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Robustly fiberwise minimal iterated
function systems on the torus

H. Ebadizadeh, F. H. Ghane, A. Ehsani, M. Saleh
and M. Zaj

Abstract. This work is devoted to the study of the strong minimality
of a class of iterated function systems defined on the two dimensional
torus T 2. This means that almost every orbital branch of each point is
dense in the ambient space. Moreover, we prove that this property is
robust under small perturbations of the generators.
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1. Introduction

In this note, we commence the study of density of almost every orbital
branch of minimal iterated function systems defined on the two dimensional
torus T 2. An iterated function system is a semigroup generated by a col-
lection F = {f0, . . . , fk−1} of continuous self maps of a topological space
X, denoted by IFS(X;F). The F-orbit of x ∈ X is the set of all points
y = h(x), for which h ∈ 〈F〉+.

An iterated function system IFS(X;F) with generators {f0, . . . , fk−1} is
called minimal if each closed subset A ⊂ X such that fi(A) ⊂ A for all
i = 0, . . . , k− 1, is empty or coincides with X. This means that the F-orbit
of each x ∈ X is dense in X.

Consider the symbol space Σk
+ which is the set of one sided infinite words

over the alphabet {0, . . . , k − 1} equipped with the metric

d(ω, ω′) = 2min{n;ωn 6=ω′n},

for each ω = (ωn)∞n=0, ω
′ = (ω′n)∞n=0 ∈ Σk

+. Let σ be the left shift transfor-

mation on the symbol space Σk
+. We denote by ν+ the Bernoulli measure on
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Σk
+. For an iterated function system IFS(X;F) and ω = (ωn)∞n=0 ∈ Σk

+, the
ω-orbit of x ∈ X under F is the sequence (xn)∞n=0 defined by xn+1 = fωn(xn)
with x0 = x. If (ωn)∞n=0 is chosen according to some stochastic process,
then (xn)∞n=0 is referred to as a random orbit. Such orbits are also re-
ferred to as a chaos game. An orbital branch corresponding to a sequence
ω = ω0ω1ω2 . . . ∈ Σk

+ is the set of compositions

fnω := fωn−1o . . . ofω0 , n ∈ N.

An iterated function system IFS(X;F) is said to be fiberwise minimal if it
satisfies the following: for each x ∈ X, there exists a subset Ω(x) ⊂ Σk

+ of
full measure such that for each ω ∈ Ω(x), the ω-orbit of x under F is dense
in X. In this context, the following question is interesting.

Question 1.1. Under what conditions is an action of a semigroup on a
compact manifold necessarily fiberwisely minimal in a persistent way?

The main result of this work, Theorem A below, allows us to answer this
question in the affirmative for certain iterated function systems defined on
the torus T 2. Moreover, in our approach the fiberwise minimality persists
under C1-perturbations. Let us mention that some knowledge of robust
minimality of iterated function systems is already provided, e.g., see [GHS10]
and [HN14]. Also in [BFS14], the authors presented examples of fiberwisely
minimal IFSs defined on the circle. One main novelty here is that in our
construction the iterated function systems can be non-hyperbolic.

Definition 1.2. Suppose that g : T 2 → T 2 is a map. We say that g is
locally contractible at x, if there exists an open subset U ⊂ T 2 containing x
satisfying g(U) ∩ U 6= ∅, and

dH(gn(cl(U)), x)→ 0, as n→∞,

where dH is the Hausdorff metric defined on the space of all compact subsets
of T 2.

Remark 1.3. Suppose that g is locally contractible at some point x. Then
by the definition, for each ε > 0 there exists n(ε) ∈ N such that for all
n ≥ n(ε), one has diam(gn(cl(U)) < ε. This fact implies that

d(gn(x), gn(y))→ 0, as, n→∞,

for each x, y ∈ cl(U). Moreover, there exists η > 0 such that this convergence
is uniform if d(x, y) ≤ η, that is the restriction g|cl(U) is an asymptotic
contraction. Now, by Jachymski Theorem [J94], x is the unique contractive
fixed point of g.

