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Solubility criteria for Hopf–Galois
structures

Nigel P. Byott

Abstract. Let L/K be a finite Galois extension of fields with group Γ.
Associated to each Hopf–Galois structure on L/K is a group G of the
same order as the Galois group Γ. The type of the Hopf–Galois structure
is by definition the isomorphism type of G. We investigate the extent
to which general properties of either of the groups Γ and G constrain
those of the other. Specifically, we show that if G is nilpotent then Γ is
soluble, and that if Γ is abelian then G is soluble. In contrast to these
results, we give some examples where the groups Γ and G have different
composition factors. In particular, we show that a soluble extension
may admit a Hopf–Galois structure of insoluble type.
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1. Introduction and statement of results

Hopf–Galois theory was initiated by Chase and Sweedler [CS69], moti-
vated in part by a wish to develop a version of Galois theory for inseparable
field extensions. Their approach nevertheless gives an interesting perspective
on the classical theory for separable extensions. The problem of finding all
Hopf–Galois structures on a given separable extension L/K was expressed
in terms of group theory by Greither and Pareigis [GP87], who showed that
L may admit H-Galois structures for a number of different K-Hopf alge-
bras H. Moreover, it can happen that the same Hopf algebra H may have
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several different actions on L, giving rise to different Hopf–Galois structures
[CCo07, CRV15].

In the special case that L/K is a Galois extension (i.e., normal as well
as separable) with group Γ = Gal(L/K), the main result of [GP87] is that
the Hopf–Galois structures on L/K correspond to regular subgroups G of
the group Perm(Γ) of permutations of Γ such that G is normalized by left
translations by Γ. The groups Γ and G necessarily have the same order, but
in general need not be isomorphic. We refer to the isomorphism type of G
as the type of the Hopf–Galois structure.

A number of authors have used the framework developed in [GP87] to in-
vestigate Hopf–Galois structures on various classes of separable extensions.
Apart from their intrinsic interest, one motivation for studying multiple
Hopf–Galois structures on the same extension is their relevance to questions
of integral Galois module structure: the ring of integers in a Galois exten-
sion of local fields may have better module-theoretic properties in one of
the nonclassical Hopf–Galois structures than it does in the classical Galois
structure [Byo97].

A considerable amount is now known about Hopf–Galois structures on Ga-
lois extensions L/K. For an odd prime p, a cyclic extension of degree pn ad-
mits precisely pn−1 Hopf–Galois structures, all of cyclic type [Koh98], while

an elementary abelian extension of degree pn admits at least pn(n−1)−1(p−1)
Hopf–Galois structures of elementary abelian type if p > n [Chi05]. If p and
q are distinct primes such that there exists a nonabelian group of order
pq, then any Galois extension of degree pq, whether abelian or not, ad-
mits Hopf–Galois structures both of abelian type and of nonabelian type
[Byo04a]. More generally, Galois extensions of degree mp, with p prime and
m < p, are considered in [Koh13]. In contrast to the cyclic prime-power case,
“most” abelian extensions admit Hopf–Galois structures of nonabelian type
[BC12]. A Galois extension whose group Γ is a nonabelian simple group ad-
mits precisely two Hopf–Galois structures, both of type Γ [Byo04b], whereas
an extension with symmetric Galois group Sn admits many Hopf–Galois
structures of type Sn and also many of type An × C2 [CaC99].

There are fewer results relating to the more general situation where L/K
is separable but not necessarily normal. A separable extension of prime
degree is Hopf–Galois if and only if its Galois closure has soluble Galois
group [Chi89]. For an odd prime p, the Hopf–Galois structures on a radical
extension K( pn

√
a)/K of degree pn are enumerated in [Koh98], the result

depending on which roots of unity occur in K. The corresponding result for
p = 2 is given in [Byo07]. The Hopf–Galois characters of all separable ex-
tensions L/K of degree ≤ 6 have recently been determined [CRVa], together
with those of the extensions F/K with L ⊂ F ⊂ N , where N is the normal
closure of L/K.

For a more extensive review of results in separable Hopf–Galois theory,
we refer the reader to [CRVb].
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In this paper, we consider only Galois extensions. Let L/K be a Galois
extension with Galois group Γ, and suppose that L/K admits a Hopf–Galois
structure of type G. We investigate the extent to which group-theoretic
properties of either one of the groups Γ or G constrain the other. Already in
the case of groups of order pq mentioned above, it may happen that either
one of the groups is abelian while the other is not, and indeed is not even
nilpotent. This shows, for example, that it is possible for an extension of
finite fields to admit a Hopf–Galois structure which is not of nilpotent type.
Our two main results will give criteria, in terms of each of the groups Γ and
G, for the other to be soluble:

Theorem 1. With the above notation, if G is nilpotent then Γ is soluble.
Thus, if a finite Galois extension of fields admits a Hopf–Galois structure
of nilpotent type, then the extension has soluble Galois group.

Theorem 2. If Γ is abelian then G is soluble. Thus, any Hopf–Galois
structure on a finite abelian field extension has soluble type.

Theorem 1 is an application of the theory of Hall p′-subgroups.
We shall in fact give two proofs of Theorem 2. The first builds on the

methods of [Byo04b] and depends on the classification of finite simple groups.
In particular, it uses a result of Vdovin [Vdo99] which bounds the size of
abelian subgroups in a nonabelian simple group. The author is grateful to
the referee of an earlier version of this paper for drawing his attention to
the work of Li [Li03], by means of which a much shorter and more direct
proof of Theorem 2 can be given and the use of the classification avoided. Li
classifies the finite primitive permutation groups which contain an abelian
regular subgroup, thereby solving a problem which goes back to Burnside.
This depends heavily on the classification of finite simple groups, but (with-
out using the classification) Li proves as a preliminary result [Li03, Lemma
3.2] that a transitive permutation group with an insoluble regular normal
subgroup cannot contain an abelian regular subgroup. Our second proof of
Theorem 2 is an easy deduction from this. Despite the greater length and
complexity of the first proof, we believe that the ideas which underlie it give
insights that may be valuable for future work on Hopf–Galois structures, as
explained in Remark 6.3 below. We have therefore decided to present both
proofs in this paper.

