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Multipliers in weighted settings and
strong convergence of associated
operator-valued Fourier series

Earl Berkson

Abstract. This note describes the pleasant features that accrue in
weighted settings when the partial sums of the operator-valued Fourier
series corresponding to a multiplier function ψ : T → C are uniformly
bounded in operator norm. This circle of ideas also includes a Tauberian-
type condition on the multiplier function ψ sufficient to insure such uni-
form boundedness of partial sums. These considerations are shown to
apply to Riemann’s continuous, “sparsely differentiable,” periodic func-
tion. In a larger sense, our considerations aim at showing how pillars
of functional analysis and real-varable methods in Fourier analysis can
be combined with “bread-and-butter” techniques from these subjects
so as to reveal hitherto unnoticed useful tools in multiplier theory for
weighted Lebesgue spaces.
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1. Introduction

This note concerns Fourier multiplier theory for the space `p(w), where
1 < p < ∞, and w ≡ {wk}∞k=−∞ is an Ap weight sequence (in symbols,
w ∈ Ap(Z)), that is, w ≡ {wk}∞k=−∞ is a bilateral sequence of positive
real numbers for which there is a real constant C (called an Ap (Z) weight
constant for w) such that(

1

M − L+ 1

M∑
k=L

wk

)(
1

M − L+ 1

M∑
k=L

w
−1/(p−1)
k

)p−1
≤ C,
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whenever L ∈ Z, M ∈ Z, and L ≤M . The space `p(w) is the corresponding
Banach space consisting of all complex-valued sequences x ≡ {xk}∞k=−∞ such
that

‖x‖`p(w) ≡

{ ∞∑
k=−∞

|xk|pwk

}1/p

<∞.

This introductory section sketches the requisite features of the multiplier
theory for the spaces `p(w), since that theory is central to the treatment of
Ap(Z) weighted Lebesgue spaces. Some useful notation will be established
in the process. We omit the background details regarding A1(Z), since they
will not be needed below; however, for the explication of Remark 2.5(ii) and
Theorem 2.6 below it is worthwhile to recall here that for 1 ≤ r ≤ u < ∞,
we have Ar(Z) ⊆ Au(Z). Further relevant background details and references
for the present discrete weighted setting can be found in, e.g., §8 of [13], §5
of [4], [6] (Theorem 3.3, Corollary 3.5, and Proposition 3.8 therein), and §5
of [3].

Except as otherwise noted below, our functional analysis approach com-
bined with classical Fourier analysis methods is applied to obtain new out-
comes for multiplier theory in the setting of weighted spaces. In particular,
the Fourier multiplier aspects of Riemann’s continuous “sparsely differen-
tiable” function ((2.8) and Theorem 2.6) unearth novel features of this ven-
erable icon of classical analysis.

A function ψ ∈ L∞ (T) is called a (Fourier) multiplier for `p(w) (in sym-
bols, ψ ∈ Mp,w (T)) provided that convolution by its inverse Fourier trans-
form defines a bounded operator on `p(w). Specifically, we require:

(i) For each x ≡ {xk}∞k=−∞ ∈ `p(w) and each j ∈ Z, the series

(
ψ∨ ∗ x

)
(j) ≡

∞∑
k=−∞

ψ∨ (j − k)xk converges absolutely.

(ii) The mapping T
(p,w)
ψ : x ∈ `p (w) 7→ ψ∨ ∗ x is a bounded linear

mapping of `p(w) into `p(w) (in symbols, T
(p,w)
ψ ∈ B (`p(w))).

We then call T
(p,w)
ψ the multiplier transform corresponding to ψ. The ele-

ments of Mp,w (T) are identified modulo equality a.e. on T. Straightforward
reasoning shows that Mp,w (T) is an algebra under pointwise operations,

and that the mapping ψ ∈ Mp,w (T) → T
(p,w)
ψ is an algebra isomorphism of

Mp,w (T) into B (`p(w)). Hence Mp,w (T) is a unital normed algebra under
the norm

‖ψ‖Mp,w(T) ≡
∥∥∥T (p,w)

ψ

∥∥∥
B(`p(w))

,

and the algebra of multiplier transforms is commutative. Moreover, The-
orem 2.10 of [5] shows that when Mp,w (T) is furnished with the norm
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‖·‖Mp,w(T), it becomes a unital Banach algebra, with

(1.1) ‖ψ‖L∞(T) ≤ ‖ψ‖Mp,w(T) , for all ψ ∈Mp,w (T) .

