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Totally real perturbations and
nondegenerate embeddings of S3

Ali M. Elgindi

Abstract. In this article, we demonstrate methods for the local re-
moval and modification of complex tangents to embeddings of S3 into
C3. In particular, given any embedding of S3 and a neighborhood of
the complex tangents of the embedding, we show that there exists a
(C0-close) totally real embedding which agrees with the original embed-
ding outside the given neighborhood of the complex tangents. We also
demonstrate that given any knot type K ⊂ S3, either there exists an em-
bedding of S3 which assumes nondegenerate complex tangents exactly
along K or there exists a nondegenerate embedding complex tangent
along two unlinked copies of K (both cases may hold). We also note
possible directions of future investigations.
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1. Introduction

Complex tangents to an embedding Mk ↪→ Cn are points x ∈ M so that
the tangent space to M at x (considered as a subspace of the tangent space
of Cn) contains a complex line. If k > n, all points of M are necessarily
complex tangent, by virtue of the dimensions. If k ≤ n, some (or all) points
of M may have strictly real tangent space. If all points of M are real, we
say that the embedding is totally real. In general, the dimension of the
maximal complex tangent space of M at x is called the dimension of the
complex tangent. An embedding is called CR (Cauchy–Riemann) if the
complex dimension of all points of M are the same. In [7], Gromov used
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the h-principle to demonstrate that the only spheres admitting totally real
embeddings Sn ↪→ Cn were S1 and S3. In dimension 3, CR-structures are
either totally real or totally complex, two extremes which have been subject
to much study. In his paper [6], Forstneric fully resolved the totally real
problem in dimension 3; in particular he showed that every closed oriented
3-manifold can be embedded totally real into C3.

The more general situations (proper subsets of complex tangents) have
not been as thoroughly investigated. The work of Ahern and Rudin (in
[1]) analyzed means of determining complex tangents for specific examples
and Webster (in [12]) derived topological invariants for the set of complex
tangents of embeddings of real n-manifolds into n-dimensional complex Eu-
clidean space. In the general situation of embeddings of a real manifold into
a complex manifold of arbitrary dimensions, the work of Lia in [9] and later
of Domrin in [2] demonstrated formulas relating the characteristic classes of
the set of complex tangents with those of the embedded manifold and the
ambient complex manifold. Their results hold only under special assump-
tions on the dimensions of the manifolds and the structure of the complex
tangents. Furthermore, Slapar in [11] considered the situation of a generic
closed oriented manifold embedded into a complex manifold with codimen-
sion 2. In this situation, complex tangents generically are discrete (and
finite), and can be classified as either elliptic or hyperbolic by comparing
the orientation of the tangent space of the embedded manifold at the com-
plex tangent (which is necessarily a complex vector space) with the induced
orientation of the tangent space as a complex subspace of the tangent space
of the complex ambient manifold. He demonstrated that every pair of com-
plex tangents consisting of one elliptic point and one hyperbolic point can
be canceled out; in particular there exists an arbitrarily small isotopy of
embeddings so that the set of complex tangents of the isotoped embedding
consists exactly of the complex tangents of the original embedding minus
the given pair of complex tangents (one elliptic and one hyperbolic).

In this article, we wish to investigate the means (and flexibility) of deform-
ing embeddings of S3 ↪→ C3 to locally remove or manipulate the set complex
tangents. In this setting, complex tangents generically arise as knots (links).
In our paper [3] we proved that for every knot type in S3 there exists an
embedding S3 ↪→ C3 which assumes complex tangents exactly along a knot
of the prescribed type, with one point being degenerate. We further demon-
strated that for every knot type, there exists an embedding whose complex
tangents form a wholly nondegenerate knot of the prescribed type union an
isolated degenerate point. Our work could be readily extended to include
all types of links.