In the situations of Theorems 1 and 2, Γ and G are soluble groups of the
same order, so certainly have the same composition factors. In the various
results for Galois extensions L/K mentioned above, it is again clear that
the composition factors of Γ and G coincide. It is therefore natural to ask
whether, in general, the existence of a Hopf–Galois structure of type G on a
Galois extension with group Γ necessarily forces Γ and G to have the same
composition factors. We will answer this question in the negative by proving
the following result:
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Theorem 3. Let G be a finite nonabelian simple group containing a sub-
group H of prime-power index, |G : H| = pa for p prime and a ≥ 1. Then
there exists a subgroup J of G of order pa such that any Galois extension of
fields with Galois group Γ = H × J admits a Hopf–Galois structure of type
G.

The proof of Theorem 3 uses Guralnick’s determination [Gur83] of the
nonabelian simple groups with a subgroup of prime-power index (which de-
pends on the classification of finite simple groups, and is recalled as Theorem
6 in §7 below). This is combined with the method of constructing Hopf–
Galois structures via fixed-point free pairs of homomorphism, introduced in
[CCo07] in the case G = Γ and extended to the case G 6= Γ in [BC12].

In particular, there exist finite soluble groups Γ such that every Galois
extension with group Γ admits a Hopf–Galois structure of insoluble type.
We collect together some examples of this phenomenon in Corollary 1.1 be-
low, where we use the following notation. As usual, Cn, Sn, An and D2n

denote respectively the cyclic group of order n, the symmetric and alternat-
ing groups of degree n, and the dihedral group of order 2n. For a prime
p, we write PSLm(p) for the projective special linear group of dimension m
over the field Fp of p elements. When p is odd, we also write F 1

2
p(p−1) for the

unique Frobenius group of order 1
2p(p − 1) that has a faithful permutation

representation of degree p, namely the semidirect product Cp o C 1
2

(p−1) in

which the second factor acts faithfully on the first.

Corollary 1.1.

(i) Any Galois extension of degree 60 with (soluble) Galois group

Γ = A4 × C5

admits a Hopf–Galois structure of (simple) type A5.
(ii) Any Galois extension of degree 168 with (soluble) Galois group

Γ = S4 × C7

admits a Hopf–Galois structure of (simple) type PSL3(2) ∼= PSL2(7).
(iii) If p = 2e−1 ≥ 7 is a Mersenne prime, then any Galois extension of

degree 1
2(p−1)p(p+1) with (soluble) Galois group Γ = F 1

2
p(p−1)×D2e

admits a Hopf–Galois structure of (simple) type PSL2(p).

We do not have any examples where an extension with insoluble Galois
group Γ admits a Hopf–Galois structure of soluble type G.

2. Preliminaries on Hopf–Galois structures

Let L/K be a field extension of finite degree n, and let H be a K-Hopf
algebra with comultiplication ∆: H −→ H ⊗K H, ∆(h) =

∑
(h) h(1) ⊗ h(2),

and augmentation (counit) ε : H −→ K. We say that L is an H-module
algebra if H acts on L so that h·(xy) =

∑
(h)(h(1)·x)(h(2)·y) and h·k = ε(h)k
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for all h ∈ H, x, y ∈ L and k ∈ K. We say that L is an H-Galois extension
of K if, furthermore, the K-linear map θ : L ⊗K L −→ HomK(H,L), given
by θ(x⊗ y)(h) = x(h · y) for x, y ∈ L and h ∈ H, is bijective. We then also
say that H endows L with a Hopf–Galois structure.

When L/K is separable, Greither and Pareigis [GP87] gave the following
characterization of the Hopf–Galois structures on L/K. Let E be the normal
closure of L/K and consider the Galois groups Γ = Gal(E/K) and Γ′ =
Gal(E/L). Let Γ/Γ′ denote the set of left cosets γΓ′ of Γ′ in Γ, and let
Perm(Γ/Γ′) be the group of permutations of this set. Thus Perm(Γ/Γ′) is
isomorphic to the symmetric group Sn. The left translations by elements
of Γ form a subgroup λ(Γ) of Perm(Γ/Γ′), which we identify with Γ. The
Hopf–Galois structures on L/K, up to isomorphism, correspond bijectively
with regular subgroups G of Perm(Γ/Γ′) which are normalized by λ(Γ). (A
permutation group acting on a set X is said to be regular if it is transitive
and the stabilizer of any element of X is the identity.) In the Hopf–Galois
structure corresponding to such a subgroup G, the Hopf algebra acting on L
is E[G]Γ, the fixed point algebra of the group algebra E[G] under the action
of Γ simultaneously on E by field automorphisms and on G by conjugation
by left translations inside Perm(Γ/Γ′). We refer to the isomorphism type of
G as the type of the Hopf–Galois structure.

If L/K is also normal, which will always be the case in this paper, then
E = L, Γ′ is trivial, and Γ = Gal(L/K). The result of Greither and Pareigis
then simplifies to the statement given in the introduction. In particular,
Γ and G are finite groups of the same order n. Moreover, if Γ normalizes
G in Perm(Γ) then we can view Γ as being contained in the holomorph
Hol(G) = G o Aut(G) of G, which is usually a much smaller group than
Perm(Γ). Thus, given an abstract group G of the same order as Γ, there
exists a Hopf–Galois structure on L/K of type G if and only if there is an
embedding β : Γ −→ Hol(G) with regular image. We shall call such a β
a regular embedding. Then the number of Hopf–Galois structures of type
G is the number of equivalence classes of regular embeddings, where two
embeddings are equivalent if and only if they are conjugate in Hol(G) by an
element of Aut(G); see [Byo96] or [Chi00, §7].

It is convenient to write elements of Hol(G) in the form [g, α] with g ∈ G
and α ∈ Aut(G). The multiplication in Hol(G) is then given by

(1) [g1, α1][g2, α2] = [g1α1(g2), α1α2].