Regularization techniques for Fourier multipliers in the unweighted setting
carry over to the weighted setting. Specifically, if 1 < p < ∞, w ∈ Ap(Z),
ψ ∈Mp,w (T), and k ∈ L1 (T), then the convolution k ∗ ψ ∈Mp,w (T), and

‖k ∗ ψ‖Mp,w(T) ≤ ‖k‖L1(T) ‖ψ‖Mp,w(T) .

In §2, we shall treat conditions engendering strong convergence of opera-
tor-valued Fourier series that arise in conjunction with multiplier transforms
on `p(w). Remark 2.5(ii) and Theorem 2.6 apply these considerations to
the multiplier properties of Riemann’s continuous, “sparsely differentiable”,
periodic function.

Historically one of the foremost and central examples of an `p (w) mul-
tiplier, where 1 < p < ∞, has been the function ψ0 : T → C, which is
specified by ψ0 (1) = 0, and ψ0

(
eit
)

= −i (π − t), for 0 < t < 2π, and
whose inverse Fourier transform is the discrete Hilbert kernel: ψ∨0 (0) = 0,
and ψ∨0 (k) = 1/k, for k ∈ Z \ {0}. The pivotal role of ψ0 in this discrete
venue where 1 < p <∞ stems from Theorem 10 of [13], which characterizes
Ap (Z) weights w among weight sequences by the condition that Mp,w (T)

includes the function ψ0. In this setup T
(p,w)
ψ0

coincides with the discrete

Hilbert transform Hp,w, which is specified as convolution by the discrete
Hilbert kernel on `p(w). Stečkin’s Theorem for Ap(Z) weighted Lebesgue
spaces, where 1 < p < ∞, generalizes this property of ψ0 by asserting
that if φ : T → C has bounded variation (in symbols, φ ∈ BV (T)), then
φ ∈ Mp,w (T). A straightforward proof of this weighted version of Stečkin’s
Theorem is readily seen by obvious transplanting of its classical unweighted
proof, as presented in, e.g., [7], pp. 377,378, and includes the following
estimate for all φ ∈ BV (T) .∥∥∥T (p,w)

φ

∥∥∥
B(`p(w))

≤
∣∣∣φ̂ (0)

∣∣∣+ (2π)−1 ‖Hp,w‖B(`p(w)) var (φ,T) .

The role played by BV (T) as a multiplier class for our weighted setting of
`p(w), where 1 < p < ∞, can be extended to the class of Marcinkiewicz
multipliers M1 (T), which consists of all bounded functions f : T→ C such
that f has uniformly bounded variations on the dyadic arcs of T. This
weighted version of the classical Marcinkiewicz Multiplier Theorem is due
to D.S. Kurtz (Theorem 2 of [15], which transplants from R to our setting
of `p(w)), and yields the estimate∥∥∥T (p,w)

f

∥∥∥
B(`p(w))

≤ Kp,C ‖f‖M1(T) ,

where C is an arbitrarily chosen Ap(Z) weight constant for w. (Here and
henceforth the symbol “K” with a possibly empty set of subscripts signifies
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a constant which depends only on those subscripts, and which may change
in value from one occurrence to another.)

In connection with this circle of ideas, we recall that if g ∈ BV (T) (re-

spectively, g ∈ M1 (T)) then sup {|kĝ (k)| : k ∈ Z} ≤ (2π)−1 var (g,T) (re-

spectively, |ĝ (k)| ≤ K ‖ψ‖M1(T) |k|
−1 log (π |k|), for k ∈ Z \ {0}). The first

of these estimates is a familiar consequence of integration by parts. The
estimate here for the decay rate for the Fourier transforms of M1 (T) func-
tions traces back to the discussion in §8 of [10], which states this order of

upper estimate without proof in the form O
(
|k|−1 log (|k|)

)
, for |k| ≥ 2, the

treatment in [10] being couched in what is now archaic nomenclature from
an era prior to the advent of the original Marcinkiewicz Multiplier Theorem.
(The proof of a more general class of estimates can be found in Theorem 3.2
of [3].) Their above-noted upper estimate for the decay rate of the Fourier
transforms of M1 (T) functions in [10] prompts Hardy and Littlewood to
raise the question of whether log |k| can be dropped from it, as would be the
case if g were of bounded variation on all of T. They answer this question
in the negative by explicitly constructing a counterexample in the form of a
function g0 ∈M1 (T) such that g0

(
ei(·)

)
is an even function on R, and such

that g0 fails to satisfy

ĝ0 (k) = O
(
|k|−1

)
, as (|k|)→∞.

