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Matrices centrally image partition regular
near 0

Tanushree Biswas, Dibyendu De
and Ram Krishna Paul

Abstract. Hindman and Leader first investigated Ramsey theoretic
properties near 0 for dense subsemigroups of (R,+). Following them,
the notion of image partition regularity near zero for matrices was in-
troduced by De and Hindman. It was also shown there that like image
partition regularity over N, the main source of infinite image partition
regular matrices near zero are Milliken–Taylor matrices. But except for
constant multiples of the Finite Sum matrix, no other Milliken–Taylor
matrices have images in central sets. In this regard the notion of cen-
trally image partition regular matrices were introduced. In the present
paper we propose the notion of matrices that are centrally image par-
tition regular matrices near zero for dense subsemigroups of (R,+) and
show that for infinite matrices these may be different from centrally
image partition regular matrices, unlike the situation for finite matrices.
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1. Introduction

Let us start this article with the following well known definition of image
partition regularity.

Definition 1.1. Let u, v ∈ N and let M be a u×v matrix with entries from
Q. The matrix M is image partition regular over N if and only if whenever
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r ∈ N and N =
⋃r
i=1Ci, there exist i ∈ {1, 2, ..., r} and ~x ∈ Nv such that

M~x ∈ Cui .

It is well known that for finite matrices, image partition regularity behaves
well with respect to central subsets of the underlying semigroup. (Central
sets were introduced by Furstenberg and enjoy very strong combinatorial
properties [5, Proposition 8.21]). But the situation becomes totally different
for infinite image partition regular matrices. It was shown in [8] that some
of the interesting properties for finite image partition regularity could not
be generalized for infinite image partition regular matrices. To handle these
situations the notion of centrally image partition regular matrices were in-
troduced [8], while both these notions become identical for finite matrices.
The same problem occurs in the setup of image partition regularity near zero
over a dense subsemigroup of

(
(0,∞),+

)
. Again from [1, Theorem 2.4], it

follows that image partition regularity and image partition regularity near
zero over a dense subsemigroup of

(
(0,∞),+

)
are equivalent for finite ma-

trices. This situation motivates us to introduce the notion of centrally image
partition regular near zero over a dense subsemigroup of

(
(0,∞),+

)
which

involves the notion of central sets near zero. The notion of central set near
zero was introduced by Hindman and Leader [6] and these sets also enjoy a
rich combinatorial structure like central sets.

We shall present the notion central sets and central sets near zero after
giving a brief description of the algebraic structure of βS for a discrete
semigroup (S,+). We take the points of βS to be the ultrafilters on S,
identifying the principal ultrafilters with the points of S and thus pretending
that S ⊆ βS. Given A ⊆ S let us set, A = {p ∈ βS : A ∈ p}. Then the
set {A : A ⊆ S} is a basis for a topology on βS. The operation + on S can
be extended to the Stone–Čech compactification βS of S so that (βS,+)
is a compact right topological semigroup (meaning that for any p ∈ βS,
the function ρp : βS → βS defined by ρp(q) = q + p is continuous) with S
contained in its topological center (meaning that for any x ∈ S, the function
λx : βS → βS defined by λx(q) = x + q is continuous). Given p, q ∈ βS
and A ⊆ S, A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p, where
−x+A = {y ∈ S : x+ y ∈ A}.

A nonempty subset I of a semigroup (T,+) is called a left ideal of S if
T + I ⊂ I, a right ideal if I + T ⊂ I, and a two sided ideal (or simply an
ideal) if it is both a left and right ideal. A minimal left ideal is the left ideal
that does not contain any proper left ideal. Similarly, we can define minimal
right ideal and smallest ideal.

Any compact Hausdorff right topological semigroup (T,+) has a smallest
two sided ideal

K(T ) =
⋃
{L : L is a minimal left ideal of T}

=
⋃
{R : R is a minimal right ideal of T}.
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Given a minimal left ideal L and a minimal right ideal R, L∩R is a group,
and in particular contains an idempotent. An idempotent in K(T ) is called
a minimal idempotent. If p and q are idempotents in T , we write p ≤ q if
and only if p + q = q + p = p. An idempotent is minimal with respect to
this relation if and only if it is a member of the smallest ideal. See [9] for an
elementary introduction to the algebra of βS and for any unfamiliar details.