3. Nilpotent Hopf–Galois structures

In this section, we prove Theorem 1. Thus we suppose that L/K is a finite
Galois extension of fields with group Gal(L/K) = Γ, and that L/K admits
a Hopf–Galois structure of type G for some nilpotent group G. We then
have a regular embedding β : Γ −→ Hol(G). Moreover, being nilpotent, G
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can be written as the direct product

G =
∏
p

Gp

over all primes p, where Gp denotes the (unique) Sylow p-subgroup of G
[Rob96, 5.2.4]. Our task is to show that the group Γ is soluble.

If J is a finite group of order prm, where p is prime and p - m, then a
subgroup of J of order m is called a Hall p′-subgroup of J . We will use
P. Hall’s theorem [Rob96, 9.1.8] that if J has a Hall p′-subgroup for every
prime p, then J is soluble.

For each p, let

Hp =
∏
q 6=p

Gq.

Then Hp is a Hall p′-subgroup of G. Moreover, Hp is a characteristic sub-
group of G, as it consists precisely of the elements of order prime to p.

Define ∆p = {γ ∈ Γ : β(γ) · eG ∈ Hp}, where eG is the identity element
of G. Since β(Γ) is regular on G, it is clear that ∆p is a subset of Γ of size
|Hp|. However, since Hp is characteristic in G, more is true:

Lemma 3.1. ∆p is a subgroup of Γ.

Proof. As ∆p is nonempty and Γ is finite, it suffices to check that ∆p is
closed under multiplication. So let σ1, σ2 ∈ ∆p, and let hi = β(σi) · eG
for i = 1, 2. Thus hi ∈ Hp, and, in the notation of (1), we have β(σi) =
[hi, αi] for some αi ∈ Aut(G). Then β(σ1σ2) = [h1α1(h2), α1α2], so that
β(σ1σ2) · eG = h1α(h2). Since Hp is a characteristic subgroup of G, we have
α1(h2) ∈ Hp and hence β(σ1σ2) ·eG ∈ Hp. Thus σ1σ2 ∈ ∆p, as required. �

As |Γ| = |G| and |∆p| = |Hp|, it follows that ∆p is a Hall p′-subgroup
of Γ. Thus Γ contains a Hall p′-subgroup ∆p for each prime p. Hence, by
Hall’s theorem, Γ is soluble. This completes the proof of Theorem 1.

4. First proof of Theorem 2

In this section and the next, we give our first proof of Theorem 2, which
depends on the classification of finite simple groups. In this section, we
reduce the proof of Theorem 2 to that of a statement, Theorem 4, about
simple groups. Theorem 4 will then be proved in §5 using Vdovin’s theorem
[Vdo99] (Theorem 5 in §5 below).

Before stating Theorem 4, we introduce some notation.

Definition 4.1. Let G be a finite group. Then

a(G) = max{ |A| : A is an abelian subgroup of G}.

We note another result from Vdovin’s paper, and record some obvious
properties of a(G).

Proposition 4.2. For the symmetric group Sm, we have a(Sm) ≤ 3m/3.
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Proof. From [Vdo99, Theorem 1.1], we have a(S3k) = 3k, a(S3k+1) = 4 ·
3k−1 and a(S3k+2) = 2·3k. Hence the stated inequality holds in all cases. �

Proposition 4.3. Let G be a finite group.

(i) If H is a subgroup of G then a(H) ≤ a(G).
(ii) If N is a normal subgroup of G then a(G) ≤ a(N)a(G/N).

(iii) If G = H × J then a(G) = a(H)a(J). In particular

a(Hm) = a(H)m.

Proof. (i) Any abelian subgroup of H is certainly an abelian subgroup of
G.

(ii) Let A be an abelian subgroup of G, and let A1 (respectively, A2) be
the kernel (respectively, image) of the composite homomorphism

A ↪→ G� G/N.

Then |A| = |A1| |A2| ≤ a(N)a(G/N).
(iii) Let G = H ×J . By (ii), a(G) ≤ a(H)a(J). But if A ⊆ H, B ⊆ J are

abelian subgroups with |A| = a(H), |B| = a(J), then A × B is an abelian
subgroup of G of order a(H)a(J). This gives the first assertion, and the
second follows by induction. �

We will deduce Theorem 2 from the following statement:

Theorem 4. Let T be a finite nonabelian simple group. Then

(2) 31/3a(T )a(Aut(T )) < |T |.

Proof of Theorem 2 (assuming Theorem 4). Let Γ be a finite abelian
group. We need to show that if there is a regular embedding β : Γ −→ Hol(G)
for some group G, then G must be soluble.

We first treat the special case where G is characteristically simple. Thus,
by [Rob96, 3.3.15], G is the direct product Tm for some simple group T
and some m ≥ 1. We claim that the existence of a regular embedding
Γ −→ Hol(Tm), with Γ abelian, forces T to be abelian. Then G is abelian,
and hence soluble, as required.

Suppose that T is a nonabelian simple group. Then, by [Byo04b, Lemma
3.2], Aut(Tm) is the wreath product

Aut(Tm) = Aut(T )o Sm = (Aut(T )m) o Sm,

where the symmetric group Sm permutes the m factors. We therefore have
a regular embedding of the abelian group Γ in

Hol(Tm) = Tm o (Aut(T )m o Sm).

We break Hol(Tm) into the sequence of quotients

H1 =
Hol(Tm)

Hol(T )m
∼=
Tm o (Aut(T )m o Sm)

(T o Aut(T ))m
∼= Sm,
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H2 =
Hol(T )m

Tm
∼= Aut(T )m;

H3 = Tm.

As |T |m = |G| = |Γ| = |β(Γ)|, we may apply Proposition 4.3(ii) twice

to get |T |m ≤ a(H1)a(H2)a(H3). Now a(H1) ≤ 3m/3 by Proposition 4.2,
and a(H2) = a(Aut(T )m) = a(Aut(T ))m and a(H3) = a(T )m by Proposi-
tion 4.3(iii). Thus we have

|T |m ≤ 3m/3a(Aut(T ))ma(T )m,

contradicting Theorem 4. Hence T is abelian, as claimed, and Theorem 2
holds when G is characteristically simple.