Definition 1.4. Suppose that g : M →M is a diffeomorphism on a compact
surface M . We say that g is generically locally contractible at a point x ∈M ,
if it is locally contractible at x and the real canonical form of Dg(x) is not
the identity matrix.
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Now, we state the main result of this work.

Theorem A. Suppose that g1, g2 ∈ Diff2(T 2) such that g1 is an irra-
tional rotation and g2 is an orientation preserving diffeomorphism which
is generically locally contractible at some point x. Then there exists a C1-
neighborhood U of (g1, g2) such that any iterated function system F gener-
ated by any pair (f1, f2) ∈ U is forward minimal. In particular, the following
statements hold:

(a) F is fiberwisely minimal.
(b) F possesses a dense subset of attracting periodic points.

2. Proof of the main results

This section is devoted to the proof of the main result of this article. The
starting point is Proposition 2.2 below, which gives sufficient conditions for
existence a blending region. The notion of blending region is the main tool
to produce robust minimal actions. This is used in [BR14], [BR15], [GHS10]
and [HN14].

We begin by the definition of the notion.

Definition 2.1. Let M be a compact manifold. An open subset B ⊂ M
is said to be a blending region for a semigroup F of diffeomorphisms of M
whenever there exist f1, . . . , fl ∈ F and an open set D ⊂ M with B ⊂ D
and satisfying:

(a) B ⊂ f1(B) ∪ . . . ∪ fl(B).
(b) fi : D → D is a contracting map, for i = 1, . . . , l.

Proposition 2.2. Let F be an iterated function system defined on T 2.
Assume that F contains an irrational rotation R. Also, suppose that there
exists f ∈ F which admits a hyperbolic attracting fixed point x0. Then F
possesses a blending region.

Proof. Consider an iterated function system F and R, f ∈ F that satisfy
the assumptions of the proposition. Suppose that x0 ∈ T 2 is a hyperbolic
attracting fixed point of f with the basin of attraction W . It is enough to
take two open balls B,D ⊂ W containing x0 with B ⊂ D ⊂ W . Since
R is an irrational rotation, so the R-orbit of x0 is dense. This fact and
compactness of B imply that there exist n1, . . . , nl ∈ N and large enough
k ∈ N, such that for fi := Rni ◦ fk, i = 1, . . . , l, one has that:

(i) B ⊂ f1(B) ∪ · · · ∪ fl(B).
(ii) fi : D → D is a contracting map for each i = 1, . . . , l.

In fact,

Dfi(x) = D(Rni ◦ fk)(x) = DRni(fk(x)).Dfk(x) = Id.Dfk(x) = Dfk(x),

where Id is the identity matrix. Therefore, fi, i = 1, . . . , l, are contracting
maps on D which ensures that B is a blending region as we desired. �
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From now on we fix g1, g2 ∈ Diff2(T 2) that are, respectively, an irrational
rotation and an orientation preserving diffeomorphism which is generically
locally contractible at point x0. First, we show that the action of semigroup
F generated by {g1, g2} is C1-robustly minimal. This establishes the first
statement of our main result.

Since g2 is generically locally contractible at x0, a straightforward com-
putations shows that the real canonical form of the matrix Dg2(x0) does not
have the following form (

1 0
1 1

)
.

Therefore, one has two possibilities:

(i) x0 is a hyperbolic attracting fixed point of g2.
(ii) the matrix of Dg2(x0) is similar to the following matrix(

1 0
0 µ

)
where 0 < |µ| < 1.

For the case (i), Proposition 2.2 guarantees the existence of a blending
region. So let us consider the case that Dg2(x0) possesses a real canonical
form as described in (ii). Suppose that g2 is orientation preserving, so µ > 0.

Now, we explain how one can bypass the difficulty caused by the non-
hyperbolicity of the fixed point x0. In fact, we provide a bounded distortion
property for the iterates of g2 over curves whose tangent space is contained
in a center cone at each point.