Definition 1.2. Let (S,+) be an infinite discrete semigroup. A set C ⊆ S
is central if and only if there is some minimal idempotent p in (βS,+) such
that C ∈ p. C is called central∗ set if it belongs to every minimal idempotent
of (βS,+).

We will be considering semigroups which are dense in
(
(0,∞),+

)
. Here

“dense” means with respect to the usual topology on
(
(0,∞),+

)
. When

passing to the Stone–Čech compactification of such a semigroup S, we deal
with Sd which is the set S with the discrete topology.

Definition 1.3. If S is a dense subsemigroup of
(
(0,∞),+

)
, then

0+(S) = {p ∈ βSd : (∀ε > 0)(S ∩ (0, ε) ∈ p)}.

It was proved in [6, Lemma 2.5], that 0+(S) is a compact right topolog-
ical subsemigroup of (βSd,+). It was also noted therein 0+(S) is disjoint
from K(βSd), and hence gives some new information which is not available
from K(βSd). Being a compact right topological semigroup, 0+(S) contains
minimal idempotents. In [1], the authors applied the algebraic structure of
0+(S) in their investigation of image partition regularity near zero of finite
and infinite matrices. Moreover in [3], the algebraic structure of 0+(R) has
been used to investigate image partition regularity of matrices with real
entries from R.

Definition 1.4. Let S be a dense subsemigroup of
(
(0,∞),+

)
, A set C ⊂ S

is central near 0 if and only if there is some minimal idempotent p in 0+(S)
such that C ∈ p. C is called central∗ set near zero if it belongs to every
minimal idempotent of 0+(S).

Next we present some well known characterizations of image partition
regularity of matrices.

Theorem 1.1 ([7, Theorem 2.10]). Let u, v ∈ N and let M be a u×v matrix
with entries from Q. The following statements are equivalent.

(a) M is image partition regular.
(b) For every central subset C of N, there exists ~x ∈ Nv such that

M~x ∈ Cu.

(c) For every central subset C of N, {~x ∈ Nv : such that M~x ∈ Cu} is
central in Nv.
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(d) For each ~r ∈ Qv \ {~0} there exists b ∈ Q \ 0 such that(
b~r
M

)
is image partition regular.

(e) For every central subset C of N, there exists ~x ∈ Nv such that

~y = M~x ∈ Cu,
all entries of ~x are distinct, and for all i, j ∈ {1, 2, . . . , u}, if rows i
and j of M are unequal, then yi 6= yj.

In the paper [8], the authors presented some contrasts between finite
and infinite image partition regular matrices and showed that some of the
interesting properties of finite image partition regular matrices could not be
generalized for infinite image partition regular matrices.

It is interesting to observe from Theorem 1.1(b) that, if M and N are
finite image partition regular matrices, then the matrix(

M O
O N

)
is also image partition regular. But this property does not hold for infinite
matrices as was shown in [8, Theorem 2.2].

Definition 1.5. Let ~a be a finite or infinite sequence in Q+ with only finitely
many nonzero entries. Then c(~a) is the sequence obtained from ~a by deleting
all zeroes and then deleting all adjacent repeated entries. The sequence c(~a)
is the compressed form of ~a. If ~a = c(~a), then ~a is a compressed sequence.

Theorem 1.2 ([8, Theorem 2.2]). Let ~b be a compressed sequence with

entries from N such that ~b 6= (n) for any n ∈ N. Let M be a matrix whose
rows are all rows ~a ∈ Qω with only finitely many nonzero entries such that

c(~a) = ~b. Let N be the finite sums matrix.

(a) The matrices M and N are image partition regular.
(b) There is a subset C of N which is a member of every idempotent in

βN (and is thus, in particular, central) such that for no ~x ∈ Nω does
one have M~x ∈ Cω.

(c) The matrix (
M O
O N

)
is not image partition regular.

To overcome the above situation the following notion was introduced in
[8, Definition 2.7].

Definition 1.6. Let M be an ω × ω matrix with entries from Q. Then M
is centrally image partition regular if and only if whenever C is a central
set in N, there exists ~x ∈ Nω such that M~x ∈ Cω.
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Note that Definition 1.6 has a natural generalization for an arbitrary
subsemigroup S of

(
(0,∞),+

)
, and hence forth we will abbreviate this by

CIPR/S. Motivation behind the introduction of this new notion was that
many good properties of finite image partition regular matrices could not
be extended with respect to infinite image partition regular matrices.