We now prove the general case by induction on |G| = |Γ|, taking the case
just considered as the base of the induction. If G is not characteristically
simple then it has a nontrivial proper characteristic subgroup H, and by
[Byo04b, Proposition 3.1], β induces a homomorphism

β : Γ −→ Hol(G/H)

whose image is transitive on G/H. This image is also abelian, and is there-
fore regular on G/H. Let Σ = ker(β). Then |Σ| = |H| and the abelian group
Σ acts regularly on H, so β restricts to a regular embedding Σ −→ Hol(H).
As |H|, |G/H| < |G|, it follows from the induction hypothesis that H and
G/H are soluble, and hence so is G. �

5. Proof of Theorem 4

To complete the proof of Theorem 2, we must prove Theorem 4. We do
so using the classification of finite simple groups. Our main reference for the
necessary facts about the simple groups is the book [Wil09]. We also use
[Gor82]. In brief, the classification states that every finite nonabelian simple
group is either an alternating group An, n ≥ 5, a (classical or exceptional)
group of Lie type, or one of the 26 sporadic simple groups. We refer the
reader to [Wil09, p. 3] for a more detailed statement.

Using the classification, Vdovin [Vdo99, Theorem A] proved the following
result:

Theorem 5 (Vdovin). Let T be a finite nonabelian simple group which is
not of the form PSL2(q). Then a(T )3 < |T |.

Remark 5.1. Some of the groups PSL2(q) appear in the classification in
another guise, so that some families in the classification other than PSL2(q)
contain groups for which the conclusion of Vdovin’s theorem does not hold.
Thus, for the alternating group A5 of order 60, we have a(A5) = 5 > 601/3,
but this does not contradict Vdovin’s theorem since

A5
∼= PSL2(4) ∼= PSL2(5).
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For any nonabelian simple group T , the group Aut(T ) contains the sub-
group Inn(T ) ∼= T of inner automorphisms, and we write

Out(T ) =
Aut(T )

Inn(T )

for the group of outer automorphisms. Using Proposition 4.3(ii), we then
have

(3) a(Aut(T )) ≤ a(Inn(T ))a(Out(T )) ≤ a(T )|Out(T )|.

A famous consequence of the classification is the proof of the Schreier Con-
jecture, which asserts that Out(T ) is always soluble. Of greater relevance
for us is the fact that Out(T ) is very small relative to T . We will use this
fact in conjunction with the following result.

Proposition 5.2. Let T be a nonabelian simple group which is not of the
form PSL2(q). If the inequality

(4) 3|Out(T )|3 < |T |

holds, then the conclusion (2) of Theorem 4 holds for T .

Proof. Since a(T ) < |T |1/3 by Theorem 5, it follows from (3) and (4) that

31/3a(T )a(Aut(T )) ≤ 31/3a(T )2|Out(T )|

< a(T )2|T |1/3

< |T |. �

Thus (2) holds.

By the classification of finite simple groups, together with Proposition 5.2,
the proof of Theorem 4 is reduced to the following five lemmas, whose proofs
will occupy the rest of this section.

Lemma 5.3. The conclusion (2) of Theorem 4 holds for each alternating
group T = An, n ≥ 5.

Lemma 5.4. The inequality (4) of Proposition 5.2 holds for each sporadic
simple group T .

Lemma 5.5. The conclusion (2) of Theorem 4 holds for each simple group
T of the form PSL2(q).

Lemma 5.6. The inequality (4) of Proposition 5.2 holds for each simple
group T which is a classical group of Lie type but is not of the form PSL2(q).

Lemma 5.7. The inequality (4) of Proposition 5.2 holds for each simple
group T which is an exceptional group of Lie type.

The first two cases are easily handled.
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Proof of Lemma 5.3. We treat all the simple alternating groups T = An,
n ≥ 5 here, even though some of them are of the form PSL2(q). In all cases,

we have a(An) ≤ a(Sn) ≤ 3n/3 by Propositions 4.3(i) and 4.2. For T = An

with n 6= 6, we have |Out(An)| = 2 and Aut(An) ∼= Sn, whereas |Out(A6)| =
4 and Aut(A6) has a normal subgroup of index 2 isomorphic to S6 [Wil09,

pp. 18, 19]. Thus for n 6= 6, we have 31/3a(T )a(Aut(T ) ≤ 3(2n+1)/3 and (2)
will hold provided that

3(2n+1)/3 < 1
2n!.

But this inequality holds for n = 5 and hence, by induction, for all n ≥ 5.
In the exceptional case T = A6, we have a(Aut(T ))) ≤ 2a(S6) ≤ 18, so

31/3a(T )a(Aut(T )) ≤ 2 · 313/3 < 360 = |T |, and again (2) holds. �

Proof of Lemma 5.4. Let T be a sporadic simple group. From [Gor82,
p. 304], we have |Out(T )| ≤ 2. Thus 3|Out(T )|3 ≤ 24 < |T |, so (4) holds. �

Before giving the proofs of Lemmas 5.5–5.7, we recall some general prop-
erties of the finite simple groups of Lie type and their outer automorphisms,
and we summarize the facts we will need about the various families of groups
in Tables 1–4 below. The information in these tables is taken from [Wil09,
Chapters 3, 4] and [Gor82, p. 135]. The outer automorphisms for most of
the groups of Lie type are also described in [Ste60].

The groups in each family are indexed by a prime-power parameter q, and
we will always write q = pe with p prime. Each simple group T of Lie type is
obtained as the central quotient of some group of matrices over a finite field.
Following [Gor82, p. 135], and changing notation from the previous sections,
we denote this group by G, and we write d for the order of its center. We
therefore have |T | = |G|/d. For example, if T is the projective special linear
group PSLn(q) then the corresponding group G is SLn(q) whose center has
order d = (n, q − 1). We list the classical simple groups T of Lie type in
Table 1, together with the corresponding groups G and their orders. The
value of d is shown in Table 2, along with the quantities ε and g which will
be explained below. The exceptional simple Lie groups T , and the orders
of the corresponding groups G, are given in Table 3, with the values of d, ε
and g for each group shown in Table 4. We use the notation of [Wil09] for
the groups T , but the notation of [Gor82] for the groups G. The notation
for the groups G is derived from the standard labelling of the associated
Dynkin diagrams. For example, the group SLn(q) is denoted An−1(q) as it
corresponds to the Dynkin diagram An−1.

