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The second transpose of a derivation and
weak amenability of the second dual

Banach algebras

Massoud Amini, Morteza Essmaili
and Mahmoud Filali

Abstract. Let A be a Banach algebra, A∗, A∗∗ and A∗∗∗ be its first,
second and third dual, respectively. Let R : A∗∗∗ −→ A∗ be the restric-
tion map, J : A∗ −→ A∗∗∗ be the canonical injection and Λ : A∗∗∗ →
A∗∗∗ be the composition of R and J. Let D : A −→ A∗ be a continuous

derivation and D
′′

: A∗∗ −→ A∗∗∗ be its second transpose. We obtain
a necessary and sufficient condition for Λ ◦D′′ : A∗∗ −→ (A∗∗)∗ to be a
derivation. We apply this to prove some results on weak amenability of
second dual Banach algebras.
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1. Introduction

The problem of a Banach algebra A inheriting weak amenability from
its second dual A∗∗ was originally studied by Ghahramani, Loy and Willis
in [GLW96]. Then came [DaRV01], where Dales, Rodriguez and Velasco
considered a continuous derivation D : A −→ A∗ and studied conditions
under which the second transpose D′′ : A∗∗ −→ (A∗∗)∗ of D is again a
derivation. They showed that D′′ is a derivation if and only if

D′′(A∗∗) • A∗∗ ⊆ A∗,
where “•” is the natural action of A∗∗ on A∗∗∗ as defined below in (2), see
[DaRV01, Theorem 7.1]. As a consequence, if A is Arens regular and every
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derivation from A into A∗ is weakly compact, then weak amenability passes
from A∗∗ to A, see [DaRV01, Corollary 7.5].

In [EF007, Theorem 2.2], Eshaghi and Filali obtained several affirmative
results on this problem of inheritance of weak amenability including the
one just mentioned. The arguments used in [EF007] do not use the criterion
proved in [DaRV01, Theorem 7.1]. Moreover, the arguments used by Eshaghi
and Filali yielded also in [EF007, Theorem 2.2] a short and a simple proof of
the criterion proved in [DaRV01, Theorem 7.1]. It may be worthwhile to note
that in most of these affirmative results, some conditions on regularity (such
as A is Arens regular, or D′′(A∗∗) ⊆ WAP (A) or the topological center of
A∗∗ being weakly amenable) were imposed every time. In [EF007, Theorem
2.4], the theorem was proved under the conditions that A is a right ideal
in A∗∗ and A∗∗A = A∗∗ and no Arens regularity was assumed. However,
it turned out later on that in this situation A must be Arens regular; see
[EF07, Theorem 4.3].

In this note, we are mainly concerned with one of these affirmative results,
which was proved in [GLW96, Theorem 2.3]. This theorem did not require
any condition related to Arens regularity. It stated that if A is a left ideal
in A∗∗, then weak amenability of the second dual A∗∗ is inherited by A.
The main ingredient used to prove this result is, that if under the above
assumptions D : A −→ A∗ is a derivation, then Λ ◦ D′′ : A∗∗ −→ (A∗∗)∗
is also a derivation, where Λ is the composition of the restriction map R :
A∗∗∗ −→ A∗ with the canonical injection J : A∗ −→ A∗∗∗. Again without
assuming any condition on Arens regularity, it is claimed that the same
method shows that if every derivation D : A −→ A∗ is weakly compact,
then weak amenability of the second dual algebra A∗∗ is inherited by A (see
the remark after [GLW96, Theorem 2.3]). But there seems to be a gap in
the passage proving that Λ ◦D′′ : A∗∗ −→ (A∗∗)∗ is also a derivation as we
shall explain in this paper. So the claim in [GLW96, Theorem 2.3] and the
remark following this theorem are still unknown.