It is easy to see that whenever M and N are centrally image partition
regular matrices over any subsemigroup S of

(
(0,∞),+

)
, then so is(

M O
O N

)
.

The above observation tells us that centrally image partition regular ma-
trices are more natural candidate to generalize the properties of finite image
partition regular matrices to infinite matrices.

In this paper we introduce another natural candidate to generalize the
properties of finite image partition regularity near zero in case of infinite
matrices. First we recall the following definition.

Definition 1.7. Let S be a dense subsemigroup of (0,∞),+) and let u, v ∈
N and let M be a u × v matrix with entries from Q. The matrix M is
image partition regular near zero over S if and only if whenever r ∈ N,
ε > 0 and S =

⋃r
i=1Ci, there exist i ∈ {1, 2, ..., r} and ~x ∈ Nv such that

M~x ∈ (Ci ∩ (0, ε))u.

Definition 1.8. Let M be an ω×ω matrix with entries from Q and let S be
a dense subsemigroup of

(
(0,∞),+

)
. Then M is centrally image partition

regular near zero over S if whenever C is a central set near zero in S, there
exists ~x ∈ Sω such that M~x ∈ Cω.

Henceforth for arbitrary subsemigroup S of
(
(0,∞),+

)
, we will abbreviate

centrally image partition regular near zero over S by CIPR/S0.
It is a simple fact that if M and N are two centrally image partition

regular near zero matrices over a dense subsemigroup S of
(
(0,∞,+

)
, then

the diagonal sum (
M O
O N

)
is also a centrally image partition regular near zero matrix over S.

The following examples show that there exist infinite matrices which are
centrally image partition regular over Q+ but not centrally image partition
regular near zero over Q+ and vice versa.

Example 1.3. Let

M =


1 0 0 0 . . .
2 1 0 0 . . .
4 0 1 0 . . .
8 0 0 1 . . .
...

...
...

...
. . .

 .
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Then M is CIPR/Q+ but is not CIPR/Q+
0 .

Proof. To see that M is centrally image partition regular matrix, let C be
any central set in Q+ and pick a sequence 〈yn〉∞n=0 in C such that for each
n ∈ N, yn > 2ny0. Let x0 = y0 and for each n ∈ N, let xn = yn−2ny0. Then
M~x = ~y.

Now (0, 1) ∩ Q+ is a central set near zero in Q+. Suppose one has ~x ∈
(Q+)ω such that ~y = M~x ∈

(
(0, 1) ∩ Q+

)ω
. Then x0 = y0 > 0. Pick k ∈ N

such that 2kx0 > 1. Then yk = 2kx0 + xk > 1, a contradiction. �

Example 1.4. Let

M =


1 −1 0 0 0 . . .

1/3 0 −1 0 0 . . .
1/5 0 0 −1 0 . . .
1/7 0 0 0 −1 . . .

...
...

...
...

...
. . .

 .

Then M is CIPR/Q+
0 but is not CIPR/Q+.

Proof. To see that M is not CIPR/Q+, we have to find a central set C
in Q+ such that for no ~x ∈ (Q+)ω we have ~y = M~x ∈ Cω. Let us take
C = {x ∈ Q : x > 1}. Then C is an ideal of (Q+,+) and so, by [9, Theorem
2.19], C is an ideal of βQ+

d and therefore C is central, in fact central*.
Suppose one has ~x ∈ (Q+)ω with ~y = M~x ∈ Cω. Pick n ∈ N such that
2n− 1 > x0. Then yn−1 =

(
1/(2n− 1)

)
x0 − xn < 1, a contradiction.