We have the generic isomorphism PΩ5(q) ∼= PSp4(q) [Wil09, p. 96]. Fol-
lowing [Wil09], we omit the groups PΩ5(q) from the classification (whereas
[Gor82] omits the groups PSp4(q) instead). Also, PΩ2n+1(q) ∼= PSp2n(q)
when q = 2e, so the groups PΩ2n+1(q) for q even could be omitted.

For each simple group T of Lie type, any outer automorphism of T may be
written as a product of a diagonal automorphism, a field automorphism and
a graph automorphism. The diagonal automorphisms arise from conjugation
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T restrictions G |G|
PSLn(q) n ≥ 2 An−1(q) q

1
2
n(n−1)∏n

i=2(qi − 1)
(n, q) 6= (2, 2)
(n, q) 6= (2, 3)

PSUn(q) n ≥ 3 2An−1(q) q
1
2
n(n−1)∏n

i=2

(
qi − (−1)i

)
(n, q) 6= (3, 2)

PSp2n(q) n ≥ 2 Cn(q) qn
2∏n

i=1(q2i − 1)
(n, q) 6= (2, 2)

PΩ2n+1(q) n ≥ 3 Bn(q) qn
2∏n

i=1(q2i − 1)

PΩ+
2n(q) n ≥ 4 Dn(q) qn(n−1)(qn − 1)

∏n−1
i=1 (q2i − 1)

PΩ−2n(q) n ≥ 4 2Dn(q) qn(n−1)(qn + 1)
∏n−1

i=1 (q2i − 1)

Table 1. Classical simple groups of Lie type

of G by elements of a larger matrix group in which G is normal. For example,
the diagonal automorphisms of PSLn(q) are induced by the automorphisms
of SLn(q) arising from conjugation by elements of GLn(q). In all cases, the
number of such diagonal automorphisms is the quantity d described above.
The field automorphisms are induced by automorphisms of the underlying
finite field, and therefore form a cyclic group. We write ε for the number of
field automorphisms. In most cases, ε = e as we are working with matrices
over the field Fq of q = pe elements. The exceptions are that ε = 2e for the
families PSUn(q), PΩ−2n(q) and 2E6(q), since these groups are obtained from
groups of matrices over Fq2 , and ε = 3e for 3D6(q) where the matrices are
over Fq3 . Finally, the graph automorphisms arise from automorphisms of
the Dynkin diagram where, for groups in characteristic p, the automorphism
does not need to preserve the direction of the arrow on an edge of multiplicity
p. We write g for the number of graph automorphisms. We then have
|Out(T )| = dεg [Gor82, pp. 303, 304]. Thus Tables 2 and 4 enable us to find
|Out(T )| in all cases.

We now give the proofs of Lemmas 5.5–5.7.

Proof of Lemma 5.5. Let T = PSL2(q). In this case, Theorem 5 and
Proposition 5.2 do not apply. Note that, for T to be simple, we require
q ≥ 4. Moreover, as PSL2(4) ∼= PSL2(5) ∼= A5 and PSL2(9) ∼= A6 (see
[Wil09, p. 3]), the cases q = 4, 5 and 9 follow from Lemma 5.3. We verify
(2) for the remaining values of q.

We have

a(T ) =

{
q + 1 if q = 2e,

q if q is odd;
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T restrictions d ε g
PSLn(q) n ≥ 2 (n, q − 1) e 1 if n = 2

(n, q) 6= (2, 2) 2 if n > 2
(n, q) 6= (2, 3)

PSUn(q) n ≥ 3 (n, q + 1) 2e 1
(n, q) 6= (3, 2)

PSp2n(q) n ≥ 2 (2, q − 1) e 2 if n = 2 and q is even
(n, q) 6= (4, 2) 1 otherwise

PΩ2n+1(q) n ≥ 3 (2, q − 1) e 1

PΩ+
2n(q) n ≥ 4 (4, qn − 1) e 6 if n = 4

2 otherwise

PΩ−2n(q) n ≥ 4 (4, qn + 1) 2e 1

Table 2. Automorphisms of classical simple groups of Lie type

T |G|
G2(q) q6(q6 − 1)(q2 − 1)

(q ≥ 3)
F4(q) q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1)
E6(q) q36(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1)

2E6(q) q36(q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1)
3D4(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)
E7(q) q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1)
E8(q) q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1)

2B2(q) q2(q2 + 1)(q − 1)
(q = 22n+1

n ≥ 1)
2G2(q) q3(q3 + 1)(q − 1)

(q = 32n+1

n ≥ 1)
2F4(q) q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1)

(q = 22n+1

n ≥ 1)
2F4(2)′ q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) with q = 2

Table 3. Exceptional simple groups of Lie type

see [Vdo99, Theorem 3.1] or the full list of subgroups of T in [Hup79, 8.27].
Also, |Out(T )| = de with d = (q− 1, 2) by Table 2 (or [Wil09, Theorem 3.2,
p. 50]).

If q = 2e with e ≥ 3, then d = 1, |T | = q(q2 − 1), |Out(T )| = e and
a(T ) = q + 1. Thus a(Aut(T )) ≤ (q + 1)e. So it suffices to show that

31/3(q + 1)2e < q(q2 − 1), which will follow from 31/3e < q − 2. The last
inequality holds for e = 3 (so q = 8), and hence for all e ≥ 3.
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T d ε g
G2(q) 1 e 2 if q = 3e

1 otherwise
F4(q) 1 e 2 if q = 2e

1 otherwise
E6(q) (3, q − 1) e 2

2E6(q) (3, q + 1) 2e 1
3D4(q) 1 3e 1
E7(q) (2, q − 1) e 1
E8(q) 1 e 1

2B2(q) 1 e 1
2G2(q) 1 e 1
2F4(q) 1 e 1
2F4(2)′ 2 1 1

Table 4. Automorphisms of exceptional simple groups of
Lie type

For odd q > 3, we have d = 2, |Out(T )| = 2e, |T | = 1
2q(q

2 − 1) and
a(T ) = q. It therefore suffices to show that

31/3 · 2eq2 < 1
2q(q

2 − 1),

which will follow from

31/3 · 4e < q − 1.