For each k ∈ Z, let us denote by ek the the character of T specified by
ek (z) ≡ zk. Then ek ∈Mp,w (T), and

(1.2) T
(p,w)
ek = Lk,

where L ∈ B (`p(w)) is the left bilateral shift, defined on `p(w) by putting
Lx ≡ {xk+1}∞k=−∞, for each x = {xk}∞k=−∞ ∈ `p(w). L is positivity-
preserving, invertible, disjoint, and mean-bounded in the sense that

(1.3) ςp,w ≡ sup


∥∥∥∥∥∥ 1

2N + 1

N∑
j=−N

Lj
∥∥∥∥∥∥
B(`p(w))

: N ≥ 0

 <∞.

The inverse of L is the right bilateral shift R specified on `p(w) by writing
Rx = {xk−1}∞k=−∞. It is readily seen that, for each n ∈ Z,

(1.4) ‖Ln‖B(`p(w)) = sup

{(
wk−n
wk

)1/p

: k ∈ Z

}
.

A family of concrete examples for the foregoing scenario can be formulated
as follows. Let η ∈ R, with 0 < η < p−1. Then (as covered in Proposition 3.8

of [6]) the Ap(Z) condition is satisfied by the weight sequence w(η) specified

by: w(η) (0) = 1, and w(η) (k) = |k|η, for k ∈ Z\{0}. Elementary calculations
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proceeding from (1.4) readily show that for all n ∈ Z,

(1.5) ‖Ln‖B(`p(w(η))) = (|n|+ 1)η/p .

(In particular, L ∈ B
(
`p
(
w(η)

))
is not power-bounded.)

For each z ∈ T, we define the linear isometry Vz of `p(w) onto `p(w) by
writing for each x ≡ {xk}∞k=−∞ ∈ `p (w),

(1.6) Vz (x) =
{
z−kxk

}∞
k=−∞

.

It is elementary to verify by direct calculations that for each ψ ∈ Mp,w (T)
and z ∈ T, the rotated function ψz−1 (·) = ψ

(
(·) z−1

)
belongs to Mp,w (T),

with

T
(p,w)
ψz−1

= Vz−1T
(p,w)
ψ Vz,

whence

(1.7)
∥∥∥T (p,w)

ψz−1

∥∥∥
B(`p(w))

=
∥∥∥T (p,w)

ψ

∥∥∥
B(`p(w))

.

Moreover, the reasoning on pages 151, 152 of [3] goes over mutatis mutandis

to the present circumstances to show that the function Ψ : z ∈ T 7→T (p,w)
ψz

is

continuous with respect to the strong operator topology of B (`p(w)).
It will be convenient to record here our context’s version of the following

universal workhorse for multiplier theory. This proposition also has a few
pleasant consequences regarding the convergence of multiplier transforms
that seem to have been overlooked in the lore of multiplier theory, and
which will be treated below in the form of Theorem 2.2.

Proposition 1.1. Suppose 1 < p < ∞, w ∈ Ap(Z), {φn}∞n=1 ⊆ Mp,w(T),
and

(1.8) s = sup
n∈N
‖φn‖Mp,w(T) <∞.

Suppose further that there is a function φ : T→ C such that, with respect to
Haar measure on T,

(1.9) φn → φ a.e.on T,

then φ ∈Mp,w (T), and

(1.10) ‖φ‖Mp,w(T) ≤ sup
n∈N
‖φn‖Mp,w(T) .

Proof. Notice first that by virtue of (1.1), we have, in the notation of (1.8),

(1.11) sup
n∈N
‖φn‖L∞(T) ≤ s <∞,

and so in view of (1.9), φ ∈ L∞ (T), and, for each k ∈ Z,

(1.12) lim
n

(φn)∨ (k) = φ∨ (k) .
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Here and henceforth we denote by `0 the linear space of all finitely sup-
ported, complex-valued bilateral sequences. Now let x = {xk}∞k=−∞ ∈ `0.
We infer from (1.12) that for each k ∈ Z,

(1.13)
(
(φn)∨ ∗ x

)
(k)→

(
φ∨ ∗ x

)
(k) .