Recently, some authors studied conditions under which the transpose of
a dual-valued operator becomes a derivation, see for example [AP12] or
[BaV11]. In [AP12, Proposition 1], Aleandro and Peña looked for conditions
which guarantee that the first transpose of an A∗-valued bounded linear map
on A is a bounded derivation on A∗∗, where they safely assumed that A is
Arens regular. Unlike, Barootkoob and Vishki in [BaV11, Lemma 4(ii)],
they obtained a condition for Λ◦D′′ : A∗∗ −→ (A∗∗)∗ to be a derivation and
claimed that the hypothesis of Arens regularity in [DaRV01, Corollary 7.5]
is superfluous. It seems that part of the proof of [BaV11, Lemma 4(ii)] has
the same gap as in the proof of [GLW96, Theorem 2.3] (see Remark 3.3).
Many attempts to prove the theorem without the Banach algebra being
Arens regular have failed so far even with the extra conditions that A is a
left ideal in A∗∗ or the derivations from A to A∗ are weakly compact; and
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a counter-example is still elusive even when these extra conditions are not
assumed.

This paper is organized as follows. In Section 3, we shall obtain a neces-
sary and sufficient condition for Λ ◦D′′ : A∗∗ −→ (A∗∗)∗ to be a derivation.
With this, it will be easy to explain where the arguments used in [GLW96,
Theorem 2.3] break down, and why it is more likely that Λ ◦ D′′ is not a
derivation in general (see Remark 3.3). Checking that Λ◦D′′ is a derivation
as well as passing weak amenability from A∗∗ to A will be immediate under
the extra condition on Arens regularity.

In Section 4, we will present examples showing that Arens regularity
is not necessary for any of these statements to be true. When A is the
semigroup algebra `1(Z+), which is not Arens regular, we see that Λ ◦D′′ is
a derivation and that the inclusion D′′(A∗∗) ⊆WAP (A) holds. The second
example gives a non-Arens regular Banach algebra A for which A∗∗ and A
are both weakly amenable. In the last example, we see that if G is a locally
compact group which is not SIN , then there exist always derivations (even

inner) D : L1(G) −→ L∞(G) such that Λ◦D′′ is not a derivation. Note that
in this last example, A∗∗ is not weakly amenable and A is not a left ideal in
A∗∗.

2. Some definitions

Suppose that A is a Banach algebra and E is a Banach A-bimodule. A
linear map D : A −→ E is a derivation if

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A).

For each x ∈ E, the map Dx : A −→ E defined by

Dx(a) = a · x− x · a (a ∈ A)

is a continuous derivation called the inner derivation induced by x. A Ba-
nach algebra A is said to be weakly amenable if every continuous derivation
from A into the dual Banach A-bimodule A∗ is inner, where the module
actions on A∗ are defined by

(1) 〈f · a, b〉 = 〈f, ab〉 and 〈a · f, b〉 = 〈f, ba〉 (a, b ∈ A, f ∈ A∗).
The first and second Arens products � and ♦ on A∗∗ are defined by

〈F�G, f〉 = 〈F,G · f〉 and 〈F♦G, f〉 = 〈G, f · F 〉.
Here,

〈G · f, a〉 = 〈G, f · a〉 and 〈f · F, a〉 = 〈F, a · f〉,
for every F,G ∈ A∗∗, f ∈ A∗ and a ∈ A. A Banach algebra A is Arens
regular if the first and second Arens products coincide in A∗∗.

A linear functional f ∈ A∗ is weakly almost periodic if the map

A −→ A∗,
a −→ a · f,
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is weakly compact. The space of weakly almost periodic functionals on A is
denoted by WAP (A). It is shown by Pym [P65] that

WAP (A) = {f ∈ A∗ : 〈F�G, f〉 = 〈F♦G, f〉 for every F,G ∈ A∗∗}.
It follows that A is Arens regular if and only if WAP (A) = A∗.

For the latest developments on WAP (A), see [FNS15].

Convention 2.1. Throughout this paper, we regard A∗∗∗ := (A∗∗)∗ as a
Banach A∗∗-bimodule with the following module actions:

〈ψ • F,G〉 = 〈ψ, F�G〉,(2)

〈F • ψ,G〉 = 〈ψ,G�F 〉,
(ψ ∈ A∗∗∗, F,G ∈ A∗∗). Note that here the actions are defined as in (1),
taking A∗∗ as the Banach algebra with the the first Arens product.