In our paper [5], we demonstrated an obstruction to (locally) removing
an isolated complex tangent to an embedding M3 ↪→ C3, leaving the embed-
ding unchanged outside a small neighborhood of the degenerate point (and
without adding any new complex tangents). The obstruction is found to be
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the homotopy class of the image of the boundary 2-sphere S of a sufficiently
small neighborhood of the degenerate point under the Gauss map in π2(Y),
where Y is the submanifold of the real Grassmannian G3,6 consisting of to-
tally real 3-planes in R6 = C3. Using the h-principle, we demonstrated that
the isolated complex tangent can be (locally) removed precisely when this
obstruction vanishes. Further, (with the vanishing of the obstruction) the
resulting embedding can be taken to be C0-close to the original embedding
(in the perturbed neighborhood).

We will use our findings from [5] to obtain two results for the case M = S3.
Our first result extends the previous work of Gromov and Forstneric (among
others) to find that given any embedding of S3 with (not dense) complex
tangent set C ⊂ S3 and an open ball U ⊂ S3 containing C , there exists a
(C0-close) totally real embedding of S3 that agrees with the original given
embedding outside of U .

For our second result we demonstrate that given any knot type K there
exists an embedding S3 ↪→ C3 which either assumes nondegenerate complex
tangents precisely upon K or along two identical copies of the knot K (un-
linked). The complex tangents can be taken to be wholly nondegenerate in
either case (we note that both cases may hold, at least for some knot types).
This is an extension of our result in [3] where we constructed embeddings
assuming complex tangents nondegenerate along a knot of any given type,
union an isolated (degenerate) point. This result will also hold for K being
a link (type), by an extension of our work in [3].

2. On totally real perturbations

In our first consideration of interest, let S3 ↪→ C3 be an embedding of class
Ck and let C ⊂ S3 be the set of complex tangents. In the generic situation,
C will be of codimension 2 in S3, and as such will in the form of a knot (or
link). But here it is not necessary to assume the embedding is generic; let
us assume only that there exists an open ball U containing C (some points
are complex tangent, but are not dense). Let S be the boundary of U, in
particular S ⊂ S3 will be a 2-sphere.

We recall from our work in [5]:

Theorem 1 ([5]). Suppose an embedding of a 3-manifold f : M ↪→ C3 (of
class Ck) with Gauss map G admits an isolated complex tangent x ∈M for
which there is a neighborhood B of x whose boundary sphere S ⊂M satisfies:

[G(S)] = 0 ∈ π2(Y). Then there exists a Ck-embedding f̃ : M ↪→ C3 that
can be taken to be C0-close to f and regularly homotopic to f so that:

(1) f = f̃ on M \B.

(2) The set of complex tangents of f̃ equals the set of complex tangents
of f minus the point x, i.e., ℵ

f̃
= ℵf \ {x}.
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It is direct to see that the proof of the above theorem (in [5]) extends
analogously when we replace an isolated point by a (bounded) set, in par-
ticular we can show that we may “fill in” the neighborhood U of the set of
complex tangents C in such a totally real manner if and only if [G(S)] = 0
in Y. More precisely, with the vanishing of the obstruction, there exists an
embedding of S3 (of class Ck) which is totally real in U and which agrees
with the original embedding in the complement of U, without adding any
new complex tangents.

By construction, the original embedding is totally real in the complement
of U. Hence, we found an embedding of S3 which is totally real, and which
agrees with the original given embedding outside of the ball U (and C0-close
throughout). However, this only holds with the assumption that [G(S)] = 0
in Y, where S is the boundary of U and G is the Gauss map of the em-
bedding. This is in fact true for all embeddings of S3 in complex Euclidean
space.

Lemma 2. Let S3 ↪→ C3 be an embedding and let U be a 3-ball in S3 con-
taining all the complex tangents of the embedding, and consider its boundary
sphere S. Then the image of the Gauss map restricted to S is trivial in the
homotopy group π2(Y).