This holds for q = pe if p ≥ 7, e ≥ 1, if p = 5, e ≥ 2 and p = 3, e ≥ 3. Hence
(4) holds in all cases. �

In the proofs of the remaining two lemmas, we will frequently use the fact
that, for any prime power q = pe, e ≥ 1, we have e3 ≤ 1

2q
2. We also note

that, since |T | = |G|/d, the inequality (4) to be proved may be rewritten as

(5) 3d|Out(T )|3 < |G|.

Proof of Lemma 5.6. Let T be a classical group of Lie type which is not
of the form PSL2(q). We consider each family in Table 1.

For T = PSLn(q) with n ≥ 3, we have d ≤ q − 1, g = 2 so that

|Out(T )| ≤ 2(q − 1)e.

Thus

3d|Out(T )|3 ≤ 24(q − 1)4e3 ≤ 12(q − 1)4q2.

If n ≥ 4 then |G| > q12 so 3d|Out(T )|3 < 24q6 < |G|. If n = 3 then
|G| > q7(q − 1), so that 3d|Out(T )|3 < 12q5(q − 1) < |G| provided that
q ≥ 4. For n = 3 and q = 2 or 3, we have d = 1 so that

3d|Out(T )|3 = 24e3 ≤ 12q2 < q6 < |G|.
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Thus (5) holds for all the simple groups PSLn(q).
For T = PSUn(q), we have d ≤ q + 1 ≤ 3

2q and

3d|Out(T )|3 ≤ 3(q + 1)4(2e)3.

So if n ≥ 4 then

3d|Out(T )|3 ≤ 3
(

3
2q
)4

(2e)3 < 26q6 < q12 < |G|.

Now let n = 3 (so q ≥ 3). Then |G| > q7(q − 1), and, since d ≤ q + 1 ≤ 4
3q,

we have

3d|Out(T )|3 ≤ 3
(

4
3q
)4

(2e)3 < 40q6.

Thus (5) holds if q ≥ 7, since then q(q − 1) > 40. It remains to check the
cases q = 3, 4 and 5. We have d = 1 for q = 3, 4, and d = 3 for q = 5. Also
e = 1 for q = 3, 5 and e = 2 for q = 4. Hence |Out(T )| = 2de ≤ 6 for q ≤ 5,
so that 3d|Out(T )|3 ≤ 9 · 63 < 37 < |G|.

For T = PSp2n(q) or PΩ2n+1(q), we have d ≤ 2, g ≤ 2 so

3d|Out(T )|3 ≤ 3 · 27e3 ≤ 3 · 26q2 ≤ 3
4q

10 < |G|,

where the last inequality holds as the case (n, q) = (2, 2) does not occur.
For T = PΩ+

2n(q) or T = PΩ−2n(q), we have d ≤ 4, and in both cases
|Out(T )| = dεg ≤ 24e. Thus

3d|Out(T )|3 ≤ 12 · (24e)3 ≤ 210 · 34q2 < 217q2 ≤ q19 < |G|. �

Proof of Lemma 5.7. Let T be an exceptional group of Lie type. From
Table 4, we have d ≤ 3 and |Out(T )| ≤ 6e in all cases. Thus it suffices to
prove that 9(6e)3 < |G|. This inequality will hold if

(6) 4 · 35q2 < |G|

Now for q ≥ 2, we have 4 ·35 < q10, so (6) will hold if |G| > q12. From Table
3, this covers all cases except 2B2(q) and 2G2. For these two cases, we have
d = 1 and |Out(T )| = e, so that we only need to show 3e3 < |G|. But as
e3 < q2 we have 3e3 < q3 < |G| in both cases. Thus the inequality (5) holds
for all the exceptional groups of Lie type. �

This concludes the proof of Theorem 4, and so concludes our first proof
of Theorem 2.

6. Second proof of Theorem 2

In this section, we give a more direct proof of Theorem 2, using [Li03,
Lemma 3.2], which in turn depends on a result of Ito [Ito55, Satz 1] on groups
which are a product of two abelian subgroups. For the reader’s convenience,
we include proofs of both these results.

Lemma 6.1 (Ito). Let G = AB be a group which is the product of two
abelian subgroups A, B. Then G is metabelian.
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Proof. First note that as G = AB we also have G = BA. (If g−1 = ab with
a ∈ A, b ∈ B then g = b−1a−1.)

Let H be the subgroup of G generated by all commutators of the form
aba−1b−1 with a ∈ A, b ∈ B. We will show that H is both normal in G
and abelian. It is then immediate that G/H is also abelian, so that G is
metabelian (and indeed H is the derived subgroup of G).

Given a, α ∈ A and b, β ∈ B, write αbα−1 = b1a1 and βaβ−1 = a2b2, with
a1, a2 ∈ A and b1, b2 ∈ B. Then

(7) α(aba−1b−1)α−1 = ab1a
−1b−1

1 ∈ H,

and

(8) β(aba−1b−1)β−1 = a2ba
−1
2 b−1 ∈ H.

Since A and B generate H, (7) and (8) show that H is normal in G.
Conjugating (7) by β and using βaβ−1 = a2b2 to eliminate a, we obtain

(9) βαaba−1b−1α−1β−1 = a2b1a
−1
2 b−1

1 .

Conjugating (8) by α and using αbα−1 = b1a1 to eliminate b, we obtain

(10) αβaba−1b−1β−1α−1 = a2b1a
−1
2 b−1

1 .