3. The second transpose of a derivation

Throughout the paper, a normed space is always identified with its canon-
ical image in its second dual. In this way, Λ = R ◦ J becomes simply
R : A∗∗∗ −→ A∗ ⊆ A∗∗∗. Suppose that A is a Banach algebra and
D : A −→ A∗ is a continuous derivation. Then for each F,G ∈ A∗∗,

D′′(F�G) = lim
α

lim
β
D′′(aαbβ)(3)

= lim
α

lim
β
D′′(aα) · bβ + lim

α
lim
β
aα ·D′′(bβ)

= D′′(F ) •G+ lim
α
aα •D′′(G),

where the above limits are taken with respect to the weak∗-topology in
(A∗)∗∗ and

(aα) and (bβ) are bounded nets in A, weak∗-converging in A∗∗ to F and
G, respectively.

We also have, using the same arguments as in [GLW96, Page 1495, lines
7-16] (these are correct),

lim
α

Λ(aα • ψ) = F • Λ(ψ) for all ψ ∈ A∗∗∗.

Hence, we deduce from (3) that

Λ ◦D′′(F�G) = Λ(D′′(F ) •G) + lim
α

Λ(aα •D′′(G))

= Λ(D′′(F ) •G) + F • (Λ ◦D′′(G)).

It follows that Λ◦D′′ : A∗∗ −→ (A∗∗)∗ is a derivation if and only if, for each
F and G ∈ A∗∗,
(4) Λ(D′′(F ) •G) = (Λ ◦D′′(F )) •G.

In the proofs of [BaV11, Lemma 4(ii)] and [GLW96, Theorem 2.3], the
authors used the fact that (4) holds if and only if it holds on A. The left-
hand side of the identity is in A∗, and everything would have been fine if
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both sides were in A∗. But there is no apparent reason for this to be so
in general. The map (Λ ◦ D′′(F )) being in A∗ does not make the map on
right-hand side in A∗; we only know that it is in A∗∗∗, and is given by the
action of A∗∗ on A∗∗∗ as defined in (2). So, for the identity (4) to hold
on A∗∗, it is clear that further assumptions are required. In the following
result, we obtain a necessary and sufficient condition for point Λ ◦D′′ to be
a derivation.

Theorem 3.1. Let A be a Banach algebra, D : A −→ A∗ be a continuous
derivation, and let D′′ : A∗∗ −→ (A∗∗)∗ be the second transpose of D. Then
the following are equivalent:

(i) Λ ◦D′′ is a derivation.
(ii) For every F,G ∈ A∗∗, Λ(D′′(F ) •G) = (Λ ◦D′′(F )) •G.
(iii) For every F,G ∈ A∗∗, Λ(D′′(F ) •G) = (Λ ◦D′′(F )) •G on A and

Λ ◦D′′(A∗∗) ⊆WAP (A).

Proof. From the above argument, it follows that (i) and (ii) are equivalent.
(ii)⇒(iii) It suffices to show that Λ ◦D′′(A∗∗) ⊆ WAP (A). Fix two ele-

ments F and G in A∗∗. Let (Hα) be a net in A∗∗ such that Hα −→ H in
the weak∗-topology on A∗∗. Then, by assumption, we have for each α,

〈Λ(D′′(F )), G�Hα〉 = 〈Λ(D′′(F )) •G,Hα〉
= 〈Λ(D′′(F ) •G), Hα〉.

It follows that

lim
α
〈Λ(D′′(F )), G�Hα〉 = lim

α
〈Λ(D′′(F ) •G), Hα〉

= lim
α
〈Hα, R(D′′(F ) •G)〉

= 〈H,R(D′′(F ) •G)〉 (since R(D′′(F ) •G) ∈ A∗)
= 〈Λ(D′′(F ) •G), H〉
= 〈Λ(D′′(F )) •G,H〉 (by assumption)

= 〈Λ(D′′(F )), G�H〉.