Moreover, (1.8) shows that for each n ∈ N,

(1.14)
∥∥(φn)∨ ∗ x

∥∥
`p(w)

≤ s ‖x‖`p(w) .

Applying (1.13) and (1.14) in conjunction with Fatou’s Lemma in `p(w), we
see that every x = {xk}∞k=−∞ ∈ `0 has the property that (φ∨ ∗ x) ∈ `p(w),
with

(1.15)
∥∥φ∨ ∗ x∥∥

`p(w)
≤ s ‖x‖`p(w) .

The proof of Proposition 1.1 follows readily from (1.15) via the density of
`0 in `p(w) with respect to the norm topology. �

Given a complex-valued function F ∈ L1 (T), and an integer n ≥ 0, we
shall symbolize the nth partial sum of the Fourier series of F by sn (F, (·)) ≡∑n

k=−n F̂ (k) ek. In view of (1.2) this definition can be rephrased in terms
of multiplier transforms by writing

(1.16) T
(p,w)
sn(F,(·)) =

n∑
k=−n

F̂ (k)Lk.

We shall designate by σN (F, (·)) the N th (C, 1) mean of the Fourier series

of F . Thus, σN (F, (·)) ≡ (N + 1)−1
∑N

n=0 sn (F, (·)). It is elementary that
for all z ∈ T,

σN (F, z) = (κN ∗ F ) (z) ,

where κN is the Fejér kernel for T of order N , specified by

κN (z) ≡
N∑

k=−N

(
1− |k|

N + 1

)
zk,

and satisfying κN ≥ 0, and ‖κN‖L1(T) = 1.

In terms of this notation, we can directly deduce the following corollary
of Proposition 1.1 by appeal to the Fejér-Lebesgue Theorem (XI.(44.1) on
pg. 631 of [12]). (The “if” part of its equivalence is immediately seen by
convolving φ with the Fejér kernel for T.)

Corollary 1.2. Suppose that 1 < p <∞, w ∈ Ap (Z), φ ∈ L1 (T). Then

sup
N≥0
‖σN (φ, (·))‖Mp,w(T) <∞

if and only if φ ∈Mp,w (T). If this is the case, then

‖φ‖Mp,w(T) ≤ sup
N≥0
‖σN (φ, (·))‖Mp,w(T) .
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We close this introductory section with a pair of handy consequences of
(1.16). Specifically, for each ψ ∈Mp,w (T), z ∈ T, and integer n ≥ 0, we can

use the elementary relationship ψ̂z (k) = zkψ̂ (k), valid for all k ∈ Z, to infer
that:

T
(p,w)
sn(ψz ,(·)) =

n∑
k=−n

zkψ̂ (k)Lk,

whence (1.7) yields∥∥∥T (p,w)
sn(ψz ,(·))

∥∥∥
B(`p(w))

=
∥∥∥T (p,w)

(sn(ψ,(·)))z

∥∥∥
B(`p(w))

(1.17)

=
∥∥∥T (p,w)

sn(ψ,(·))

∥∥∥
B(`p(w))

.

2. Expansion of multiplier transforms in Fourier series
convergent in the strong operator topology

The stage is now set for our results on operator-valued Fourier series
presented in the following theorems.

Theorem 2.1. Suppose that 1 < p <∞, w ∈ Ap(Z), ψ ∈ L∞ (T), and

(2.1) S ≡ sup
n≥0
‖sn (ψ, (·))‖Mp,w(T) <∞.

Then the following conclusions hold:

(i) ψ ∈Mp,w (T), and ‖ψ‖Mp,w(T) ≤ S.

(ii) For each z ∈ T, the series
∞∑

k=−∞
zkψ̂ (k)Lk

converges in the strong operator topology of B (`p(w)) to

Ψ (z) = T
(p,w)
ψz

,

which, as already noted in §1 is a continuous function of z ∈ T,
with respect to the strong operator topology of B (`p(w)).

(iii) For each x ∈ `p(w), and each k ∈ Z, the kth Fourier coefficient of
the `p(w)-valued continuous function Ψ (·)x is expressed by

(2.2) Ψ̂ (·)x (k) = ψ̂ (k)Lkx.

Proof. The proof of (i) is an immediate consequence of Corollary 1.2: since
the σN (ψ, (·)) are averages of the partial sums sn (ψ, (·)), we have

sup
N≥0
‖σN (ψ, (·))‖Mp,w(T) ≤ S <∞.