Proof. As S ⊂ S3 is a 2-sphere, it will necessarily cut S3 into two parts, the
“internal” 3-ball which is the given U, and the “external” 3-ball E, which
is the interior of the complement of U in S3. The 2-sphere S can then be
contracted to a point in the external 3-ball E, in particular there exists a
homotopy H : S2 × I → S3 with Im(Ht) ⊂ E (t > 0) so that

H|0(S2) = S and H|1(S2) = ∗,

where ∗ is a fixed point in the 3-ball E. Consider now the homotopy:

K = G ◦H : S2 → Y.

Note that the image of the homotopy K is indeed contained in Y as the
image of H is contained in the external 3-ball E , which contains no complex
tangents of the embedding.

Now, K|0(S2) = G(S) and K|1(S2) = G(∗) = p ∈ Y, a point. Hence
[G(S)] = [p] = 0 in π2(Y), which is what was claimed. �

Hence, by our work in [5] and our arguments above preceding the lemma,
we have proven:

Theorem 3. Let F : S3 ↪→ C3 be a Ck-embedding and let U be a 3-ball in
S3 containing all the complex tangents of the embedding. Then there exists

a totally real embedding F̃ : S3 ↪→ C3 of class Ck so that F̃ is C0-close to F

over U and F̃ = F over S3 \U.

We note our result above generalizes the work of Forstneric and Gromov,
who asserted the existence of totally real embeddings of S3 (and other closed
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3-manifolds). Here, we have demonstrated that any embedding of S3 which
is not “densely complex” may be C0-closely perturbed to be totally real. Our
results in fact follow from the Convex Integration techniques of Gromov.

A possible future question would be to ask if all embeddings (even those
which are complex) can be closely perturbed to be totally real. We may
even ask this question for general manifolds, although we note that our
arguments above for S3 could not possibly generalize to other 3-manifolds,
as the 3-sphere is the only closed 3-manifold which may be split into two
balls by a 2-sphere (see Alexander’s Theorem in [8]).

3. Knots of complex tangents (and their doubles)

We now recall our result from [3], where we demonstrated that for any
given knot type (represented by K ⊂ S3) and k ∈ N, there exists a graphical
embedding f : S3 → C of class Ck which assumes nondegenerate complex
tangents precisely along the knot K union an isolated (degenerate) point ∗.

While we would ultimately hope to be able to remove the degenerate
point while leaving the knot K unaffected, we are not able at this time to
fully guarantee the existence of such an embedding with complex tangents
wholly nondegenerate exactly along (a knot of type) K. Instead, we are able
to demonstrate that if there exists no such embedding of S3 with a knot of
the prescribed type alone as complex tangent (nondegenerate), then we can
make a complex “double” of the knot, in the sense that we can construct
an embedding assuming complex tangents precisely along two identical (un-
linking) copies of a knot of the given type, which are again nondegenerate.

More precisely:

Theorem 4. Consider any topological knot type in S3 and let k ∈ N. Then
(at least) one of the following two cases holds:

(1) There exists a Ck-embedding S3 ↪→ C3 assuming complex tangents
precisely along a knot of the prescribed type which is wholly nonde-
generate.

(2) There exists a Ck-embedding S3 ↪→ C3 assuming complex tangents
precisely along two identical copies of a knot of the prescribed type
(one in the upper hemisphere and one in the lower hemisphere),
which are hence unlinked and are wholly nondegenerate.

Proof. Consider a knot type in S3. We constructed a Ck-function

f : C2 → C

in our article [3] whose graph (restricted to S3) F : S3 ↪→ C3 assumes
complex tangents precisely along a nondegenerate knot of the prescribed
type union an isolated degenerate point. We recall that the function f is
obtained by:

f(z, w) = (g ◦ ψ)(z, w) · (1− w)r
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where g : C2 → C is a (nonholomorphic) polynomial whose graph over the

Heisenberg group H has complex tangents exactly along a knot K̃ and

ψ : S3 \ {(0, 1)} → H
is the standard biholomorphism. In particular, denoting ϕ = ψ−1, the knot

