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Bounded height conjecture for function
fields

Dragos Ghioca, David Masser
and Umberto Zannier

Abstract. We prove a function field version of the Bounded Height
Conjecture formulated by Chatzidakis, Ghioca, Masser and Maurin in
2013.
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1. Introduction

The Manin–Mumford Conjecture (proven by Raynaud [Ray83a, Ray83b]
in the abelian case and by Hindry [Hin88] in the semiabelian case) asserts
that if G is a semiabelian variety defined over the complex numbers C, and
V is an irreducible subvariety of G which is not a translate of an alge-
braic subgroup of G by a torsion point, then V does not contain a Zariski
dense set of torsion points. If for each integer m ≥ 0 we define G[m] as the
union of all algebraic subgroups of G of codimension at least m, then the
Manin–Mumford Conjecture states that V ∩G[dimG] is not Zariski dense in
V , as long as V is not a torsion translate of an algebraic subgroup of G.
In [Zil02] (see also [BMZ99] in the special case G = Gn

m), a more general
conjecture was advanced. Bombieri, Masser and Zannier conjectured that
if V ⊂ Gn

m is an irreducible variety of dimension d which is not contained
in a translate of a proper algebraic subgroup of Gn

m, then its intersection
with G[d+1] is not Zariski dense in V . We also note that Pink [Pin] ad-
vanced a conjecture generalizing several known problems in arithmetic ge-
ometry: Mordell–Lang, Manin–Mumford, André–Oort, and Pink–Zilber. In
[BMZ99], Bombieri, Masser and Zannier proved their conjecture for curves
V ⊂ Gn

m, and in [BMZ07], they formulated a possible strategy for proving
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their conjecture in general. Their proposed strategy goes through proving
first the Bounded Height Conjecture (which is now a theorem due to Habeg-
ger [Hab09]). Habegger proved that once we remove from V the anomalous
locus V a (i.e., the union of all irreducible subvarieties W for which there ex-
ists a translate T of an algebraic subgroup of G = Gn

m such that W ⊆ V ∩T
and dim(W ) > max{0, dim(V ) + dim(T ) − n}), then (V \ V a) ∩ G[dim(V )]

is a set of bounded height. See Zannier’s recent book [Zan12] for more
information on these and related topics.

Function field versions of both the Pink–Zilber Conjecture and of the
Bounded Height Conjecture (see [CGMM13, Conjecture 1.8]) were formu-
lated in [CGMM13]. While the function field version of the Pink–Zilber
Conjecture was proven also in [CGMM13], on the other hand, in [CGMM13]
there was proven only a partial result for plane curves of the function field
version of the Bounded Height Conjecture. The main result of this paper is
to prove [CGMM13, Conjecture 1.8] for all plane curves defined over a field
of characteristic 0. We note that the method for our proof is significantly
different than the one used in [CGMM13] for proving the special case of the
Bounded Height Conjecture for plane curves of the form f(X) = g(Y ).

We start by stating the Bounded Height Conjecture from [CGMM13].
So, let k ⊂ K be algebraically closed fields and let X := An. We assume
trdegkK is finite; let t1, . . . , t` be a transcendence basis for K/k. We en-
dow K with the valuations extending the valuations corresponding to the
function field k(t1, . . . , t`); we define the usual Weil height for all points in
An(K). The subvarieties of X defined over k are the equivalent of algebraic
subgroups in the Bounded Height Conjecture for Gn

m; in particular, these
subvarieties defined over k have the property (similar to the case of algebraic
subgroups of Gn

m) that contain a Zariski dense set of points of Weil height
0.

Definition 1.1. For each m ≥ 0 we define X (m) be the union of all subva-
rieties of X defined over k of codimension m.

We define the set of quasi-constant varieties, which play the role of trans-
lates of algebraic subgroups from the classical setting.

Definition 1.2. The (absolute irreducible) variety Y ⊆ X is quasi-constant
if it is defined over a subfield of K which has transcendence degree over k
at most equal to 1.

Next we define the quasi-anomalous locus that we need to remove from
any subvariety Y ⊆ X in order to obtain a set of bounded Weil height when
we intersect Y with X (dim(Y)).