Let us note that Dg2(x0) admits a splitting Tx0(T 2) = Es⊕Ec such that
the following conditions hold: there exists 0 < λ < 1, for some choice of a
Riemannian metric on T 2 which satisfies

(1) ‖Dg2(x0)|Es‖ ≤ λ, ‖Dg2(x0)|Es‖.‖Dg−12 (x0)|Ec‖ ≤ λ.

We extend the subbundles Es and Ec continuously to some neighborhood V

of x0, that we denote by Ẽs and Ẽc. Here, we do not require these extensions
to be invariant under Dg2.

For each 0 < γ < 1, we define the center cone field Ccγ := (Ccγ(x))x∈V of
width γ by

(2) Ccγ(x) = {v1 + v2 ∈ Ẽsx ⊕ Ẽcx : ‖v1‖ ≤ γ‖v2‖}.

Moreover, we define the stable cone field Csγ := (Csγ(x))x∈V of width γ in a
similar way.

Fix γ > 0 and V small enough so that up to increasing λ < 1, the second
inequality of (1) remains valid for any pair of vectors in the two cone fields:

(3) ‖Dg2(x)vs‖.‖Dg−12 (g2(x))vc‖ ≤ λ‖vs‖.‖vc‖,

for every vs ∈ Csγ(x), vu ∈ Ccγ(x), and each point x ∈ V ∩g−12 (V ). Then, the
center cone field is positively invariant: Dg2(x)Ccγ(x) ⊂ Ccγ(g2(x)) provided
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that x and g2(x) are contained in V . Indeed, according to (1)

Dg2(x0)C
c
γ(x0) ⊂ Ccλγ(x0) ⊂ Ccγ(x0),

and this extends to each x ∈ V ∩ g−12 (V ), by continuity.
Let us recall the following definition.

Definition 2.3. The tangent bundle of an embedded submanifold N ⊂M
is Hölder continuous if the mapping x 7→ TxN defines a Hölder continuous
section from N to the corresponding Grassmann bundle of M .

In the following, suppose that I ⊂ V is a C2 embedded arc of M which is
tangent to the center cone field Ccγ , this means that the tangent subspace to I
at each point x ∈ I is contained in the cone Ccγ(x). Then g2(I) is also tangent
to the center cone field, if it is contained in V . We apply the argument used
in Section 2 of [ABV00] to show that the tangent bundle of the iterates of
the C2-submanifold I, i.e., gn(I), n ∈ N, are Hölder continuous (if they do
not leave V ) with uniform Hölder constant.

First, we recall the notion of Hölder variation of the tangent bundle in
local coordinates, as follows: Let us take the exponential map on the embed-
ded submanifold I. Suppose that δ0 > 0 is small enough so that the inverse
of the exponential map expx is defined on the Bδ0(x, I) := Bδ0(x)∩ I, where
Bδ0(x) is the ball with the radius δ0 and the center x in V . From now on we
identify the neighborhood Bδ0(x, I) of x in I with the corresponding neigh-
borhood Ux of the origin in TxI, through the local chart defined by exp−1x .
So, x can be identified by 0 ∈ TxI. Now by reducing δ0 > 0, we may assume

that Ẽsx is contained in Csγ(y) of each y ∈ Ux. Moreover, Ccγ(y) ∩ Ẽsx = {0}.
Therefore , TyI is parallel to the graph of a unique linear map

Ax(y) : TxI → Ẽsx.

For given constants C > 0 and 0 < ε ≤ 1, we say that the tangent bundle
to I is (C, ε)-Hölder if

(4) ‖Ax(y)‖ ≤ CρI(x, y)ε for every y ∈ I ∩ Ux, x ∈ V,

whereρI(x, y) denotes the distance from x to y along I ∩ Ux, defined as a
length of the geodesic connecting x to y inside I ∩ Ux.

By the domination property (1) and the choice of V , there exist λ′ ∈ (λ, 1)
and ε ∈ (0, 1] such that

(5) ‖Dg2(z)vs‖.‖Dg−12 (g2(z))v
c‖1+ε ≤ λ′ < 1

for each unit vectors vs ∈ Csγ(z) and vc ∈ Ccγ(z) and z ∈ V . Now, by
reducing δ0 and increasing λ′ < 1, (5) remains true if we replace z by any
y ∈ Ux, x ∈ V .