K̃ is taken so that K = ϕ(K̃) is a knot of our desired type in S3, and

in fact K̃ can be assumed (without loss) to be wholly nondegenerate as
the set of complex tangents to graph(g) in H. This follows from the fact
that the tangential CR-operator to H is onto, which allows for flexibility
to manipulate the complex tangents of embeddings H ↪→ C3 directly (in
particular, via small perturbations). The function f will then have graph
F over S3 being a Ck-embedding with complex tangents along K (which
will be nondegenerate) union an isolated (necessarily degenerate) complex
tangent point at (0, 1), by the formulation of f . (We refer the reader to our
article [3] for the details of our construction.)

We may further assume without loss of generality that the knot K is
contained in the lower-half hemisphere D− = {(z, w) ∈ S3|Im(w) < 0},
again due to the flexibility to first manipulate the complex tangents in H
using a scaling factor. Let D+, D− denote the upper and lower hemispheres
of S3, respectively.

We may now consider the Gauss map of the embedding F , which we
denote: G : S3 → G3,6. By construction, this embedding will be nonde-
generate along the knot K and degenerate at (0, 1). Hence, the Gauss map
will intersect the subspace W ⊂ G3,6 transversely along K and intersect at
(0, 1) in a degenerate manner (see [12]).

Now, let ψ̃ : S3 \ {(0,−1)} → H be the “inverted” biholomorphism,

namely ψ̃ = ψ ◦R, where R(z, w) = (z,−w). Consider then the embedding

F̃ : S3 ↪→ C given by the graph of the function:

f̃ = (g ◦ ψ̃) · (1 + w)r.

By an elementary computation, we find that the complex tangents to

F̃ = graph(f̃ |S3)

will be precisely K∗ ∪ {(0,−1)}, where K∗ = {(z,−w) | (z, w) ∈ K}, a
reflection of the knot K in the upper-hemisphere of S3. Furthermore, the
complex tangents will be nondegenerate along K∗ and for the same choice

of r as above in the construction of f , the embedding F̃ will be of class Ck.
Let ε > 0 be so that

K ⊂ O2ε = {(z, w) ∈ S3 | Im(w) < −2ε}.
Then it is clear that

K∗ ⊂ O2ε = {(z, w) ∈ S3 | Im(w) > 2ε}.
Consider now the 2-sphere Sε which is the boundary of the 3-ball Oε and Sε

which is the boundary of Oε.
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Now, the embedding F : D− ↪→ C3 will assume (nondegenerate) complex

tangents exactly along K, while F̃ : D+ ↪→ C3 will assume (nondegenerate)

complex tangents exactly along K∗. Let G, G̃ be the corresponding Gauss
maps.

We will then have two classes [G(Sε)], [G̃(Sε)] in the homotopy group
π2(Y) = Z2. If either of these classes is trivial (= 0), then by our work in [5]
we may extend the corresponding embedding to the remaining hemisphere
in a totally real fashion to obtain an Ck-embedding S3 ↪→ C3 assuming (non-
degenerate) complex tangents exactly along the knot K (or the equivalent
K∗) of the prescribed type. This is the first case of the theorem.

Let us now proceed with the second case of the theorem. Assume then
that the above assumption does not hold, namely that neither of the classes

[G(Sε)], [G̃(Sε)] are trivial in π2(Y) = Z2. Then they must necessarily be
equal to each other (as the homotopy group has only two elements). As

such, the maps G : Sε → Y and G̃ : Sε → Y are homotopic. We may
write the homotopy as: H : S2 × (−ε, ε) → S2

1−ε2 × (−ε, ε) → Y, with

S2
1−ε2 being envisioned as the 2-sphere of radius 1 − ε2. We have that:

H−ε = G|Sε , Hε = G̃|Sε .
Let D2ε = {(z, w) ∈ S3| − 2ε < Im(w) < 2ε}. Consider the map H :

D2ε → Y defined by:

H(z, w) = G(z, w) for −2ε < Im(w) ≤ −ε
H(z, w) = Ht(z, w), t = Im(w), for −ε < Im(w) < ε

H(z, w) = G̃(z, w), for ε ≤ Im(w) < 2ε.