To establish (ii), for each fixed m ∈ Z, let us denote by

τ (m) =
{
τ
(m)
k

}∞
k=−∞

∈ `p(w)
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the vector whose coordinates are defined in terms of Kronecker’s delta by

τ
(m)
k = δm,k. (Thus τ (m) = L−mτ (0).) Notice in particular that for each
z ∈ T,

`p(w) 3 T (p,w)
ψz−1

(
τ (m)

)
=
{
zk−mψ∨ (k −m)

}∞
k=−∞

.

Specializing to m = 0, z = 1, we see that the sequence

ψ∨ ≡
{
ψ∨ (k)

}∞
k=−∞ ∈ `

p(w).

Write χn for the characteristic function, defined on Z, of {k ∈ Z : |k| ≤ n}.
Then, with convergence in the norm topology of `p(w),

n∑
k=−n

ψ∨(k)L−k
(
τ (0)

)
=
{
ψ∨(k)χn (k)

}∞
k=−∞ → ψ∨ = T

(p,w)
ψ

(
τ (0)

)
,

as n→∞. We can rewrite this convergence result in the form

(2.3)

n∑
k=−n

ψ̂(k)Lk
(
τ (0)

)
→ T

(p,w)
ψ

(
τ (0)

)
.

For each j ∈ Z, the multiplier transform L−j = T
(p,w)
e−j commutes with the

operators occurring in both members of (2.3), and so upon application of
L−j to (2.3) we see that for all j ∈ Z,∥∥∥∥∥

n∑
k=−n

ψ̂(k)Lk
(
τ (j)
)
− T (p,w)

ψ

(
τ (j)
)∥∥∥∥∥

`p(w)

→ 0, as n→∞.

Since the vectors τ (j), j ∈ Z, span a dense linear manifold in the Banach
space `p(w), it follows from this last and the uniform boundedness of the
operators {

n∑
k=−n

ψ̂(k)Lk
}∞
n=0

=
{
T
(p,w)
sn(ψ,(·))

}∞
n=0

stated by our hypothesis (2.1) that the sequence{
n∑

k=−n
ψ̂(k)Lk

}∞
n=0

converges to T
(p,w)
ψ in the strong operator topology of B (`p(w)). The desired

conclusion (ii) is immediate from this, since for each z ∈ T, we can replace
ψ by ψz therein by virtue of (1.17).

For the demonstration of (iii), we need only utilize the convergence in (ii),
while applying Bounded Convergence to the relevant `p (w)-valued Bochner
integrals arising. �

Although we shall not need the next theorem, it fits neatly into the theme
of convergence of multiplier transforms at a general level, and is consequently
included here.
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Theorem 2.2. Under the hypotheses and notation of Proposition 1.1, the
following two conclusions are valid:

(i) The sequence of multiplier transforms{
T
(p,w)
φn

}∞
n=1

converges in the weak operator topology of B (`p(w)) to T
(p,w)
φ .

(ii) There is a subsequence{
T
(p,w)
φnk

}∞
k=1

of
{
T
(p,w)
φn

}∞
n=1

such that the sequence of (C, 1) averages of{
T
(p,w)
φnk

}∞
k=1

converges in the strong operator topology of B (`p(w)) to T
(p,w)
φ .

Proof. We continue with the notation used in the proof of Theorem 2.1.
Under the present hypotheses, we obviously have for each n ∈ N,

`p(w) 3 T (p,w)
φn

(
τ (0)

)
=
{
φ∨n (k)

}∞
k=−∞ .

Moreover, it is clear by the pointwise a.e. Bounded Convergence of {φn}∞n=1
that for each ν ∈ Z,

(2.4) lim
n
φ∨n (ν) = φ∨ (ν) .

Since the sequence
{
T
(p,w)
φn

(
τ (0)

)}∞
n=1

is norm-bounded in the reflexive space

`p(w), we can apply the Eberlein–Smulian Theorem (see, e.g., p. 458 of
[8] for the Eberlein–Smulian Theorem) to infer that every subsequence of{
T
(p,w)
φn

(
τ (0)

)}∞
n=1

has in turn a subsequence

{
T
(p,w)
φnmj

(
τ (0)

)}∞
j=1

weakly con-

vergent in `p(w) to a corresponding y ∈ `p(w). However, since the coordinate
functionals are bounded linear functionals on `p(w), we have for each ν ∈ Z,

lim
j
φ∨nmj

(ν) = y (ν) ,

whence by (2.4) y is uniquely determined in all the above instances to be

φ∨ = T
(p,w)
φ

(
τ (0)

)
. An elementary reductio ad absurdum argument now

establishes that, relative to the weak topology of `p(w), we have:

(2.5)
{
T
(p,w)
φn

(
τ (0)

)}∞
n=1
→ T

(p,w)
φ

(
τ (0)

)
.