In below, we fix ε and λ′ and we define

κ(I) := inf{C > 0 : the tangent bundle of I is (C, ε)-Hölder}.
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Note that since g2 is locally contractible at x0, the choice of V implies that
gn2 (I) ⊂ V , for all n ≥ 1. So the following result follows by Proposition 2.2
and Corollary 2.4 of [ABV00].

Proposition 2.4. There exists C1 > 0 for which the following hold:

(a) There is an integer n0 ≥ 1 such that κ(gn2 (I)) ≤ C1, for each n ≥ n0.
(b) If κ(I) ≤ C1, then κ(gn2 (I)) ≤ C1.
(c) If κ(I) ≤ C1, then the functions

(6) Jk : gk2 (I) 3 x 7→ log |det(Dg2|Tx(gk2 (I)))|,

are (L, ε)-Hölder continuous with L > 0 depending only on C1 and
g2.

Remark 2.5. If we consider the following condition

(7) ‖Dg2(x0)|Es‖.‖Dg−12 (x0)|Ec‖i ≤ λ,

for i = 1, 2, then we may take ε = 1 in the above argument which implies
that κ(I) possesses a bound on the curvature tensor of I. In particular, by
the previous proposition, if I is C2 then the curvature of all iterates gn2 (I),
n ≥ 1, is bounded by some constant that depends only on the curvature of
I.

Now, since diam(gn2 (V ))→ 0, as n→∞, there exists 0 < ν < 1 such that
for large enough n,

(8) diam(gn2 (I)) < νdiam(I).

We fix n satisfying (8). Take Ĩ ⊂ I such that dist(x0, Ĩ) > 0. Then by the
Mean Value Theorem, there exists 0 < α < 1 such that

(9) ‖Dgn2 (x)‖ ≤ α, for each x ∈ Ĩ .

By continuity, we can choose a neighborhoodW of Ĩ in V and 0 < α < α′ < 1
satisfying

(10) ‖Dgn2 (x)‖ ≤ α′, for each x ∈W.

Let us take an open ball W0 ⊂ W . By (10), diam(gn2 (W0)) ≤ α′diam(W0).
Then there exists k ≥ 1 so that gk1 (gn2 (W0)) ⊂W0. Moreover,

‖D(gk1 ◦ gn2 )|W0‖ ≤ α′,

according to (10). We set h := gk1 ◦ gn2 then, by the fixed point theorem,
h possesses a unique hyperbolic attracting fixed point x1. Now, Proposi-
tion 2.2 ensures the existence of a blending region in the case (ii).

Theorem 2.6. Let g1, g2 ∈ Diff1(T 2), respectively, be an irrational rotation
and an orientation preserving diffeomorphism which is generically locally
contractible at x0. Then the action of semigroup generated by {g1, g2} admits
a blending region. In particular, it is C1-robustly minimal.
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Proof. The previous argument implies that the IFS generated by (g1, g2)
admits a hyperbolic attracting periodic point and hence it possesses a blend-
ing region B, according to Proposition 2.2. So, it is enough to prove that it
acts C1-robustly minimally on T 2.

Since B is an open subset of T 2 and g1 is a minimal map on T 2, there
exist positive integers m1, . . . ,ms and m′1, . . . ,m

′
t such that for Ti := gmi

1 ,

i = 1, . . . , s, and Sj := g
m′j
1 , j = 1, . . . , t, it holds that

T 2 =

s⋃
i=1

Ti(B) =

t⋃
j=1

S−1j (B).

That is B has a cycle with respect to the semigroup action of 〈g1, g2〉+. Now
the proof follows by Corollary A of [BFMS15]. �

The first statement of Theorem A follows by Theorem 2.6.
Now, we are going to prove the density of an almost surely orbital branch.