Definition 1.3. The anomalous part Ya of a variety Y in X is the union
of all irreducible subvarieties W in Y such that W is contained in some
quasi-constant subvariety Z of X satisfying

dimW > max{0, dimY + dimZ − n}.
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In [CGMM13, Conjecture 1.8], it was conjectured that for any subvariey

Y ⊂ X , the points in (Y \ Ya) ∩ X (dimY) over K have Weil height bounded
above. The first interesting case of [CGMM13, Conjecture 1.8] is the case
of plane curves Y (i.e., when X = A2); this is [CGMM13, Conjecture 1.6].
As mentioned above, in [CGMM13], only a partial result was obtained for
plane curves of the form f(X) = g(Y ). In this paper we prove [CGMM13,
Conjecture 1.6] for all plane curves Y defined over a field of characteristic 0.
In this case, an irreducible curve Y is either itself quasi-constant, in which
case Ya = Y and so, [CGMM13, Conjecture 1.6] holds trivially, or Y is
not quasi-constant, i.e. the minimal field of Y has transcendence degree at
least equal to 2 and then Ya is empty. So, in all that follows we assume
trdegkK ≥ 2, and also that k has characteristic 0. We also note that (as
pointed out by the referee) we use in one essential point of our proof the
hypothesis that k has characteristic 0. So, our main result is the following:

Theorem 1.4. Let k be an algebraically closed field of characteristic 0, and
let K be an algebraically closed field containing k such that 2 ≤ trdegkK <
∞. Let Y ⊂ X := A2 be an absolutely irreducible curve defined over K
which is not defined over a subfield of K of transcendence degree 1. Then
the points of Y ∩ X (1) over K have height bounded from above.

Acknowledgments. We thank Joe Silverman and the anonymous referee
for their many useful comments and suggestions which improved our pre-
sentation.

2. Preliminaries

In this Section we start by introducing the Weil height for a function
field, and then we prove a couple of useful results which will be used later
in Section 3 in the proof of Theorem 1.4.

Since the proof of Theorem 1.4 in the case when trdegkK > 2 follows
by the same argument as the case when trdegkK = 2, then for the sake of
simplifying the notation we restrict our attention to the case trdegkK =
2. So, we let k be an algebraically closed field, and we let K be a fixed
algebraic closure of k(s, t). We define the Weil height h(x) of each point
x in the function field K/k following either [Ser89, Chapter 2], or [BG06].
Alternatively, we can define the Weil height of u ∈ K as follows. We let
d := [k(s, t, u) : k(s, t)] and we let b0, b1, . . . , bd ∈ k[s, t] relatively prime such
that

bdu
d + · · ·+ b1u+ b0 = 0.

Then we define the height h(u) as maxi deg(bi)
d ; for more details, see [DM12,

Lemma 2.1]. Finally, for a point (x, y) ∈ A2(K), its height is defined to be
h(x) + h(y).

We note the following property for computing the Weil height.
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Lemma 2.1. Let Σ be a surface with function field k(s, t, u), with u algebraic
over k(s, t), of degree m. Suppose that for all but finitely many c ∈ k there
is a polynomial Pc ∈ k[s, t], of degree D such that Pc(s, t) vanishes for all
points of Σ where u = c. Then h(u) ≤ D

m .

Proof. Note that since c is varying it does not matter which birational
model of Σ we are considering, and we may refer to the affine surface in A3

with equation

bmu
m + bm−1u

m−1 + · · ·+ b1u+ b0 = 0.

Without loss of generality, we may assume each bi ∈ k[s, t] and moreover
that the polynomials bi share no common factor. In this case the points in
question are the points (s0, t0, c) with

bm(s0, t0)c
m + bm−1(s0, t0)c

m−1 + · · ·+ b0(s0, t0) = 0.

The coordinate u is a root of the irreducible polynomial

bmU
m + bm−1U

m−1 + · · ·+ b0,

and so, using the irreducibility of the above polynomial, then for almost all
specialisations U 7→ c ∈ k the resulting polynomial in k[s, t] has no repeated
factors. Indeed, we can consider the discriminant of the above polynomial
with respect to the variable s; then we obtain a polynomial in t and u which
is not identically 0. So, the specialization U 7→ c will not make this resultant
equal to 0 for all but finitely many c ∈ k. This yields that the specialised
polynomial at such c is square-free and so, it must divide Pc. Since this is
true for almost all c ∈ k, then max deg(bi) ≤ D, as required. An application
of [DM12, Lemma 2.1] finishes the proof. �

We will also use the following general result regarding the gonality of
curves. Before proving our result, we note that for a field extension L2/L1

and for a place v of L1, our convention for a place w of L2 lying above v is
that w|L1 = e(w|v) ·v, where e(w|v) is the corresponding ramification index.