It follows by the Banach–Saks Theorem ([17, p. 101]) that
{
T
(p,w)
φn

(
τ (0)

)}∞
n=1

contains a subsequence
{
T
(p,w)
φnk

(
τ (0)

)}∞
k=1

such that, relative to the norm
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topology of `p(w),

(2.6)
{
T
(p,w)
φnk

(
τ (0)

)}∞
k=1

converges (C, 1) to T
(p,w)
φ

(
τ (0)

)
.

For each j ∈ Z, τ (j) = L−jτ (0).), and we can apply L−j separately to
(2.5) and (2.6) in order to deduce that the assertion in each of these items

remains true if we replace τ (0) by τ (j) therein. Thus each of (2.5) and (2.6)

continues to hold if τ (j) is replaced by any finitely supported vector. Since
the linear subspace `0 consisting of the finitely supported vectors is norm

dense in `p(w), and supn

∥∥∥T (p,w)
φn

∥∥∥
B(`p(w))

<∞, the validity of this theorem’s

conclusions (i) and (ii) is now apparent. �

Remark 2.3. The assumption (2.1) is not a necessary condition for ψ to
belong to Mp,w (T). A counterexample to necessity can be found in the
special (“unweighted”) setting w (k) ≡ 1, with p = 2. (whence Mp,w (T) =
L∞ (T), with equality of norms). In this setting the requisite counterexample
is furnished by the classical example of a continuous function f : T → C
such that the sequence {sn (f, 1)}∞n=0 is unbounded. (For details on the
existence of such a function f , see, e.g., Theorem II.2.1 on pg. 51 of [14].)

We now take up a Tauberian-like converse for Theorem 2.1. This result
is reminiscent of, but structurally distinct from, a Tauberian Theorem of
G.H. Hardy regarding Fourier series convergence (see pgs. 52,53 of [14] for
the latter).

Theorem 2.4. Suppose that 1 < p <∞, w ∈ Ap (Z), ψ ∈Mp,w (T), and

(2.7) sup
{∣∣∣kψ̂ (k)

∣∣∣ : k ∈ Z
}
<∞.

Then supn≥0 ‖sn (ψ, (·))‖Mp,w(T) < ∞. (Hence the conclusions of Theo-

rem 2.1 hold here.)

Proof. For n ≥ 0, ‖κn ∗ ψ‖Mp,w(T) ≤ ‖ψ‖Mp,w(T), and

κn ∗ ψ = sn (ψ, (·))− (n+ 1)−1
∑

0<|k|≤n

|k| ψ̂ (k) ek.

So it suffices for the proof of this theorem to show that for all n ≥ 0, and
all x ∈ `p(w),∥∥∥∥∥∥(n+ 1)−1

∑
0<|k|≤n

|k| ψ̂ (k)Lkx

∥∥∥∥∥∥
`p(w)

≤ Kp,w,ψ ‖x‖`p(w) .
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This can be seen as follows by virtue of our hypothesis in (2.7) and the
mean-boundedness of L expressed by (1.3). We have, pointwise on Z,∣∣∣∣∣∣(n+ 1)−1

∑
0<|k|≤n

|k| ψ̂ (k)Lkx

∣∣∣∣∣∣
≤
(

sup
{∣∣∣jψ̂ (j)

∣∣∣ : j ∈ Z
})

(n+ 1)−1
n∑

k=−n
Lk (|x|) ,

and so, with ςp,w as in (1.3) we see that∥∥∥∥∥∥(n+ 1)−1
∑

0<|k|≤n

|k| ψ̂ (k)Lkx

∥∥∥∥∥∥
`p(w)

≤
(

sup
{∣∣∣jψ̂ (j)

∣∣∣ : j ∈ Z
})

2ςp,w ‖x‖`p(w) �

Remark 2.5.