This statement is an immediate consequence of Corollary C of [BGMS15].
It is also an application of Theorem A of [SG15]. Indeed, the authors estab-
lished the density of all almost fiberwise orbits for minimal IFSs which are
defined on a compact metric space X by applying Theorem A (see Section 3
of [SG15] for more details). More precisely, they proved that for each x ∈ X,

one can find a subset Ω(x) ⊂ Σk
+ of probability 1 such that O(x, ω) = X,

for all ω ∈ Ω(x).
This fact and Theorem 2.6 imply that the action of semigroup 〈g1, g2〉+ is

fiberwisely minimal. In particular, this property remains true under small
C1 perturbations of generators.

For completing the proof of the main result, it is enough to provide the
density of hyperbolic attracting periodic points. The following auxiliary
lemma is needed.

Lemma 2.7. Consider an iterated function system F = (X; f1, . . . , fN )
which acts minimally on a compact metric space X. For every nonempty
open set U ⊂ X there exists k ≤ k0 ∈ N and r = r(U) > 0 such that for every
ball B ⊂ X of radius r, there exists a word w = t1 . . . ttk on the alphabet
{1, . . . , N} of length k ≤ k0 such that f[w](B) ⊂ U , where f[w] := ftk◦. . .◦ft1.

Proof. Let U ⊂ X be an open subset. Since the action of F on X is
minimal, for each x ∈ X there exist word w(x) on alphabet {1, . . . , N} such
that f[w(x)](x) ∈ U .

By continuity, there is a neighborhood Vx of x such that f[w](Vx) ⊂ U .
Since X is compact, we can cover X by finitely many sets Vxi . We take k0
the maximum of the lengths of the words w(xi) and r > 0 the Lebesgue
number of this covering.

Then, every ball B ⊂ X of radius less than r is contained in some Vxi ,
so there exists a word w = t1 . . . ttk on the alphabet {1, . . . , N} of length
k ≤ k0 such that f[w](B) ⊂ U . �
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The argument used for Theorem 2.6 shows that there exists h ∈ 〈g1, g2〉+
which possesses a hyperbolic attracting fixed point z. Assume that W is the
basin of the attraction of z.

Let x ∈ T 2 and U be an open subset of T 2 containing x. Also let W1 ⊂W
be an open subset containing the fixed point z of h.

By applying Lemma 2.7 for W1, there exist r = r(W1) > 0 and k1 =
k1(W1) ∈ N such that for every ball B ⊂ T 2 of radius r, there exists a
word w = t1 . . . tk on the alphabet {1, . . . , 2} of length k ≤ k1 such that
f[w](B) ⊂W1.

Let U(x) be the open ball of center x and radius r which is contained
in U . Therefore, there exists a word w(x) of length k ≤ k1 such that
f[w(x)](U(x)) ⊂W1.

Now, we can apply Lemma 2.7 for U(x), there exist ρ = ρ(U(x)) > 0 and
k2 = k2(U(x)) ∈ N such that for every ball B ⊂ T 2 of radius ρ, there exist
a word w = s1 . . . sl of length l ≤ k2 such that f[w](B) ⊂ U(x).

Let U(z) be the open ball of center z and radius ρ which is contained in
W1. So there exists a word w(z) of length l ≤ K2 such that f[w(z)](U(z)) ⊂
U(x).

Let λ be the minimum rate of contraction of Dh(z), i.e., λ = m(Dh(z)),
where m(Dh(z)) = inf{‖Dh(z)(v)‖ : ‖v‖ = 1}. We set

L := max{‖Dgi(x)‖ : x ∈ T 2, i = 1, 2}.

Let us choose a positive integer n such that λnLk1+k2 < 1 and hr(W1) ⊂
U(z). Also, we take T := f[w(z)] ◦ hn ◦ f[w(x)].

Then

T (U(x)) = f[w(z)]◦hn◦f[w(x)](Ux) ⊂ f[w(z)](hn(W1)) ⊂ f[w(z)](U(z)) ⊂ U(x).

Moreover, the choice of n shows that ‖ T ‖< 1 on U(x). These facts imply
the existence of an attracting fixed point for T on U(x) ⊂ U , which is an
attracting periodic point for the iterated function system 〈g1, g2〉+. More-
over, this argument remains true for small perturbations of 〈g1, g2〉+. This
completes the proof of the main result.
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