0.

construct the invariant train track τa, the induced directed graph Γa and
curve complex Ga associated to each fibered class a in each infinite sequence
concretely and to see a structure of the monodromy Φa of the fibration as-
sociated to a via the curve complex Ga. We will see that the topological
type of Ga is fixed, and it is either K∗∗1,2 or K∗∗1,3 for each infinite sequence.
Other sequences of fibered classes of N with small dilatations can be found
in [16, Section 5].

Example 4.2 (Figure 30). Suppose that g ≡ 2, 4 (mod 6). Take a sequence
of primitive fibered classes

ag = (1, g + 2, g − 1)+ = (g, 2g + 2, 1) ∈ Sβ( 1
−2).

(The fibered class in Example 4.1(1) is a2 in the present example.) Observe
that the projections [ag]’s go to [1

3 ,
2
3 ] ∈ int(∆) as g goes to ∞, see Fig-

ure 29(1). By Lemma 2.6(3)(7), it was shown in [20] that the fiber Fag has
genus g, and Fag is orientable. The dilatation λ(1,g+2,g−1)+ is equal to the
largest root of

Q(1,g+2,g−1)+(t) = (tg+1 + 1)(t2g − tg+1 − tg − tg−1 + 1).



588 EIKO KIN

[1/3,2/3]

[1/4,1/4]

(1) (3)

(5)

[1/2,1]

S (1/-2)

S (1)

S (-1)

[0,0] [1,0]

[0,1] [1,1]

[0,0] [1,0]

[0,1] [1,1]

[0,0] [1,0]

[0,1] [1,1]

[1/2,1/2]

(4)

8S (  )

[0,0] [1,0]

[0,1] [1,1]

[2/3,2/3]

(2)

S (3/-2)

[0,0] [1,0]

[0,1] [1,1]

[1/2,0] [1/2,0]
[1/2,0]

[1/2,0]

Figure 29. (1) ∆∩Sβ( 1
−2). (2) ∆∩Sβ( 3

−2). (3) ∆∩Sγ(1).

(4) ∆ ∩ Sγ(∞) = ∆0. (5) ∆ ∩ Sβ(−1).

Since Fag is orientable, the monodromy Φag : Fag → Fag of the fibration
associated to ag extends canonically to the pseudo-Anosov homeomorphism

Φ̂g on the closed surface Σg of genus g with the dilatation λ(1,g+2,g−1)+ . We
now introduce the Lanneau–Thiffeault polynomial

f(a,b)(t) = t2a − ta+b − ta − ta−b + 1.

Then f(g,1)(t) is a factor of Q(1,g+2,g−1)+(t). If we set λ(g,1) to be the largest

root of f(g,1)(t), then we have λ(g,1) = λ(1,g+2,g−1)+ = λ(Φ̂g). It is known

that δ+
2 = λ(2,1) [39], δ+

4 = λ(4,1) [21] and δ+
8 = λ(8,1) [21, 10]. Lanneau and

Thiffeault asked in [21] whether the equality δ+
g = λ(g,1) holds for even g.

The existence of pseudo-Anosovs Φ̂g for g ≡ 2, 4 (mod 6) in the present
example were discovered by Hironaka in [10], see also Remark 1.3. The

sequence of pseudo-Anosovs {Φ̂g} can be used as a subsequence to prove
both upper bounds (U1) and (U2) in Table 1. In fact we have

lim
g→∞

g log λ(Φ̂g) = log(3+
√

5
2 ).

Example 4.3 (Figure 31). An explicit value of δ+
7 is known. The lower

bound of δ+
7 was given in [21] and an example which realizes this lower bound
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Figure 30. Example 4.2. (1) τag ⊂ Fag (2) Γag (3) Gag for
ag = (1, g + 2, g − 1)+.

was found in [1] and [20] independently. However an explicit construction
of a minimizer of δ+

7 was not given in [1, 20]. Here we construct such a
minimizer. Suppose that g ≡ 7, 9 (mod 10). Following [20], we take a
sequence of primitive fibered classes

ag = (g + 6, 2, g)+ = (2g + 6, 2g + 8, g + 6) ∈ Sβ( 3
−2).
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Figure 31. Example 4.3. (1) τag ⊂ Fag (2) Γag (3) Gag for
ag = (g + 6, 2, g)+.