It follows from (9) and (10) that aba−1b−1 and α−1β−1αβ commute. Since
a, α ∈ A and b, β ∈ B are arbitrary, this shows that H is abelian. �

Lemma 6.2 (Li). Let Y be a transitive permutation group on a set Ω and
suppose that Y contains an insoluble regular normal subgroup R. Then Y
contains no abelian regular subgroup.

Proof. Let G be an abelian regular subgroup of Y , and let W = 〈R,G〉.
Then W = RG since R is normal in Y . Let ω ∈ Ω. Since R and G are
regular, we have

W = RWω = GWω.

Using the normality of R again, we then have

Wω
∼= W/R = RG/R ∼= G/(R ∩G).

Thus W is the product of two abelian subgroups G and Wω. Hence, by
Lemma 6.1, W is metabelian, and, in particular, soluble. This is impossible
since its subgroup R is insoluble. �

Proof of Theorem 2. Suppose that L/K is a finite Galois extension of
fields with Γ = Gal(L/K) abelian, and that L/K admits a Hopf–Galois
structure of insoluble type G. Then we have a regular embedding of Γ into
Hol(G). Now Hol(G) is transitive on G and contains an insoluble regular
normal subgroup, namely the group λ(G) of left translations by G. Since
the image of Γ in Hol(G) is an abelian regular subgroup, this contradicts
Lemma 6.2. �
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Remark 6.3. We now explain why we believe that our first proof of The-
orem 2, despite its length and complexity, may still be of value in future
work on Hopf–Galois structures. Essentially the strategy of the first proof
is to break G into characteristically simple subquotients J ∼= Tm, where T
is a simple group, and where J occurs as the type of a Hopf–Galois struc-
ture on a Galois extension of fields whose group ∆ is a subquotient of Γ
(and hence is abelian). We then eliminate all possibilities for the simple
group T except the abelian ones, so that J = Cm

p for some prime p and
some m ≥ 1. If we have in mind a particular family of abelian groups Γ,
we may have additional information on the groups J . For example, if Γ is
cyclic, then so is ∆, and we find that a cyclic extension of degree pm must
admit a Hopf–Galois structure of elementary abelian type. By known re-
sults on Hopf–Galois structures for cyclic extensions of prime-power degree
[Koh98, Byo07], this can only happen if m = 1 or pm = 4. It follows that
if a cyclic extension admits a Hopf–Galois structure of type G, then there
is a chain of subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G such that each Gj

is characteristic in G and the order of each quotient Gj/Gj−1 is either a
prime or 4. This is a much stronger restriction on the structure of G than
solubility alone. On the other hand, if we slightly relax the condition that Γ
be abelian by considering groups with an abelian normal subgroup of index
at most k (for some fixed, small k), we can again reduce to the situation
where G is characteristically simple. It seems likely that arguments simi-
lar to those of §5 could then be used to eliminate all nonabelian potential
composition factors of G with a few exceptions (depending on k).

7. Cases where the composition factors differ

In this section, we show that a Galois extension with group Γ may ad-
mit Hopf–Galois structures of type G, where the composition factors of
the groups Γ and G differ. In particular, we shall prove Theorem 3 and
Corollary 1.1. All our examples arise from the construction we shall give in
Lemma 7.1.

Two subgroups H, J in a finite group G are said to be complementary if
|H| |J | = |G| and H ∩ J = {eG}. (We do not require either subgroup to be
normal.) Then each element of G can be written uniquely in the form hj
with h ∈ H and j ∈ J . If G acts faithfully and transitively as permutations
of some set X, and H is the stabilizer of an element of X, then a subgroup J
of G is complementary to H if and only if J is regular on X. In particular,
if G contains a Hall p′-subgroup H for some prime p then (taking X to be
the space of left cosets of H), any Sylow p-subgroup of G is complementary
to H.

Lemma 7.1. Suppose that G contains a pair of complementary subgroups
H, J . Then any Galois extension of fields with Galois group Γ = H × J
admits a Hopf–Galois structure of type G.
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Proof. It suffices to exhibit a regular embedding β : H × J −→ Hol(G).
Using the notation of (1), we claim that such an embedding is given by the
formula β(h, j) = [hj−1, C(j)] for h ∈ H, j ∈ J where, for any g ∈ G,
C(g) ∈ Aut(G) is conjugation by g, that is, C(g)(x) = gxg−1 for x ∈ G.
More concisely, β(h, j)(x) = hj−1(jxj−1) = hxj−1 for x ∈ G.

We check that β is indeed a homomorphism. If h1, h2 ∈ H and j1, j2 ∈ J ,
then, for each x ∈ G, we calculate

β(h1, j1)β(h2, j2)(x) = h1(h2xj
−1
2 )j−1

1 = (h1h2)x(j1j2)−1 = β(h1h2, j1j2)(x)

so that β(h1, j1)β(h2, j2) = β(h1h2, j1j2) as required. The homomorphism
β is regular since each x ∈ G can be written uniquely in the form hj−1 with
h ∈ H and j ∈ J . �

Remark 7.2. Lemma 7.1 is an application of the method of fixed-point free
pairs of homomorphisms; see [BC12, §2] (or, in the case that Γ = G, [CCo07,
§4]). For finite groups Γ, G of the same order, we say that homomorphisms

β1, β2 : Γ −→ G

form a fixed-point free pair if β1(σ) = β2(σ) only for σ = eΓ. We then have
a regular embedding β : Γ −→ Hol(G) given by

β(σ) = λ(β1(σ))ρ(β2(σ)) = [β1(σ)β2(σ)−1, C(β2(σ))],

where λ, ρ : G −→ Hol(G) are the regular left and right embeddings, λ(σ)(τ) =
στ , ρ(σ)(τ) = τσ−1 for τ ∈ G. In the proof of Lemma 7.1, we have
β1, β2 : H × J −→ G with β1(h, j) = h and β2(h, j) = j.

Before proving Theorem 3, we consider the case of symmetric and alter-
nating groups.