Hence, H : D2ε → Y is a continuous map from a “thickened” 2-sphere into
Y.

Let us now consider Dε, which we may write as: Dε = S2 × I, for the
interval I = [−ε, ε].

Consider the set of homotopy classes of maps [S2× I,Y;G|Sε ∪ G̃|Sε ] that
restrict along the boundary to the map H on S2×{−ε, ε}, which is given by

G|Sε , G̃|Sε . As this set is nonempty (we constructed above the map H), the
set is in 1-1 correspondence with π3(Y), as (S2 × I)/∂ = S3 (see Hatcher in
[8]).

Consider now the new embedding: E : S3 ↪→ C3 defined as follows. Recall

that F (z, w) = graph(f(z, w)) and F̃ (z, w) = graph(f̃(z, w)). Now

E(z, w) =
F (z, w) if Im(w) ≤ − ε

2

graph(1ε ((
ε
2 − Imw)f(z, w) + ( ε2 + Imw)f̃(z, w))), if − ε

2 < Imw < ε
2 .

F̃ (z, w) if Im(w) ≥ ε
2 .

We notice that since the embedding E corresponds with F in a neighbor-
hood of Oε, the Gauss map of E, which we denote by GE , has the property
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that:

GE |Sε = G|Sε .

In direct analogy (in upper-hemisphere) GE |Sε = G̃|Sε .
Our goal is to demonstrate that the Gauss map GE : S2 × I → G3,6 is

homotopic to a map Ĝ : S2 × I → Y that agrees with GE on the boundary
spheres Sε, S

ε, and through such maps (agreeing on Sε ∪ Sε). Note that

GE ∈ [S2 × I,G3,6;G|Sε ∪ G̃|Sε ] ∼= π3(G3,6)

(see Hatcher in [8]).
Now, let V3,6 be the generalized Stiefel manifold of all 3-frames in R6 and

consider the subset of totally real 3-frames V3,6
tr. We get the natural maps

sending a frame to the subspace spanned by the frames in R6:

s : V3,6 → G3,6

r : V3,6
tr → Y

(see Forstneric in [6] for reference for our work here and below).
Notice then the commutative diagram:

V3,6
tr −−−−→

iV
V3,6yr ys

Y −−−−→
iG

G3,6

where iV , iG are inclusion maps.
Applying π3, we get the resulting commutative diagram of groups:

π3(V3,6
tr) −−−−→

iV ∗
π3(V3,6)yr∗ ys∗

π3(Y) −−−−→
iG∗

π3(G3,6).

Now, it is known that π3(V3,6) = Z2, and from the long exact sequence of
the fiber bundle over G3,6, we get that the map s∗ is an isomorphism.

Also, notice that V3,6
tr ∼= Gl3(C) retracts to U(3), and that the space of

orthonormal 3-frames V3,6
O is a retract of V3,6. Hence, the map

iV : V3,6
tr → V3,6

is homotopy equivalent to the map α : U(3) → V3,6
O, which is the compo-

sition of the inclusion U(3) ↪→ O(6) with the quotient map O(6) → V3,6
O.

Since the first map is an isomorphism on π3 and the second is onto on π3 (see
[7]), we see that α∗ : π3(U(3))→ π3(V3,6

O) is onto, and hence the inclusion
map (iV )∗ is an onto map on π3.
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Hence, as the above diagram in π3 commutes, s∗ ◦ iV ∗ = iG∗ ◦ r∗ is onto,
and since π3(Y ) = Z2 = π3(G3,6) (as shown above), we have that

iG∗ : π3(Y)→ π3(G3,6)

is an isomorphism.
Recall that

π3(G3,6) ∼= [S2 × I,G3,6;G|Sε ∪ G̃|Sε ]

and

π3(Y) ∼= [S2 × I,Y;G|Sε ∪ G̃|Sε ].