Lemma 2.2. Let ` be an algebraically closed field, and let L1 ⊆ L2 be a finite
extension of function fields over ` of transcendence degree 1. Let t ∈ L2 be
a primitive element of the extension L2/L1 and let

f(x) := xd + ad−1x
d−1 + · · ·+ a1x+ a0 ∈ L1[x]

be the minimal polynomial of t. Let v be a place of L1/`, and let

m := max{0,−v(a0), . . . ,−v(ad−1)}.

We let

M :=
∑

w is a place of L2
lying over v

max{0,−w(t)}.

Then m ≤M ≤ dm.
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Proof. By using the Puiseux series of t at all places w lying above the
place v (they are series in a fractional power of a given uniformizer z of
v, with coefficients in `) and comparing this with the Laurent series of the
coefficients ai, we immediately derive the desired result; of course we have
taken here into account ramification indices, which are at most equal to d,
explaining the factor d in the upper bound. �

This implies the following

Corollary 2.3. In the notation of the preceding lemma, and setting

hL1(f) :=
∑
v

max{0,−v(a0), . . . ,−v(ad−1)},

we have

hL1(f) ≤ deg(t) ≤ dhL1(f).

A proof follows immediately from the lemma on summing over all places
of L1/`.

Remark 2.4. Corollary 2.3 yields in particular that the gonality of a curve
is a non increasing function under a rational map, and the left inequality
immediately proves e.g. Luroth’s theorem (without invoking the notion of
genus and even differential forms): indeed, if L2 = `(t) is a rational function
field, the degree of t is 1, whence hL1(f) = 1, which implies that any non
constant coefficient of f has degree 1, and thus generates L1 over `.

If the field ` is not algebraically closed then Lemma 2.2 still holds once
we take into account the degree of each place.

3. Proof of our main result

We continue with the notation as in Theorem 1.4; in particular, k has
characteristic 0. Since the case when trdegkK > 2 follows by the exact
same argument, then for the sake of simplifying the notation we restrict to
the case trdegkK = 2. Also, Y ⊂ X = A2 is a curve defined over K which
is not quasi-constant. Then Y is defined over a finite extension L of k(s, t);
at the expense of replacing Y by the finite union⋃

σ:L−→K
σ|k(s,t)=id

Yσ

(where Yσ is the curve obtained by applying σ to each coefficient of the
equation defining Y), we may assume Y is defined over k(s, t). Furthermore,
it is sufficient to assume Y is irreducible over k(s, t). Hence, Y ⊂ X is the
zero locus of an irreducible polynomial f(X,Y ) whose coefficients are in
k[s, t]; we may also assume these polynomials in k[s, t] share no common
factor. Now, since Y is not quasi-constant, the ratio of the coefficients of f
generate a field of transcendence degree 2 over k. Sometimes, by abuse of
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notation, we will write f(s, t,X, Y ) = 0 to denote the corresponding 3-fold
defined over k (contained in X seen now as A4

k).
We view now f(s, t,X, Y ) as a polynomial in s and t over k(X,Y ) and

we replace f by an absolutely irreducible factor of it; because we assumed
before that the coefficients of f as a polynomial in X and Y are coprime
polynomials in k[s, t], we conclude that each such absolute irreducible factor

of f is not of the form A · g where A ∈ k(X,Y ) and g ∈ k[s, t]. At the
expense of replacing (s, t) by the corresponding variables after using an
automorphism of k(s, t), we may assume that the leading coefficient of f as
a polynomial in t does not depend on s. Then dividing f(s, t,X, Y ) (seen as
a polynomial in t) by its leading coefficient (which, by our assumption lives

in k(X,Y )) we obtain a polynomial of degree d in t of the form

td +Ad−1t
d−1 + · · ·+A0 ∈ k(X,Y )[s][t],

i.e., each Ai is a polynomial in s with coefficients in k(X,Y ). Then we

write each Ai as a finite sum Ai =
∑

j Ai,js
j with Ai,j ∈ k(X,Y ). There

are two cases: the functions Ai,j ∈ k(X,Y ) either generate a field Ef of
transcendence degree 2 over k, or not. We see first that the latter case is
impossible.