(i) For 1 < p <∞, w ∈ Ap (Z), Theorem 2.4 clearly applies to all func-
tions in the class BV (T). In the equivalent restatement of (1.16) for
multiplier norms of partial sums sn, the conclusion of Theorem 2.4
for BV (T) is known as a specialization to L of the more general re-
sult for trigonometrically well-bounded operators on super-reflexive
spaces expressed by Theorem 4.4 of [1]. The class of φ ∈ Mp,w (T)
for which the condition supn≥0 ‖sn (φ, (·))‖Mp,w(T) < ∞ holds can

be considerably expanded from BV (T) to functions of higher vari-
ation by way of the discussion in Remark 3.1(i) of [2], taken in
conjunction with Theorem 4.1(b) of [2]. When applied to the left
shift L in our context, this approach shows that corresponding to
p and w there is a constant βp,w such that 1 < βp,w <∞, and such
that for every r belonging to the open interval (1, βp,w), and every
function φ having finite r-variation on T (written φ ∈ Vr (T)) we

have supn≥0

∥∥∥∑n
k=−n φ̂(k)Lk

∥∥∥
B(`p(w))

< ∞. However, as described

in Remark 2.8(ii) of [1], each class Vr (T), where r > 1, includes a
corresponding Hardy–Weierstrass type of continuous, nowhere dif-
ferentiable function ψr such that (2.7) fails to hold for ψr.

(ii) For an example of a function satisfying (2.7) and belonging to
Mp,w (T) \ BV (T) in some settings, we turn to Riemann’s contin-
uous “almost nowhere” differentiable function R : R→ R specified
by writing

R (x) =

∞∑
k=1

k−2 sin
(
k2x
)

.
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The set of points where R is differentiable is precisely{
π (2m+ 1) (2n+ 1)−1 : m ∈ Z, n ∈ Z

}
([9]). Clearly this sparse differentiability shows that the (2π)-peri-
odic function R cannot be regarded as an element of BV (T) (for
our purposes it will be convenient to regard the Riemann function
R as the function R defined on T by putting

(2.8) R (z) =
∞∑
k=1

(2i)−1 k−2zk
2 −

∞∑
k=1

(2i)−1 k−2z−k
2
.)

Obviously the definition of R shows that it satisfies the condition
(2.7). For its multiplier status in appropriate weighted settings, we
next fix p in the range 2 ≤ p <∞, and suppose that w ∈ Ap/2(Z).
For this setting Theorem 5.1 of [5] furnishes us with a corresponding
s, 2 < s < ∞, such that whenever 1 ≤ q < s and ψ belongs to the
Marcinkiewicz q-class Mq (T) (in particular whenever ψ ∈ Vq (T)),
then ψ ∈ Mp,w (T). We now proceed to show that R ∈ Vq (T) for
some q ∈ (1, s). Choose and fix a number γ such that 2 < γ < s
and then choose λ > 2 sufficiently large enough to ensure that

2 <
λγ

λ− 1
<

λγ

λ− 2
< s.

Now let α =
λ− 1

λγ
. In particular α <

1

2
; so 2 (1− α) > 1, and we

can now define the continuous function f on T by putting

f (z) =
∞∑
k=1

(
ik2
)α

(2i)−1 k−2zk
2 −

∞∑
k=1

(
−ik2

)α
(2i)−1 k−2z−k

2

=
∞∑
k=1

iα (2i)−1 k−2(1−α)zk
2 −

∞∑
k=1

(−i)α (2i)−1 k−2(1−α)z−k
2
.

Clearly R is the αth fractional integral of f according to Weyl’s
formulation of fractional integration for periodic functions whose
integral vanishes over a period (see §2 of [16], wherein “the origin
of integration” is taken to be −∞ ). Since f ∈ Lλγ (T) , and λ > 2

implies that (λγ)−1 < α, an application of Theorem 13 of [11] now
shows that, in particular, R is a Lipschitz function on T of order(

α− 1

λγ

)
=
λ− 2

λγ
,

and hence R ∈ Vq (T), where q =
λγ

λ− 2
< s.

This discussion in Remark 2.5 has demonstrated the following application
of Theorem 2.4.
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Theorem 2.6. Riemann’s continuous “sparsely differentiable” function

R : T→ R

defined in (2.8) above satisfies a Lipschitz condition on T of order less than
2−1. If 2 ≤ p < ∞, and w ∈ Ap/2 (Z), then R ∈ Mp,w (T), and the conclu-
sions of Theorem 2.4 above are valid for R in the context of `p(w).
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