To see that M is CIPR/Q+
0 near zero let C be a central set near zero in

Q+. Note that 0 ∈ c`C and pick a sequence 〈yn〉∞n=0 in C which converges
to 0. We may assume that for each n, yn < 1/(2n+ 1). Let x0 = 1 and for
n ∈ N, let xn = 1/(2n− 1)− yn−1. Then M~x = ~y ∈ Cω. �

In [8], we have seen that finite image partition regular matrices satisfy
some interesting properties that are not satisfied by infinite image partition
regular matrices. In this paper, we will show this behaviour is also true in
the case of image partition regularity near zero. This is why we introduced
the notion of centrally image partition regularity near zero. In Section 2 of
this paper, we first prove that for any two infinite image partition regular
matrices near zero M and N , over D+, their diagonal sum(

M O
O N

)
may not be image partition regular near zero over D+. Also we show that
infinite matrices which are image partition regular near zero can be extended
by finite ones. Also we will show in Proposition 2.6 how new types of
centrally infinite image partition regular matrices near zero are constructed
from old ones.
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In Section 3, we prove that a special type of infinite image partition
regular matrices (i.e. segmented image partition regular matrices) are also
centrally image partition regular near zero.

Acknowledgement. The authors like to thank the referee for his/her care-
ful reading of this paper and for providing various suggestions for a serious
improvement of the paper.

2. Matrices centrally image partition regularity near zero

In Theorem 1.2 we have observed that there exist two infinite image par-
tition regular matrices M and N over N such that their diagonal sum(

M O
O N

)
is not image partition regular matrix over N. The central tool to prove
the above Theorem is the Milliken–Taylor separating theorem [4, Theorem
3.2]. Recently in [11], a Milliken–Taylor separating theorem has been proved
for dyadic rational numbers which we will employ to prove a generalization
generalization of Theorem 1.2. First we recall some Definitions from [11].

Definition 2.1. The set of dyadic rational numbers is
D = {m2t : m ∈ Z and t ∈ ω}.

We will be considering D+, the set of positive numbers contained in D.

Definition 2.2. Let x ∈ D+. The support of x, denoted supp(x), is the
unique finite nonempty subset of Z such that x =

∑
t∈supp(x) 2t.

Definition 2.3. Given a binary number, an even 0-block is the occurrence
of a positive even number of consecutive zeros between two consecutive ones.

For x ∈ D+, define the start of x as the position of the first 1 appearing
in x moving from left to right and the end as the position of the last 1. The
formal definition is the following.

Definition 2.4. Let x ∈ D+. Then x =
∑

t∈supp(x) 2t where

supp(x) ∈ Pf (Z).

Define the start of x as maxsupp(x) and the end as minsupp(x).

Now we present the following Proposition from [11, Proposition 2.12] that
plays the key role to prove the following Theorem 2.2. Let us first introduce
the following definition.

Definition 2.5. Let m ∈ ω, let ~a = 〈ai〉mi=0 be a sequence in Q+, and
let ~x = 〈xn〉∞n=0 be a sequence in the dense subsemigroup S of R+. The
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Milliken–Taylor system determined by ~a and ~x will be denoted by MT (~a, ~x),
and defined as{

m∑
i=0

ai ·
∑
t∈Fi

xt :

each Fi ∈ Pf (ω) and if i < m, then maxFi < minFi+1

}
.

Proposition 2.1 ([11, Proposition 2.12]). Let ϕ(z) be the number of even 0-
blocks between the start and end of z for any z ∈ D∩ (0, 2). For i ∈ {0, 1, 2},
let

Ci = {c ∈ D ∩ (0, 2) : ϕ(c) ≡ i mod 3}.
Then {C0, C1, C2} is a partition of D ∩ (0, 2) such that no Ci contains
MT (〈1〉, 〈xi〉∞i=1)∪MT (〈1, 2〉, 〈yi〉∞i=1) for any sequences 〈xi〉∞i=1 and 〈yi〉∞i=1
in D ∩ (0, 2).

Definition 2.6. Let ~a be a compressed sequence in Q+. A Milliken–Taylor
matrix determined by ~a is an ω × ω matrix M such that the rows of M are
all rows which have only finitely many non zero entries whose compressed
form is equal to ~a.

Theorem 2.2. Let M be the finite sum matrix and N be the Milliken–Taylor
matrix determined by compressed sequence 〈1, 2〉. Then:

(1) The matrices M and N are image partition regular near zero over
D+.

(2) The matrix (
M O
O N

)
is not image partition regular near zero over D+.

(3) The matrix N is not centrally image partition regular near zero over
D+.

Proof. Statement (1) follows from [1, Theorem 5.7].
(2) From Proposition 2.1 the matrix(

M O
O N

)
is not image partition regular near zero over D+.