Example 7.3. Let G = Sn for n ≥ 3, and let H = Sn−1, the stabilizer of
a point in the usual action of Sn on n points. Let J be the cyclic group
generated by any n-cycle in Sn. Then J is regular on the n points, and
hence is complementary to H. Thus, by Lemma 7.1, any Galois extension
with group Γ = Sn−1 × Cn admits a Hopf Galois structure of type Sn. If
n ≥ 5 then Sn has the simple group An as a composition factor, whereas Γ
does not.

Example 7.4. Let G = An with n ≥ 5, odd, and let H = An−1, the
stabilizer of a point. As n is odd, An contains an n-cycle, and again this
generates a complement J to H. Thus any Galois extension with group
Γ = An−1 × Cn admits a Hopf–Galois structure of type An.

For even n, the case G = An is a little more involved.

Lemma 7.5. Let n ≥ 4 with n 6≡ 2 mod 4. Write n = 2em with m ≥ 1
odd. Then any Galois extension with group Γ = An−1 × Ce

2 × Cm admits a
Hopf–Galois structure of type An.
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Proof. When n is odd (so e = 0), the result follows from Example 7.4.
So suppose e ≥ 2. We view An as permuting the elements of the finite
group B = Ce

2 × Cm of order n. We write B additively. The group λ(B) of
left translations by elements of B is a regular subgroup of Perm(B) ∼= Sn.
If 0 6= v ∈ Ce

2 , then left translation by (v, 0) ∈ B swaps the elements of
B in pairs. Thus, as a product of disjoint cycles, λ(v, 0) consists of n/2
transpositions. As n/2 is even, λ(v, 0) is an even permutation. Similarly,
λ(0, 1) is a product of 2e m-cycles, which is again an even permutation as m
is odd. But B is generated by the elements (v, 0) for 0 6= v ∈ Ce

2 and (0, 1),
so λ(B) lies in An. Thus J = λ(B) is a complementary subgroup to An−1

in An, and we may again apply Lemma 7.1. �

Remark 7.6. If n ≡ 2 mod 4, then there is no complementary subgroup
J to An−1 in An. To see this, observe that J would have to be a regular
subgroup, so that any element of J of order 2 would consist of n/2 transpo-
sitions, and therefore could not be in An.

We now turn to the proof of Theorem 3. We will need the following result
of Guralnick [Gur83, Theorem 1], which depends on the classification of
finite simple groups.

Theorem 6 (Guralnick). Let G be a finite nonabelian simple group with
a subgroup H of prime-power index, |G : H| = pa > 1. Then one of the
following holds.

(i) G = An with n = pa ≥ 5 and H = An−1.
(ii) G = PSLn(q) and H is the stabilizer of a point or hyperplane in the

action of G on the projective space Pn−1(Fq); here

|G : H| = (qn − 1)/(q − 1) = pa.

(iii) G = PSL2(11) and H = A5.
(iv) G is the Matthieu group M23 or M11, and H = M22 or M10, re-

spectively.
(v) G = PSU4(2) ∼= PSp4(3) and H is a maximal parabolic subgroup of

PSU4(2) of index 27.

Moreover, H is a Hall p′-subgroup of G except in case (i) with n = pa > p
and in case (v).

Proof of Theorem 3. We consider the various cases in Theorem 6. In
case (i), the result follows from Lemma 7.5. In cases (ii), (iii) and (iv), the
group H is a Hall p′-subgroup. Taking J to be a Sylow p-subgroup of H,
so that H, J are complementary subgroups in G, the result follows from
Lemma 7.1.

It remains to consider case (v), where H is not a Hall p′-subgroup. Let
G = PSU4(2). As the factor d in Table 2 is (n, q + 1) = (4, 3) = 1 in this
case, G ∼= SU4(2). Let V = F4

4, and label the standard ordered basis of row
vectors as e1, f1, e2, f2. We endow V with the sesquilinear form (·, ·) where

(ei, ej) = (fi, fj) = 0, (ei, fj) = δij .
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Then we may take G to be the subgroup of SL4(4) which preserves this
form. More concretely, G consists of the matrices M over F4 of determinant
1 such that MFM = F , where

F =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


and, for any matrix M , we write M for the transpose of the matrix obtained
by applying the involution x 7→ x = x2 of F4 to each entry of M . Without
loss of generality, we take H to the stabilizer in G of the maximal isotropic
subspace W = F4e1 + F4e2 of V . Let X be the set of all 2-dimensional
isotropic subspaces of V . Then G acts transitively on X, and a calculation
confirms that indeed |X| = 27. Thus we need to show that there is a
subgroup of G which acts regularly on X. Such a group will have order 27,
whereas a Sylow 3-subgroup of G has order 81.

Let ω ∈ F4 with ω2 + ω + 1 = 0, and consider the matrices

A =


1 ω 1 ω2

ω2 1 ω 1
1 ω2 1 ω
ω2 ω ω ω2

 , B =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

One verifies by direct calculation that A, B ∈ G and that A9 = B3 = I 6= A3

and BAB−1 = A4. Thus A and B generate a subgroup J of G of order 27.
Moreover, the images of W under the 10 matrices Am, 0 ≤ m ≤ 8 and B
are all distinct. (The image of W in each case is the F4-span of rows 1 and 3
of the matrix.) Since the size of the orbit of W under J must be a factor of
|J |, it follows that J is transitive, and hence regular, on X as required. �

Proof of Corollary 1.1. (i) This follows from Theorem 3 (or Example 7.4)
on taking G = A5 and H = A4.

(ii) Let G = PSL3(2) ∼= PSL2(7) of order 168. The stabilizer H of a point
(or line) in the projective plane P2(F2) has index 7 and order 24. By [Hup79,
8.27], we have H ∼= S4. The result then follows from Lemma 7.1.

(iii) Let p = 2e − 1 be a Mersenne prime, and let G = PSL2(p). The
stabilizer H of a point in P1(Fp) under the action of G has index p+ 1 = 2e

and order 1
2p(p−1). In particular, H is a Hall 2′-subgroup of G, so a Sylow 2-

subgroup J will be complementary to H. From [Hup79, 8.27], H ∼= F 1
2
p(p−1)

and J ∼= D2e , so again Lemma 7.1 gives the required result. �
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