Then Fag has genus g ([20]) and the projections [ag]’s go to [2
3 ,

2
3 ] ∈ int(∆)

as g goes to ∞, see Figure 29(2). We have

Q(g+6,2,g)+(t) = (tg+4 + 1)(t2g+4 − tg+4 − tg+2 − tg + 1),



DYNAMICS OF MONODROMIES 591

and the dilatation λ(g+6,2,g)+ is equal to the largest root of this polynomial.
In particular λ(g+6,2,g)+ is equal to the largest root of the second factor of
Q(g+6,2,g)+(t). Lemma 2.6(7) ensures that the monodromy Φag : Fag → Fag
of the fibration associated to ag extends to the pseudo-Anosov Φ̂g : Σg → Σg
with orientable invariant foliations. It is known that δ+

7 is equal to the largest
root of the second factor of Q(13,2,7)+(t) as above. Hence δ+

7 = λ(13,2,7)+ ,

and the extension Φ̂7 of Φ(13,2,7)+ is a minimizer of δ+
7 . The existence of the

sequence of pseudo-Anosovs {Φ̂g} was shown in [1, 20]. We have

lim
g→∞

g log λ(Φ̂g) = log(3+
√

5
2 ),

see the upper bounds (U1) and (U2).

Example 4.4 (Figure 32). Suppose that g ≡ 1, 5 (mod 10). Following [20],
we take a sequence of primitive fibered classes

ag = (g + 10, 4, g − 2)+ = (2g + 8, 2g + 12, g + 10) ∈ Sβ( 3
−2).

Then the fiber Fg has genus g ([20]), and the dilatation λ(g+10,4,g−2)+ is
equal to the largest root of

Q(g+10,4,g−2)+(t) = (tg+6 + 1)(t2g+4 − tg+6 − tg+2 − tg−2 + 1).

Observe that the projections [ag]’s go to [2
3 ,

2
3 ] ∈ int(∆) as g goes to ∞, see

Figure 29(2). We see that the monodromy Φag : Fag → Fag of the fibration

associated to ag extends to the pseudo-Anosov Φ̂g on Σg with orientable

invariant foliations. The dilatation of Φ̂g is the same as the dilatation of
Φag , that is λ(g+10,4,g−2)+ . The equality δ+

5 = λ(15,4,3)+ holds, see [21]. The

sequence of pseudo-Anosovs {Φ̂g} satisfies

lim
g→∞

g log λ(Φ̂g) = log(3+
√

5
2 ),

see the upper bounds (U1) and (U2).

Example 4.5 (Figure 33). Following [17], we take a sequence of primitive
fibered classes

an = (2n− 1, 1, n− 1)− = (n− 1, n,−2n+ 1) ∈ Sγ(1).

The dilatation λ(2n−1,1,n−1)− is equal to the largest root of

Q(2n−1,1,n−1)−(t) = t4n−2 − t3n−1 − t3n−2 − tn − tn−1 + 1.

The projections of an’s go to [1
4 ,

1
4 ] ∈ int(∆) as n goes to∞, see Figure 29(3).

We find that an defines a fibered class an ∈ H2(Nγ(1), ∂Nγ(1)), see the
beginning of Section 4. By using Lemma 2.6(6), we see that the monodromy
of the fibration on N(1) associated to an has the dilatation λ(2n−1,1,n−1)− .
Observe that the topological type of the fiber (i.e., minimal representative)
of an is homeomorphic to Σ1,2n−1. The sequence of the monodromies Φan
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Figure 32. Example 4.4. (1) τag ⊂ Fag (2) Γag (3) Gag for
ag = (g + 10, 4, g − 2)+.
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of fibrations associated to an’s on the Whitehead link exterior Nγ(1) can be
used for a subsequence to prove (U5). In fact, we have

lim
n→∞

(2n− 1) log λ(Φan) = 2 log δ(D4).
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Figure 34. Example 4.6. (1) τan (circles indicate compo-
nents of ∂Fan) (2) Γan (3) Gan for an = (1, n− 1)0.

Example 4.6 (Figure 34). For n ≥ 3, consider a sequence of primitive
fibered classes

an = (1, n− 1)0 = (n− 1, n, 0) ∈ Sγ(∞),

which is studied in [18]. We see that Fan is homeomorphic to Σ0,2n+1. The
projection of an goes to [1

2 ,
1
2 ] ∈ int(∆) as n goes to ∞, see Figure 29(4).

The dilatation λ(1,n−1)0 equals the largest root of

Q(1,n−1)0(t) = t2n−1 − 2(tn−1 + tn) + 1.

By using the same arguments as in Example 4.1(3), we see that the mon-
odromy Φan : Σ0,2n+1 → Σ0,2n+1 of the fibration associated to an defines

the pseudo-Anosov Φan : D2n−1 → D2n−1 with the same dilatation λ(1,n−1)0 .