(3) Suppose that N is centrally image partition regular near zero. Again
M is centrally image partition regular near zero follows from [6, Theorem
3.1]. Then the matrix (

M O
O N

)
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is centrally image partition regular near 0 and hence also image partition
regular near 0. But this is a contradiction. Therefore, N is not centrally
image partition regular near zero over D+. �

Next, we show that infinite image partition regular near zero matrices can
be extended by finite ones. The proof of the following Theorem is adapted
from the proof of [8, Lemma 2.3] which is due to V. Rödl.

Theorem 2.3. Let M be a finite image partition regular matrix over N of
order u × v and N be an infinite image partition regular near zero matrix
over a dense subsemigroup S of

(
(0,∞,+

)
. Then(

M O
O N

)
is image partition regular near zero over S.

Proof. Let r ∈ N and let ϕ : S → {1, 2, . . . , r} be an r-coloring of S.
For i ∈ {1, 2, . . . , r}, let Ci = {x ∈ S : ϕ(x) = i}. Let ε > 0. By a
standard compactness argument (see [9, Section 5.5]) there exists k ∈ N
such that whenever {1, 2, · · · , k} =

⋃r
i=1Di there exists ~x ∈ {1, 2, · · · , k}v

and i ∈ {1, 2, · · · , r} such that M~x ∈ (Di)
u. Pick z ∈ S ∩ (0, ε/k).

Now color S with rk colors via ψ as S =
⋃rk

i=1 Fi, where ψ(x) = ψ(y) if and
only if for all t ∈ {1, 2, · · · , k}, ϕ(tx) = ϕ(ty). Choose ~y ∈ Sω such that the
entries of N~y are in Fi∩ (0, z) for some i ∈ {1, 2, · · · , rk}. Pick an entry a of
N~y and for each i ∈ {1, 2, · · · , r} let us setDi = {t ∈ {1, 2, · · · , k} : ta ∈ Ci}.
Then {1, 2, · · · , k} =

⋃r
i=1Di. Note that since a ∈ (0, z), ta ∈ (0, ε) for all

t ∈ {1, 2, · · · , k}. If we express this coloring as

γ : {1, 2, · · · , k} → {1, 2, · · · , r},

then γ(p) = ϕ(ap). So there exists ~u ∈ {1, 2, · · · , k}v and i ∈ {1, 2, · · · , r}
such that M~u ∈ (Di)

u so that a(M~u) ∈ (Ci)
u. Now a(M~u) = M(a~u). Put

~x = a~u. Then M~x ∈ (Ci∩(0, ε))u. Choose an entry l of M~u and let j = γ(l).

Let ~z =

(
a~u
l~y

)
. We claim that for any row ~w of

(
M O
O N

)
, ϕ(~w·~z) = j.

To observe this first assume that ~w is a row of
(
M O

)
, so that ~w = ~s_~0,

where ~s is a row of M . Then ~w · ~z = ~s · (a~u) = a(~s · ~u). Therefore

ϕ(~w · ~z) = ϕ(a(~s · ~u)) = γ(~s · ~u) = j.

Next assume that ~w is a row of
(
O N

)
, so that ~w = ~0_~s where ~s is a

row of N . Then ~w · ~z = l(~s · ~y). Now ψ(~s · ~y) = ψ(a). So

ϕ(l(~s · ~y)) = ϕ(la) = γ(l) = j. �

We now present the following theorem and corollary in order to prove
Proposition 2.6.
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Theorem 2.4. Let S be a subsemigroup of
(
(0,∞,+

)
such that for any

ε > 0, |(0, ε) ∩ S| = |S|. Let p ∈ K
(
0+(S)

)
, let C ∈ p, and let R be the

minimal right ideal of 0+(S) to which p belongs. Then there are at least 2c

idempotents in K(0+(S)) ∩R ∩ C.

Proof. Let A = {(0, 1/n) ∩ S : n ∈ N} and apply [2, Theorem 2.3]. �

Corollary 2.5. Let S be a subsemigroup of
(
(0,∞,+

)
such that for any

ε > 0, |(0, ε) ∩ S| = |S| and let C be a central set near zero. Then there
exists a sequence 〈Cn〉∞n=1 of pairwise disjoint central sets near zero in S
with

⋃∞
n=1Cn ⊆ C.