Now using the fact that

WAP (A) = {f ∈ A∗ : the map H −→ 〈G�H, f〉 is weak∗ continuous on

A∗∗ for each G ∈ A∗∗},

we conclude that Λ(D′′(F )) ∈WAP (A), as required.
(iii)⇒(ii) By hypothesis, Λ(D′′(F ) • G) = (Λ ◦ D′′(F )) • G on A. So, it

suffices to show that (Λ ◦D′′(F )) •G ∈ A∗. Again let (Hα) be a net in A∗∗
such that Hα −→ H in the weak∗-topology on A∗∗. Since Λ ◦ D′′(A∗∗) ⊆
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WAP (A), we have

lim
α
〈(Λ ◦D′′(F )) •G,Hα〉 = lim

α
〈(Λ ◦D′′(F )), G�Hα〉

= 〈(Λ ◦D′′(F )), G�H〉
= 〈(Λ ◦D′′(F )) •G,H〉.

Therefore (Λ ◦D′′(F )) •G ∈ A∗, and so the proof is complete. �

Before we prove next theorem, we check that the maps (Λ ◦D′′(F )) • G
and Λ(D′′(F ) • G) are equal on A when either D is weakly compact, or A
is a left ideal in A∗∗. In the first situation, D′′(F ) ∈ A∗, and so

Λ(D′′(F )) = D′′(F )

for each F ∈ A∗∗. In the second situation,

〈Λ(D′′(F )), G�a〉 = 〈D′′(F ), G�a〉
for each F,G ∈ A∗∗ and a ∈ A, since G�a ∈ A. Therefore, in both situa-
tions, we have for each F,G ∈ A∗∗ and a ∈ A,

〈(Λ ◦D′′(F )) •G, a〉 = 〈D′′(F ), G�a〉(5)

= 〈D′′(F ) •G, a〉 = 〈Λ(D′′(F ) •G), a〉,
as required.

Theorem 3.2. Let A be a Banach algebra, D : A −→ A∗ be a continuous
derivation, D′′ : A∗∗ −→ (A∗∗)∗ be the second transpose of D, and suppose
that D is weakly compact. Then the four following statements are equivalent.

(i) Λ ◦D′′ is a derivation.
(ii) D′′(A∗∗) ⊆WAP (A).
(iii) D(A) ⊆WAP (A).
(iv) D′′ is a derivation.

Proof. (ii)⇒(iii) is trivial, and (ii)⇒(iv) follows as in the proof of [EF007,
Theorem 2.1].

We prove (iv)⇒(i). We check that under the given conditions, these two
maps in (5) are actually equal as elements in A∗∗∗. First, since D′′ is a
derivation, we have D′′(A∗∗) • A∗∗ ⊆ A∗ by [DaRV01, Theorem 7.1] or
[EF007, Theorem 2.2]. So when D is weakly compact our claim is therefore
straightforward, since (Λ◦D′′(F ))•G = D′′(F )•G ∈ A∗, and so both maps
(Λ ◦D′′(F )) • G and Λ(D′′(F ) • G) are in A∗. They are therefore equal as
elements in A∗∗∗.

Using Theorem 3.1, we conclude that Λ ◦D′′ is a derivation.
We prove now the rest of the implications when D is weakly compact.
(i)⇒(ii) Since Λ ◦D′′ is a derivation, it follows from Theorem 3.1 that

Λ ◦D′′(A∗∗) ⊆WAP (A).

Now since D is weakly compact, we have

D′′(A∗∗) = Λ ◦D′′(A∗∗) ⊆WAP (A).
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(iii)⇒(ii) Since D is weakly compact, we have for each F ∈ A∗∗, D′′(F ) =
f for some f ∈ A∗. Since D(A) ⊆ WAP (A), using the weak∗-continuity of
D′′, we conclude that f is in the weak closure of WAP (A). Since WAP (A)
is weakly closed in A∗, we see that f ∈ WAP (A), as required. To see that
WAP (A) is weakly closed, let (fα) be a net in WAP (A) with a weak limit
f in A∗. Then, for each F,G ∈ A∗∗, we have

〈F�G, fα〉 −→ 〈F�G, f〉, 〈F♦G, fα〉 −→ 〈F♦G, f〉.

Since 〈F�G, fα〉 = 〈F♦G, fα〉 for each α, we conclude that

〈F�G, f〉 = 〈F♦G, f〉.