Now, the Gauss map GE of the embedding E is clearly an element of

[S2 × I,G3,6;G|Sε ∪ G̃|Sε ], and by the above equivalence and the fact that

iG is the inclusion map, there exists a map Ĝ ∈ [S2 × I,Y;G|Sε ∪ G̃|Sε ]
which is homotopic to G through maps Gt which all agree on the boundary
S2 × {−ε, ε}.

Consider then the maps: Gt : S3 → G3,6, where

Gt|S2×I = Gt,Gt|S3\(S2×I) = GE .

Then G0 = GE and G1|S2×I = Ĝ, which is totally real on S2 × I. All these
maps can be taken to be continuous. We may further extend all these maps
continuously to the “thickened” annulus D2ε using the original Gauss maps

G, G̃ on the lower and upper part, respectively.
In fact, by the Whitney Approximation Theorem, we may assume that all

these maps are of class Ck (by taking a small homotopy). Furthermore, we
may make use the relative version of the Whitney Approximation Theorem
and assume without loss of generality that Gt agrees with the original Gauss

maps G, G̃ on the bottom and top parts (respectively) of A2ε = D2ε \ Dε.
(See Lee in [10] for an exposition on the Whitney Approximation Theorem).

Hence, we have constructed a formal totally real map, which we now

denote Ĝ = G1 : D2ε → Y of class Ck that agrees with the Gauss maps G, G̃
of the original embeddings on the bottom and top parts (respectively) of the
neighborhood A2ε of the boundary, and which is homotopic to GE through
maps D2ε → G3,6, In the language of the literature, we have shown that our
constructed embedding E is formally totally real (on D2ε).

Now, applying the h-principle for extensions to this map E on D2ε, we
see that since this is a formal totally real embedding which is holonomic for
3ε
2 ≤ |Im(w)| < 2ε, there exists a holonomic solution F@ : D2ε ↪→ C3 which

agrees with the original F for Im(w) ≥ 3ε
2 and with F̃ on Im(w) ≤ −3ε

2 .

Furthermore, F@ : D2ε ↪→ C3 is totally real and can be taken to be C0-close
to the (graphical) embedding E. (See our work in [5] and Gromov in [7] for
reference.)
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We may extend F@ : S3 ↪→ C3 to the entire of S3 in the natural way,
namely:

F@ = F for Im(w) ≤ −2ε

F@ = F̃ for Im(w) ≥ 2ε.

And as (consistently) defined above on D2ε.
The fact that F@ is indeed an embedding of S3 can be seen implicitly

as F@ can be taken to be C0 close to E on the lower and upper caps of
S3 (Im(w) > 2ε, Im(w) < −2ε). It then follows that there can be no self-
intersections of F@ as it can be taken to be arbitrarily close to a (fixed)
graphical embedding.

Furthermore, by construction the Ck-embedding F@ : S3 ↪→ C3 takes
complex tangents precisely along the unlinked knots K ∪ K∗, which are
both nondegenerate.

As this is based on the assumption of the second case, we have demon-
strated the results of the theorem. �

We note that the results of Theorem 4 may be readily extended to include
all classes of links, by an immediate generalization of our work in [3] (given
that “all links are algebraic”).

We further note that there are examples in which both cases of the Theo-
rem will hold. In particular, in our paper [4], we demonstrated two examples
of embeddings of S3, one assuming complex tangents along a circle and an-
other assuming complex tangents along two copies of a circle (unlinked). In
both examples the complex tangents were all nondegenerate.

To establish the existence of both cases, in particular for the existence
of embeddings with nondegenerate complex tangents exactly along a single
knot (of any given type), would be a worthy result. It is a problem that we
would like to see fully resolved in the future. Possible generalizations of our
results to the wider class of 3-manifolds are also of interest.
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