Proof. By Theorem 2.4, there are at infinitely many idempotents in C,
hence C contains an infinite strongly discrete subset. (Alternatively, there
are two minimal idempotents in C so that C can be split into two central
sets near zero, C1 and D1. Then D1 can be split into two central sets near
zero, C2 and D2, and so on.) �

Proposition 2.6. Let S be a subsemigroup of
(
(0,∞,+

)
such that for any

ε > 0, |(0, ε) ∩ S| = |S|. For each n ∈ N, let Mn be a centrally image
partition regular near zero matrix over S. Then the matrix

M =


M1 0 0 . . .
0 M2 0 . . .
0 0 M3 . . .
...

...
...

. . .

 .

is also centrally image partition regular near zero .

Proof. Let C be a central sets near zero and choose by Corollary 2.5
a sequence 〈Cn〉∞n=1 of pairwise disjoint central sets near zero in S with⋃∞
n=1Cn ⊆ C. For each n ∈ N choose ~x(n) ∈ Sω such that ~y(n) = Mn~x

(n) ∈
Cωn . Let

~z =

 ~x(1)

~x(2)

...

 .

Then all entries of M~z are in C. �

3. A class of infinite matrices that are centrally image
partition regular near zero

We now present a class of image partition regular matrices, called the
segmented image partition regular matrices, which were first introduced in
[10]. Here, we show that these matrices are also centrally image partition
regular. Let us first recall the definition of a first entry matrix.

Definition 3.1. Let M be a u× v matrix with entries from Q. Then M is
a first entries matrix if:
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(1) No row of M is ~0.
(2) The first nonzero entry of each row is positive.
(3) If the first nonzero entries of any two rows occur in the same column,

then they are equal.

If M is a first entries matrix and c is the first nonzero entry of some row of
M , then c is called a first entry of M .

Definition 3.2. Let M be an ω × ω matrix with entries from Q. Then M
is a segmented image partition regular matrix if and only if:

(1) No row of M is ~0.
(2) For each i ∈ ω, {j ∈ ω : ai,j 6= 0} is finite.
(3) There is an increasing sequence 〈αn〉∞n=0 in ω such that α0 = 0 and

for each n ∈ ω, {〈ai,αn , ai,αn+1, ai,αn+2, . . . , ai,αn+1−1〉 : i ∈ ω}\{~0} is
empty or is the set of rows of a finite image partition regular matrix.

If each of these finite image partition regular matrices is a first entries
matrix, then M is a segmented first entries matrix. If also the first nonzero
entry of each 〈ai,αn , ai,αn+1, ai,αn+2, . . . , ai,αn+1−1〉, if any, is 1, then M is a
monic segmented first entries matrix.

The proof of the following theorem is adapted from the proof of [10,
Theorem 3.2].

Theorem 3.1. Let S be a dense subsemigroup of
(
(0,∞,+

)
for which cS

is central∗ near zero for every c ∈ N and let M be a segmented image
partition regular matrix with entries from ω. Then M is centrally image
partition regular near zero.

Proof. Let ~c0,~c1,~c2, . . . denote the columns of M . Let 〈αn〉∞n=0 be as in the
definition of a segmented image partition regular matrix. For each n ∈ ω,
let Mn be the matrix whose columns are ~cαn ,~cαn+1, . . . ,~cαn+1−1. Then the
set of nonzero rows of Mn is finite and, if nonempty, is the set of rows of a
finite image partition regular matrix. Let Bn = (M0 M1 . . .Mn).

Let C be a central set near zero over S. Then there exists a minimal
idempotent p ∈ 0+(S) such that C ∈ p. Let C? = {x ∈ C : −x + C ∈ p}.
Then C? ∈ p and, for every x ∈ C?, −x+ C? ∈ p by [9, Lemma 4.14]. Now
the set of nonzero rows of Mn is finite and, if nonempty, is the set of rows
of a finite image partition regular matrix over N and hence by [1, Theorem

2.3] IPR/S0. Then by [1, Theorem 4.10], we can choose ~x(0) ∈ Sα1−α0 such

that, if ~y = M0~x
(0), then yi ∈ C? for every i ∈ ω for which the ith row of

M0 is nonzero.
Assume inductively that for some m ∈ ω, we have chosen

~x(0), ~x(1), . . . , ~x(m)
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such that ~x(i) ∈ Sαi+1−αi for every i ∈ {0, 1, . . . ,m}, and if

~y = Bm


~x(0)

~x(1)

...