Indeed, assume the field Ef defined above has transcendence degree less
than 2. Since trdegk(Ef ) > 0 (because f is not of the form A · g, where

A ∈ k(X,Y ) and g ∈ k[s, t]), then it must be that trdegk(Ef ) = 1. So,
let A ∈ k(X ) such that Ef is algebraic over k(A). Then, letting Y1 be an
absolutely irreducible component of Y, we have that A is constant on Y1;
hence Y1 is quasi-constant, which is a contradiction.

So, from now on we assume that trdegk(Ef ) = 2. Then we can view the

functions Ai,j also as Ãi,j ◦ ϕ−1 for some rational functions Ãi,j defined on
a given surface S0 which is endowed with a finite morphism ϕ : S0 −→ A2.
Then each time when we evaluate Ai,j at some point P ∈ A2(K) we mean

Ãi,j(ϕ
−1(P )). In particular, we say that Ai,j is well-defined at P ∈ A2(K) if

ϕ−1(P ) is not contained in the pole-divisor of Ãi,j . Even though ϕ−1(P ) is
not uniquely defined, because ϕ is a finite map, for the purpose of bounding
the height of Ãi,j(ϕ

−1(P )) this ambiguity is not relevant.
We let F1 and F2 be two algebraically independent functions Ai,j ∈

k(X,Y ) from the above set. Hence there exist integers d, e ≥ 1 and there
exist Bi, Cj ∈ k[F1, F2] for 0 ≤ i < d and 0 ≤ j < e such that

Xd +Bd−1X
d−1 + · · ·+B1X +B0 = 0

and
Y e + Ce−1Y

e−1 + · · ·+ C1Y + C0 = 0.

The following result will be used in our proof.

Lemma 3.1. Let x, y ∈ K and assume that the functions Bi and Cj are
well-defined when evaluated for X = x and Y = y. Then for each positive
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real number H0 there exists a positive real number H1 (depending only on
H0 and on F1 and F2) such that if h(Fi(x, y)) ≤ H0 for each i = 1, 2, then
h((x, y)) ≤ H1.

Proof of Lemma 3.1. This follows immediately since our hypothesis yields
that x and y satisfy equations of bounded degree and with coefficients of
bounded height. �

Lemma 3.1 yields that it suffices to bound uniformly the heights of all
Ai,j evaluated at the points (x, y) which lie in the intersection Y ∩ X (1).

Let g ∈ k[X,Y ] such that the zero locus of g = 0 is an irreducible curve
C contained in A2. We first note that if there is some Bi or some Cj which
is not well-defined along the curve g = 0, then this curve belongs to a finite
set of absolutely irreducible curves defined over k. On the other hand, the
intersection of each one of these finitely many curves with Y is a finite set
of points (because Y is irreducible and it is not defined over k). Hence the
heights of the coordinates of these points in the intersection are uniformly
bounded independent of the polynomial g (and depending only on Y).

So, from now on, we may assume that each function Bi and each func-
tion Cj is well-defined when specialized along the curve C. We let C be a
nonsingular model of an irreducible component of ϕ−1(C). We view ϕ∗X
and ϕ∗Y as rational functions on C and we denote them by x and y. So,
we assume that x, y are elements of a field extension of k(s, t) such that
ϕ∗f = 0 and ϕ∗g = 0. Hence we obtain a surface Σ defined over k endowed
with a dominant map to P2 given by composing ϕ with the projection map
on the first two coordinates of X = A2

K = A4
k. Also, this surface is en-

dowed with a natural projection map to C. Also note that x, y may be
viewed as algebraic functions of s, t; this follows from the fact that Y is not
a constant curve. Then, by Lemma 3.1, it suffices to bound the heights of
the algebraic functions Ai,j evaluated at (x, y). We denote by ai,j := Ai,j
evaluated at (x, y), and similarly, we let ai be the evaluation of Ai at (x, y).
We let L := k (x, y, (ai,j)i,j), which is a finite extension of k(x, y); moreover,
[L : k(x, y)] is uniformly bounded independent of C.