Thus, f ∈WAP (A). �

Remark 3.3. Let A be a Banach algebra and D : A −→ A∗ be a deriva-
tion. In the proof of [BaV11, Lemma 4(ii)] and [GLW96, Theorem 2.3], the
authors used the fact that

Λ ◦D′′ : A∗∗ →(A∗∗)∗ is a derivation(6)

⇐⇒ for all F,G ∈ A∗∗ and a ∈ A,
〈Λ(D′′(F ) •G), a〉 = 〈(Λ ◦D′′(F )) •G, a〉.

As explained at the beginning of this section, the latter identity needs not
to hold for any a ∈ A∗∗. Moreover, in the light of Theorems 3.1 and 3.2, the
above statement implies the following fact, which points more towards the
non-validity of this statement in general.

A derivation D : A −→ A∗is weakly compact⇐⇒ D′′(A∗∗) ⊆WAP (A).

In other words,

(7) D′′(A∗∗) ⊆ A∗ ⇐⇒ D′′(A∗∗) ⊆WAP (A).

To see this, when D : A → A∗ is weakly compact, then by (5) (or as in
[GLW96, Theorem 2.3] when A is a left ideal in A∗∗), we have

〈Λ(D′′(F ) •G), a〉 = 〈(Λ ◦D′′(F )) •G, a〉 (F,G ∈ A∗∗, a ∈ A).

Accordingly, if (6) is true, then Λ ◦ D′′ is a derivation, and so by Theo-
rem 3.2, D′′(A∗∗) ⊆WAP (A).

The converse is straightforward.

With the extra condition that A is Arens regular, affirmative answers are
now immediate with the help of Theorems 3.1 and 3.2.

Corollary 3.4. Let A be an Arens regular Banach algebra which is a left
ideal in A∗∗.

(i) If D : A −→ A∗ is a continuous derivation, then Λ ◦ D′′ is a
derivation.

(ii) If A∗∗ is weakly amenable, then A is weakly amenable.
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Proof. (i) Since A is a left ideal in A∗∗, by the argument used in the proof
of [GLW96, Theorem 2.3] (or by (5)), for each F,G ∈ A∗∗, we have

Λ(D′′(F ) •G) = (Λ ◦D′′(F )) •G
on A. Since A is Arens regular,

Λ ◦D′′(A∗∗) ⊆ A∗ = WAP (A).

Thus, by Theorem 3.1, Λ ◦D′′ is a derivation.
(ii) Let D : A −→ A∗ be a derivation. By (i), Λ ◦ D′′ is a derivation.

Since A∗∗ is weakly amenable, there is ψ ∈ A∗∗∗ such that

Λ ◦D′′(F ) = F • ψ − ψ • F (F ∈ A∗∗).
Therefore, D is the inner derivation induced by R(ψ). �

A direct application of Theorem 3.2 gives an alternative proof for [DaRV01,
Corollary 7.5].

Corollary 3.5. Let A be an Arens regular Banach algebra.

(i) If D : A −→ A∗ is a weakly compact derivation, then Λ ◦ D′′ is a
derivation.

(ii) If every continuous derivation D : A −→ A∗ is weakly compact and
A∗∗ is weakly amenable, then A is weakly amenable.

4. Some examples

Arens regularity seems to be an unavoidable condition to impose on A
to reach any affirmative answer related to the problem. But this is not
necessary as the following examples show.

Example 4.1. First we look at statement (7). It is easy to see that this
statement holds when A is Arens regular. But the Arens regularity of A
is not necessary for it to hold. Recently, Choi and Heath characterized in
[CH10, Theorem 2.6] weakly compact derivations from `1(Z+) to its dual and
they also showed in [CH10, Page 430] that every weakly compact derivation
D : `1(Z+) −→ `∞(Z+) satisfies

D(`1(Z+)) ⊆ c0(Z+) ⊆WAP (`1(Z+)).

Now by Theorem 3.2, it follows that

D′′(`1(Z+)∗∗) ⊆WAP (`1(Z+)).

Thus (7) holds for A = `1(Z+), though A is not Arens regular.
But we do not know whether (7) is true in general.