~x(m)

 ,

then yj ∈ C? for every j ∈ ω for which the jth row of Bm is nonzero.

Let D = {j ∈ ω : row j of Bm+1 is not ~0} and note that for each
j ∈ ω, −yj + C? ∈ p. (Either yj = 0 or yj ∈ C?.) By [1, Theorem 4.10]

we can choose ~x(m+1) ∈ Sαm+2−αm+1 such that, if ~z = Mm+1~x
(m+1), then

zj ∈ C? ∩
⋂
t∈D(−yt + C?) for every j ∈ D.

Thus we can choose an infinite sequence 〈~x(i)〉i∈ω such that, for every

i ∈ ω, ~x(i) ∈ Sαi+1−αi , and, if

~y = Bi


~x(0)

~x(1)

...

~x(i)

 ,

then yj ∈ C? for every j ∈ ω for which the jth row of Bi is nonzero.
Let

~x =


~x(0)

~x(1)

~x(2)

...


and let ~y = M~x. We note that, for every j ∈ ω, there exists m ∈ ω such
that yj is the jth entry of

Bi


~x(0)

~x(1)

...

~x(i)


whenever i > m. Thus all the entries of ~y are in C?. �

References

[1] De, Dibyendu; Hindman, Neil. Image partition regularity near zero. Discrete
Math. 309 (2009), no. 10, 3219–3232. MR2526740 (2010h:05325), Zbl 1202.05146,
doi: 10.1016/j.disc.2008.09.023.

[2] De, Dibyendu; Hindman, Neil; Strauss, Dona. Sets central with respect
to certain subsemigroups of βSd. Topology Proc. 33 (2009), 55–79. MR2471562
(2010b:54040), Zbl 1202.54020.

[3] De, Dibyendu; Paul, Ram Krishna. Image partition regularity of matrices near 0
with real entries. New York J. Math. 17 (2011), 149–161. MR2781912 (2012b:05280),
Zbl 1229.05262.

http://www.ams.org/mathscinet-getitem?mr=2526740
http://zbmath.org/?q=an:1202.05146
http://dx.doi.org/10.1016/j.disc.2008.09.023
http://www.ams.org/mathscinet-getitem?mr=2471562
http://zbmath.org/?q=an:1202.54020
http://nyjm.albany.edu/j/2011/17-8v.pdf
http://nyjm.albany.edu/j/2011/17-8v.pdf
http://www.ams.org/mathscinet-getitem?mr=2781912
http://zbmath.org/?q=an:1229.05262


MATRICES CENTRALLY IMAGE PARTITION REGULAR NEAR 0 613

[4] Deuber, Walter A.; Hindman, Neil; Leader, Imre; Lefmann, Hanno. Infinite
partition regular matrices. Combinatorica 15 (1995), no. 3, 333–355. MR1357280
(96i:05173), Zbl 0831.05060, doi: 10.1007/BF01299740.

[5] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory.
M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981. xi+203 pp.
ISBN: 0-691-08269-3. MR0603625 (82j:28010), Zbl 0459.28023.

[6] Hindman, Neil; Leader, Imre. The semigroup of ultrafilters near 0. Semi-
group Forum 59 (1999), no. 1, 33–55. MR1847941 (2002h:22004), Zbl 0942.22003,
doi: 10.1007/s002339900031.

[7] Hindman, Neil; Leader, Imre; Strauss, Dona. Image partition regular matrices–
bounded solutions and preservation of largeness. Discrete Math. 242 (2002),
no. 1–3, 115–144. MR1874760 (2002j:05146), Zbl 1007.05095, doi: 10.1016/S0012-
365X(01)00276-X.

[8] Hindman, Neil; Leader, Imre; Strauss, Dona. Infinite partition regular matrices;
solutions in central sets. Trans. Amer. Math. Soc. 355 (2003), no. 3, 1213–1235.
MR1938754 (2003h:05187), Zbl 1006.05058, doi: 10.1090/S0002-9947-02-03191-4.

[9] Hindman, Neil; Strauss, Dona. Algebra in the Stone–Čech compactification. The-
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