By a linear invertible map on s, t we may assume that L and k(s) are
independent over k.

Since we assumed f is absolutely irreducible as a polynomial in s and t,
there is a proper (closed) subset Z of X = A2 defined over k such that if the
curve C is not contained in Z, specializing the functions Ai,j to ai,j along
the curve C (and therefore specializing f along C) yields an irreducible poly-
nomial in s and t. This fact follows from a theorem of Noether (see [Sch00,
Theorem 32]), or equivalently by viewing f(s, t) = 0 as a 1-dimensional
scheme over the surface S0 and applying [DS84, Theorem 2.10 (i)] to find a

proper closed subset Z0 of S0 such that specializing Ãi,j at points away from
Z0 yields irreducible polynomials; then Z = ϕ(Z0). Now, if the curve C is an
irreducible component of Z, then again we have a finite set of points in the
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intersection with Y whose heights are bounded uniformly. So, from now on,
assume the curve C is not contained in Z. Hence the minimal polynomial of
t over the field M := k(s) (x, y, (ai,j)i,j) = L(s) is the polynomial

(3.1.1) T d + ad−1T
d−1 + · · ·+ a0 ∈ L[s][T ].

Now, the field M is the function field of C when we view it as a curve
defined over k(s). In this view, the field L(s, t) is the function field of a
smooth curve S defined over k(s), endowed with a map π : S −→ C. This
curve over k(s) is the surface Σ over k.

Let δ be the degree of t as a rational function on S (as a curve); then δ
is the number of poles of t counted with multiplicity. So,

δ = [k(s)(S) : k(s)(t)] = [L(s, t) : k(s, t)].

Let u :=
∑

i,j γi,jai,j be a generic linear combination of the ai,j with
coefficients in k. Then u is a rational function on C; and the poles of u
are precisely the poles of the ai,j . Furthermore, since u is a generic linear
combination of the ai,j ’s, and ai =

∑
j ai,js

j , then for each place v of the

function field k(s)(C), the poles of u are the poles of the ai’s with the same
multiplicity. So, we have

(3.1.2) max{0,−v(u)} = max{0,max
i
{−v(ai)}}.

Summing the left hand-side of (3.1.2) over all places v and also taking into
account the degree of each place, we obtain the degree of u as a rational
function on C, which we denote by µ. Then using (3.1.2) and Corollary 2.3
we obtain the inequality

(3.1.3) µ ≤ δ ≤ dµ.
We also note that in the conclusion of our proof we only employ the left-hand
side of inequality (3.1.3).

Now, u is a map u : C −→ P1 and above a generic point c ∈ P1(k) we have
µ = deg u points of C, which in turn correspond to points (x0, y0) ∈ A2(k)
such that g(x0, y0) = 0. Note that it suffices to bound uniformly the height
of the points in ϕ−1((x0, y0)) when (x0, y0) ∈ Y ∩ C.

We now view S as the surface Σ above the (s, t)-plane. This S maps to
C (and in turn to C) and the curve above (x0, y0) ∈ C is defined by

f(s, t, x0, y0) = 0.

We are in position to apply Lemma 2.1. Taking then the product over all
(x0, y0) above u = c we see that

Pc(s, t) :=
∏

u(x0,y0)=c

f(s, t, x0, y0)

vanishes on the curve determined by u = c on the surface Σ defined above.
But then

(3.1.4) deg(Pc) = O(µ) = O(δ),
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by inequality (3.1.3). Now, since k has charactersitic 0, then by the the-
orem of primitive element, for general γi,j we have k(s, t) (x, y, (ai,j)i,j) =
k(s, t, u) and also k(s, t) (x, y, (ai,j)i,j) = L(s, t). Moreover we recall that
δ = [k(s, t, u) : k(s, t)] and so, by Lemma 2.1 and (3.1.4), we conclude that
h(u) = O(1). We remark that it is precisely this point where we use the
hypothesis that k has characteristic 0; we thank the referee for pointing this
to our attention.

So, for all such functions u, namely, for general coefficients γi ∈ k, we
have h(u) = O(1). We conclude that the heights of all ai,j are O(1). In
particular, h(F1(x, y)) and h(F2(x, y)) are both bounded independently of
C, and thus Lemma 3.1 yields the desired conclusion.
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