Example 4.2. The following example shows, that Arens regularity of A is
not necessary in Corollary 3.4(ii).

Let S = (N,min) and let βS be the Stone–Čech compactification of S.
Let c0(S) be the C∗-algebra of functions on S vanishing at infinity and let

c⊥0 (S) = {µ ∈ `1(S)∗∗ : µ(f) = 0 for all f ∈ c0(G)}.
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As known, c0(G)⊥ may be identified with the space M(βS \ S) of regular
Borel measures on βS \ S and

`1(S)∗∗ = `1(S)⊕ c⊥0 (S).

It is easy to see that for each u, v ∈ βS\S we have u�v = u. Accordingly, for
each µ, ν ∈M(βS \S), we have µν = ν(1)µ. In other words, for each µ, ν ∈
M(βS \ S), we have µν = φ(ν)µ, where φ is the augmentation character on
M(βS \ S). It follows that c0(S)⊥ is a closed subalgebra of `1(S)∗∗, which
is weakly amenable by [DaLS10, Proposition 2.13]. Furthermore, `1(S) is a
two-sided ideal of `1(S)∗∗, which is weakly amenable by [DaLS10, Example
10.10]. Therefore, by [DaLS10, Proposition 2.2 (vi)], we see that `1(S)∗∗ is
weakly amenable.

Note that `1(S)∗∗ is not commutative, and so `1(S) is not Arens regular.
(In fact, the topological center of `1(S)∗∗ is `1(S).)

Example 4.3. Our next example shows, that unless G is a locally compact
SIN -group, there are always (even inner) derivations D : L1(G) −→ L∞(G)
for which Λ ◦D′′ is not a derivation. Note that here L1(G) is always weakly
amenable ([J91] or [DeG94]).

The proposition below holds also for weighted group algebras L1(G,ω).
For simplicity, it is presented here just for ω = 1.

We recall first some necessary definitions. For a locally compact group
G, we consider the Banach algebra L1(G) under the convolution product.
A function on G is weakly almost periodic when the set of all its left (equiv-
alently, right) translates makes a relatively weakly compact subset in the
C∗-algebra of bounded continuous functions on G. Let WAP (G) be the
C∗-algebra of such functions.

A bounded function f on G is said to be right uniformly continuous when,
for every ε > 0, there exists a neighbourhood U of e such that

|f(s)− f(t)| < ε whenever st−1 ∈ U.

The C∗-algebra of right uniformly continuous functions on G is denoted by
LUC(G). By analogy, we may also define the C∗-algebra RUC(G) of left
uniformly continuous functions G. Since L1(G) has a bounded approximate
identity, Cohen–Hewitt factorization theorem (see [HR94, Theorem 32.22])
implies that L∞(G) ·L1(G) = RUC(G) and L1(G) ·L∞(G) = LUC(G), see

for example [Ü90, Proposition 3.3] or[HR79, 20.19]. We recall also that G is
an SIN -group when there is a basis for the neighbourhoods of the identity
in G consisting of sets U such that xUx−1 = U .

Proposition 4.4. If for every continuous inner derivation

D : L1(G) −→ L∞(G),

Λ ◦D′′ is a derivation, then G is a SIN -group.



274 M. AMINI, M. ESSMAILI AND M. FILALI

Proof. Suppose that f is an arbitrary element of L∞(G) and let

Df : L1(G) −→ L∞(G)

be the inner derivation induced by f. By hypothesis, Λ ◦D′′f is a derivation,

hence by Theorem 3.1, (Λ ◦D′′f )(L1(G)∗∗) ⊆WAP (L1(G)). In particular,

f · g − g · f ∈WAP (L1(G)) for all g ∈ L1(G).

On the other hand, as known (see for example [BeJM89]),

WAP (L1(G)) = WAP (G) ⊆ LUC(G) ∩RUC(G).

Since f is arbitrary, it follows that for all f ∈ L∞(G) and g ∈ L∞(G),

f · g − g · f ∈ LUC(G) ∩RUC(G).

We conclude therefore that LUC(G) = RUC(G), and so G is an SIN -group
by [M90, Theorem 2]. �
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