Such a pseudo-Anosov homeomorphism Φan : D2n−1 → D2n−1 is studied in
[14]. It is known that δ(D5) = λ(1,2)0 , see [9] and δ(D7) = λ(1,3)0 , see [22].
The sequence of pseudo-Anosovs {Φan : Σ0,2n−1 → Σ0,2n−1} can be used for
a subsequence to prove (U4):

lim
n→∞

(2n− 1) log λ(Φan) = 2 log(2 +
√

3).

Example 4.7 (Figure 35). For n ≥ 2, let us consider a sequence of fibered
classes

an = (2, 2n− 1)0 = (2n− 1, 2n+ 1, 0) ∈ Sγ(∞),

which is studied in [18]. (The fibered class in Example 4.1(3) is equal to
a2 in the present example.) We see that Fan is homeomorphic to Σ0,4n+2.
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Figure 35. Example 4.7. (1) τan (2) Γan (3) Gan for an =
(2, 2n− 1)0.

The projection of an goes to [1
2 ,

1
2 ] ∈ int(∆) as n goes to ∞. The dilatation

λ(2,2n−1)0 equals the largest root of

Q(2,2n−1)0(t) = t4n − 2(t2n−1 + t2n+1) + 1.

By using the same arguments as in Example 4.1(3), we see that the mon-
odromy Φan : Σ0,4n+2 → Σ0,4n+2 of the fibration associated to an defines

the pseudo-Anosov Φan : D4n → D4n with the dilatation λ(2,2n−1)0 . As we
have seen in Example 4.1(3), the equality δ(D8) = λ(2,3)0 holds. Such a

pseudo-Anosov homeomorphism Φan : D4n → D4n is also studied in [38].
The sequence of pseudo-Anosovs {Φan : Σ0,4n+2 → Σ0,4n+2} can be used for
a subsequence to prove (U4):

lim
n→∞

(4n+ 2) log λ(Φan) = 2 log(2 +
√

3).

Example 4.8 (Figure 36). Throughout this example, we fix g ≥ 0. The
following sequence of fibered classes is used for the proof of Theorem 1.1,



596 EIKO KIN

2p+
1

p-g

2p+
1

p+g+1 2p+1

p+g+1 2p+1

p+g+1 2g+1

p
q

p+g 2p

p+g 2p

p+g 2g

p-g+1 2p-2g+1

p-g+1 2p-2g+1

p-g+1 1

p
q

p-g 2p-2g

p-g 2p-2grp-g

2p-2g-1

p-g
+1

2p-2g-1rp-g-1

p-g-1

2g+1
2g+1

p
q2g
2g

1
1

p-g

p+g
+1

2p

p-g-1

2p

p-g-1

p+g

p+g
+2

1

p+g
+2

1

1
2g+

2

p-g

p-g-
1

sp-g

sp-g-1

s1

1 p-g+1

1
r1 p-g+1

sp-g

p-g-1

s1

p
2g+1

2g

p1

rp-g

p-g-1

r1

q
2g+1

2g

q
1

(p-g)

2g+1 p+g+1 p+g+1 2p+1 p+3g+2

(2g+1)
copies 

a+b

-patches

of  

copies 

b

-patches

of  

(p-g)

 copies 
k

-patches

of  +

(1) (3)

(2)

Figure 36. Example 4.8. (1) τa(g,p) ⊂ Fa(g,p) (2) Γa(g,p) (3)

Ga(g,p) for a(g,p) = (p− g, p− g, 2g + 1)+.
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see [19]:

a(g,p) = (p− g, p− g, 2g + 1)+ = (p+ g + 1, 2p+ 1, p− g) ∈ Sβ(−1).

The projections [a(g,p)]’s go to [1
2 , 1] ∈ ∂∆ as p goes to ∞, see Figure 29(5).

It is not hard to see that a(g,p) is primitive if and only if 2g+1 and p+g+1 are
relatively prime. If a(g,p) is primitive, then the fiber Fa(g,p) is homeomorphic
to Σg,2p+4, and we have

](∂βF(g,p)) = 2p+ 1 and ](∂αF(g,p)) + ](∂γF(g,p)) = 3.

There exists a sequence of primitive fibered classes {a(g,pi)}∞i=0 with pi →∞
when i→∞, where pi depends on g. (For example, take pi = (g+1)+i(2g+
1).) This means that Fa(g,pi) has genus g and the number of the boundary

components of Fa(g,pi) (which is equal to 2pi + 4) goes to ∞ as i does. As

we have seen above, the projection of such a class a(g,pi) goes to the same

point [1
2 , 1] ∈ ∂∆ (which does not depend on g) as pi goes to ∞.
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